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Deep Learning Overview

Machine Learning: Typical taskis to try to learn a function h(x; 6) from
data§ = {(x; y;)} thatapproximatesy = f(x).
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One approach: For regression use linear hypotheses h(x;W,b) = xTW + b or "
for classification h(x; W, b) = sign(x"W + b), [convex optimization problems].
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Data-driven approaches: Try to learn the feature map ¢ fromthe data! Find best parameters 6 over
some class of feature maps ¢(x; 8). Choice of feature map class can incorporate prior knowledge.

Deep Learning: Many functionsin applicationscan be approximated well by a composition of functions:
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fD(xy,x5) = x1x, and fA(RD) = cos(hY) + 1 and £ @) () = abs(r'?).

Generally, we canthink abouty = f(x) = f& (f(’*‘l)(...f(l) (x) )) in terms of components as

L-1 L-1 L-1
¥ =fQryxs, iixy) = F9 (f1( )(zi1’zi2""'zi1v1)'f:2( )(zjl’zjz’ o By ) - )(zkyzkz' 1 Zlep ))' z=f

(L=2)

Concepts represented by hierarchy of distributed features. For instance: position of robotic actuator
from anglesin arm, identity of person from parts of the face, meaning of a sentence from phrases/words.
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Data-driven approaches: Try to learn the feature map ¢ from the data! Find bestparameters 6 over
some class of feature maps ¢(x; ). Choice of feature map class can incorporate prior knowledge.

Deep Learning: Many functionsin applicationscan be approximated well by a composition of functions:

y =) = FO(FED(.f D (x)...)), where £0: RVx - RViss. Wed o

Ex: Regressiony = |cos(x;x,) + 1| would have f(x) = f®(f@ (W (x) ) ) with ‘d §w~“r
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fD(xy,x5) = x3x; and fA(RD) = cos(hY) + 1 and f @ (h?) = abs(h(?). Jf’g’t; e

Generally, we canthink abouty = f(x) = f& (f(L‘l)(...f(l) (x) )) in terms of components as
¥ = f(xpxz’ "'rxN) = f('.L) (fl(L-l)(Zil,Zi_ y o l'v.l) fz(L 1)( Zj, 1 Zj, JV") (L 1)(Zk 1 2y - Zang)), z = f(,'L—Z)

Concepts represented by hierarchy of distributed features. For instance: position of robotic actuator
from anglesin arm, identity of person from parts of the face, meaning of a sentence from phrases/words.

View as building up function from*“hidden units” that detect particular features of inputz as
h®) = F(K)(z). Popularway to do this is to use Artificial Neural Networks (ANNs), h® = g(zTW + b).
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Neuron: Axons and Dendrites

What are Artificial Neural Networks?

Biological neurons process information by firing to excite or inhibit neighbors:
action potentials = voltage-gated ion channels / neurotransmitters - collective neural activity.
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Biological neurons process information by firing to excite or inhibit neighbors:
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NN’s are engineering tools inspired by nature. Not a model of real neurons!
Biology is more complex/ temporal dynamics, refraction/ other relevant factors.
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NN’s are engineering tools inspired by nature. Not a model of real neurons!
Biology is more complex/ temporal dynamics, refraction/ other relevant factors. _
Machine Learning: Foundations and Applications



http://atzberger.org/

Artificial Neural Network (ANN)

What are Neural Networks (NNs)?
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NN Transform: y = f(x; 8) where f is obtained by compositions
fO(FEI(fD (x) ...)) with h* = £® (R¥-1) = g(R*~*WFK + b¥).
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The g(z) is called the activation function. Common choices include G layart  Biianyee 2
« Sigmoid o: g(z) = 1/(1 + e73).
» Rectified Linear Unit (ReLu): g(z) = max(0,z).

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications


http://atzberger.org/

Artificial Neural Network (ANN)

What are Neural Networks (NNs)?

»’

o
A\
0}0
7
A

.

NN Transform: y = f(x; 8) where f is obtained by compositions
fO(FEI(fD (x) ...)) with h* = £® (R¥-1) = g(R*~*WFK + b¥).

ay

X
.

R
L

P
‘%

. output layer

input layer

hidden layer 1 hidden layer 2

The g(z) is called the activation function. Common choices include
« Sigmoid o: g(z) = 1/(1 + e73).
» Rectified Linear Unit (ReLu): g(z) = max(0,z).
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The g(z) is called the activation function. Common choices include G layart  Biianyee 2

« Sigmoid o: g(z) = 1/(1 + e73).

» Rectified Linear Unit (ReLu): g(z) = max(0,z).
Find best weights W and bias b for each layer to minimize some loss £(.,.).

Sigmoid Relu
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The g(z) is called the activation function. Common choices include GGAn Myar . acen Mywe<
« Sigmoid o: gz) = 1/(1 + e™?).

» Rectified Linear Unit (ReLu): g(z) = max(0,z).
Find best weights W and bias b for each layer to minimize some loss #(.,.).
Optimization non-convex so use local gradient learning methods.

Universal approximation of any smooth function y = f(x) just two layers
sufficient for broad class of g(z). However, may need many hidden units in layer.
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The g(z) is called the activation function. Common choices include GGAn Myar . acen Mywe<
« Sigmoid o: g(z) = 1/(1 + e™2).

» Rectified Linear Unit (ReLu): g(z) = max(0,z).
Find best weights W and bias b for each layer to minimize some loss #(.,.).
Optimization non-convex so use local gradient learning methods.

Universal approximation of any smooth function y = f(x) just two layers
sufficient for broad class of g(z). However, may need many hidden units in layer.

Deep architectures often less hidden units needed (symmetries). However,
training can be more challenging for deep architectures.
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NN Transform: y = f(x; 8) where f is obtained by compositions
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The g(z) is called the activation function. Common choices include s i s
« Sigmoid o: g(z) = 1/(1 + e™2).

» Rectified Linear Unit (ReLu): g(z) = max(0,z).
Find best weights W and bias b for each layer to minimize some loss #(.,.).
Optimization non-convex so use local gradient learning methods.

Universal approximation of any smooth function y = f(x) just two layers
sufficient for broad class of g(z). However, may need many hidden units in layer.

Deep architectures often less hidden units needed (symmetries). However,
training can be more challenging for deep architectures.

Many possible choices for network architectures, depth, activation functions.

Machine Learning: Foundations and Applications
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Universal Approximation Theorem

For many activation functions g(z) just two layers is sufficient for universal Neural Network: 1-Hidden Layer
approximation of any continuous function y = f(x) on a compact set.

input x output y
£ hidden layer :

l,, Is the unit cube in R"
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Lemma: The g(2) is discriminatory for Borel measures p iff the subspace
V={qlqx) = Z¥_,ag(w'x+ b)),N € N}zeros-out the measures p.

Theorem (Cybenko 1989): Let g(z) be a continuous activation function that
generates a subspace V = {q| q(x) = 2¥_, ¢;g(w'x + b;),N € N} that zeros-out all
Borel measures on I,,, then V is dense in the space of continuous functions C(I,,).

. IS the unit cube in R

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications


http://atzberger.org/

Universal Approximation Theorem

For many activation functions g(z) just two layers is sufficient for universal Neural Network: 1-Hidden Layer
approximation of any continuous function y = f(x) on a compact set.
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Universal Approximation Theorem

Theorem (Cybenko 1989): Let g(z) be a continuous activation function that

generates a subspace V = in the space{q | q(x) = XY_, a;g(w/ x+ b;),N € N} that

zeros-out all Borel measures on I, then V is dense of continuous functions C(I,,).

Neural Network: 1-Hidden Layer

input x output y
£ hidden layer :

,, Is the unit cube in R”
Machine Learning: Foundations and Applications
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Theorem (Cybenko 1989): Let g(z) be a continuous activation function that
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generates a subspace V = in the space{q | q(x) = XY_, a;g(w/ x+ b;),N € N} that
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Theorem (Cybenko 1989): Let g(z) be a continuous activation function that
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zeros-out all Borel measures on I, then V is dense of continuous functions C(I,,).

Remark: For any function f € C(I,) and & > 0 there exists q € V with N and weights
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Example: Linear/affine activation functions are not discrimantory, g(z) = c,z + c,.

l,, Is the unit cube in R"
Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications


http://atzberger.org/
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Theorem (Cybenko 1989): Let g(z) be a continuous activation function that

generates a subspace V = in the space{q | q(x) = XY_, a;g(w/ x+ b;),N € N} that
zeros-out all Borel measures on I,,, then V is dense of continuous functions C(I,,).

Neural Network: 1-Hidden Layer

Remark: For any function f € C(I,) and & > 0 there exists q € V with N and weights

a;,w; ,b; such that |f(x) —q(x)| < e forall x €1,. e s
hidden layer

Example: Linear/affine activation functions are not discrimantory, g(z) = c,z + c,.

Follows from: v(x) = ¥¥_ ¢ g(w x + b;) =X¥_, s (c;(W/x + b;) + ;) = wix + b, so
= [v(@)du(x) = [(w' x+ b)du(x) = wT [ xdu(x) + b [ du(x).

l,, Is the unit cube in R"
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Universal Approximation Theorem

Theorem (Cybenko 1989): Let g(z) be a continuous activation function that

generates a subspace V = in the space{q | q(x) = Z)_, a;g(w/ x+ b;),N € N} that
zeros-out all Borel measures on I,,, then V is dense of continuous functions C(I,,).

Neural Network: 1-Hidden Layer

Remark: For any function f € C(I,) and & > 0 there exists q € V with N and weights
a;,w; ,b; such that |f(x) —q(x)| < e forall x €1,.

inputx output y
hidden layer

Example: Linear/affine activation functions are not discrimantory, g(z) = c,z + c,.

Follows from: v(x) = ¥¥_ ¢ g(w x + b;) =X¥_, s (c;(W/x + b;) + ;) = wix + b, so
= [v(x)du(x) = [(W'x + b)du(x) = w? [ xdu(x) + b [ du(x).This can be made to
hold if we can find a Borel measure u so that both [ du(x) = 0and [ xdu(x) = 0. Let

p(x) = a16(x; — 1) + ax8(x; — 1) + azé(xy — 1) =-6(xy) + 26 (x1 - ‘) &(xy —1).

Example: RelU activations generate subspace that zeros-out Borel measures, so
ReLU-NN's have the universal approximation property.

. IS the unit cube in R
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Universal Approximation Theorem

Theorem (Cybenko 1989): Let g(z) be a continuous activation function that

generates a subspace V = in the space{q | q(x) = Z)_, a;g(w/ x+ b;),N € N} that
zeros-out all Borel measures on I,,, then V is dense of continuous functions C(I,,).

Remark: For any function f € C(I,) and & > 0 there exists q € V with N and weights
a;,w; ,b; such that |f(x) —q(x)| < e forall x €1,.

Example: Linear/affine activation functions are not discrimantory, g(z) = c,z + c,.

Follows from: v(x) = ¥¥_ ¢ g(w x + b;) =X¥_, s (c;(W/x + b;) + ;) = wix + b, so
= [v(x)du(x) = j'(w x + b)du(x) = wl [ xdu(x) + b [ du(x).This can be made to
hold if we can find a Borel measure u so that both [ du(x) = 0and [ xdu(x) = 0. Let

u(x) = ay6(xy —ny) + ar6(xy — 1) + azd(xy — 1) =-6(xy) + 26 (x1 - —) 5(xy—1).

Example: RelU activations generate subspace that zeros-out Borel measures, so
ReLU-NN's have the universal approximation property.

ReLU-NN'’s include all pieces-wise linear approximations, realizable with enough
hidden nodes, also provides another way to prove the universal approximation.

Neural Network: 1-Hidden Layer

inputx output y
hidden layer

l,, Is the unit cube in R"
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XOR Function

Neural Networks: Example

(0,1 (1,1
NN Transform:y = f(x; ) from compositions h* = f(®)(R¥~1) = g(hK*"1W¥ + bF). . -
1
Example: Compute the XOR functiony = f(x) = x;® x5.
(0,0)
Relu
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XOR Function

Neural Networks: Example (0. o (1D

NN Transform:y = f(x; ) from compositions h* = f(®)(R¥~1) = g(hK*"1W¥ + bF). .
1

Example: Compute the XOR functiony = f(x) = x;® x5.

*—
(010) X1 (1;0)
Linear models are insufficient h(x) = sign(xW + b), no choice W, b works.

Non-linearity importantto approximate functions such as XOR. Relu
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Neural Networks: Example (0. oD

NN Transform:y = f(x; ) from compositions h* = f(®)(R¥~1) = g(hK*"1W¥ + bF). .
1

Example: Compute the XOR functiony = f(x) = x;® x5.

.—D
(0,0) x; (1,0
Linear models are insufficient h(x) = sign(xW + b), no choice W, b works.

Non-linearity importantto approximate functions such as XOR. Relu

NN with two layers using non-linear ReLU activationg yields

¥ = £(x;8) = (max(0, WD + pO}) W@ 4 p@ —

Find parameters W@ p™ W b2 to tryto obtain correct classification y = sign().
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Neural Networks: Example (0. oD

NN Transform:y = f(x; ) from compositions h* = f(®)(R¥~1) = g(hK*"1W¥ + bF).

Example: Compute the XOR functiony = f(x) = x;® x5.

Linear models are insufficient h(x) = sign(xW + b), no choice W, b works.
Non-linearity importantto approximate functions such as XOR. Relu

NN with two layers using non-linear ReLU activationg yields

§ = £(x;0) = (max(0,x7W® + b)) W@ 4 p@ e

Find parameters W@ p™ W b2 to tryto obtain correct classification y = sign().
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XOR Function

Neural Networks: Example 0,05 oD

NN Transform:y = f(x; ) from compositions h* = f(®)(R¥~1) = g(hK*"1W¥ + bF). .
1

Example: Compute the XOR functiony = f(x) = x;® x,. o—
(0,0) X1 (1,0)
Linear models are insufficient h(x) = sign(x’W + b), no choice W, b works.

Non-linearity importantto approximate functions such as XOR. Relu

NN with two layers using non-linear ReLU activationg yields

§ = £(x; 6) = (max(0, WD + pO}) W@ 4 p@ et .

Find parameters W@ p™ W b2 to tryto obtain correct classification y = sign().

o - [ o =0, we - 2], 0

In general, we need methods to learn from data such weights to minimize a loss function.

Machine Learning: Foundations and Applications
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Learning with Neural Networks
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Artificial Neural Network (ANN)

How do we find weights of Neural Networks?
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Optimization Problem:

/ output layer
mgin L(G; {x;, y:}) = Ex,y ~Daata [3 (}’,f (x; 6 ))] input layer 9

hidden layer 1 hidden layer 2

P
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Optimization Problem:

' output layer
nlein L(ea {xir yl}) = Ex,y "'ﬁdata [f(y:f(x: 6 ))] input layer .

hidden layer 1 hidden layer 2

N
-’f

Non-convex problems typically have non-unique solutions and many local minima.
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Optimization Problem:

. - . output layer
Ingln L(en {xir yl}) = Ex,y Nﬁdata [e(yrf(x: 6 ))] input layer

hidden layer 1 hidden layer 2

D
!f

Non-convex problems typically have non-unique solutions and many local minima.

Goal is to find sets of parameters with small loss. Gradient-based methods can be used.
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Artificial Neural Network (ANN)

How do we find weights of Neural Networks?
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Optimization Problem: W ERXS
2 /)‘\“'//’A‘\ . output layer
InglnL(ei {xi,y:}) = Ex,y ~Dgata [f(}’,f(x; 0))] input layer

hidden layer 1 hidden layer 2

Non-convex problems typically have non-unique solutions and many local minima.
Goal is to find sets of parameters with small loss. Gradient-based methods can be used.

Stochastic Gradient Descent:
6™ = 6™ — aVpQ"(0"), with Q" (6™) = Q"(X; 6™) = -5 £ (vi,. f (3, 6™))-

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications


http://atzberger.org/

Artificial Neural Network (ANN)

How do we find weights of Neural Networks?
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Optimization Problem: /"W“{
‘ " ) output layer
melnL(B, {xit yl}) = Ex,y Nﬁdata [e(yrf(x; 0))] input layer . .

hidden layer 1 hidden layer 2

Non-convex problems typically have non-unique solutions and many local minima.
Goal is to find sets of parameters with small loss. Gradient-based methods can be used.

Stochastic Gradient Descent:
6™ = ™ — aVeQ"(6™), With Q"(6™) = Q" (X; ™) = -T2, # (i £ (x2,:6™)) .

A subset (batch) of the available data is used of size m,, to estimate expected loss, (provides regularization).
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Artificial Neural Network (ANN)

How do we find weights of Neural Networks?

:
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Optimization Problem:

mgin L(B; {x,-,yl-}) = Ex.y ~Dgata [e(}’,f(X; 9))] input layer

output layer

D
.)f
®

hidden layer 1 hidden layer 2

Non-convex problems typically have non-unique solutions and many local minima.
Goal is to find sets of parameters with small loss. Gradient-based methods can be used.

Stochastic Gradient Descent:
o+l = 9" — aVpQ™(™), With Q™ (8™) = Q"(X; ™) = mibz,':‘;’le (i £ (x5 6™)).

A subset (batch) of the available data is used of size m,, to estimate expected loss, (provides regularization).

Still needs computation of gradients V, f(x;8).
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How do we find weights of Neural Networks?
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Optimization Problem:

lnein L(6; {x;,¥:}) = Ex,y ~Dgata [t’(}',f(x; 9))] input layer

A
®

. output layer

hidden layer 1 hidden layer 2

Non-convex problems typically have non-unique solutions and many local minima.
Goal is to find sets of parameters with small loss. Gradient-based methods can be used.

Stochastic Gradient Descent:
6™ = 6™ —a¥,Q"(6™), with Q"(0") = Q"(X; 0™) = -5 € (Vi f (4,5 6™)).

A subset (batch) of the available data is used of size m,, to estimate expected loss, (provides regularization).

Still needs computation of gradients V,f(x;8).

Analytically straight-forward to compute by chain-rule, but naive evaluation is computationally expensive.
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Artificial Neural Network (ANN)

How do we find weights of Neural Networks?

Optimization Problem:

min L(8; {x;, i}) = Exy ~5e0 [£(v.f (x;0))] input layer

output layer

hidden layer 1 hidden layer 2

Non-convex problems typically have non-unique solutions and many local minima.
Goal is to find sets of parameters with small loss. Gradient-based methods can be used.

Stochastic Gradient Descent:
A . 1
6™ = 9" — aVpQ"(6™), With Q"(6™) = Q"(X; ™) = -5 € (Vi f (x4:6™)).

A subset (batch) of the available data is used of size m,, to estimate expected loss, (provides regularization).
Still needs computation of gradients V,f(x;8).
Analytically straight-forward to compute by chain-rule, but naive evaluation is computationally expensive.

Automatic differentiation used in practice called back-propagation.
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Computational Graphs and
Back-Propagation
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Computational Graphs

Optimization methods often need gradients V,f (X; 6).
Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.

Computational graph represents function evaluation in terms of more basic operations.
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Computational Graphs

Optimization methods often need gradients V,f (X; 6).
Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.

Computational graph represents function evaluation in terms of more basic operations.

Example:y=f(x) =x+5.
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Computational Graphs

Optimization methods often need gradients V,f (X; 6).

Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.
Computational graph represents function evaluation in terms of more basic operations.
Example:y = f(x) =x+5.

Example:y = f(x) = cos(x?) + 1.

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications


http://atzberger.org/

Computational Graphs

Optimization methods often need gradients V,f (X; 6).

Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.
Computational graph represents function evaluation in terms of more basic operations.
Example:y = f(x) =x+5.

Example:y = f(x) = cos(x?) + 1.

; 2
Example:y = f(xy,x;) = w g( w11 Xq +w1(2)x2 )+w w )g( w2 i x1 +w‘,f2)x2 )
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Computational Graphs

Optimization methods often need gradients V,f (X; 6).

Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.
Computational graph represents function evaluation in terms of more basic operations.
Example:y = f(x) =x+5.

Example:y = f(x) = cos(x?) + 1.

: 2 1 1 2 1 1
Example:y = f(xy,x;) = wl( )g( W1(,1) x; + wl(“,_)x2 )+ Wz( )g( W?E1) x; + w.,gz)x2 )
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Computational Graphs

Optimization methods often need gradients V,f (X; 6).

Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.
Computational graph represents function evaluation in terms of more basic operations.
Example:y=f(x) =x+5.

Example:y = f(x) = cos(x?) + 1.

; 2
Example:y = f(xy,x;) = w g( w11 Xq +w1(2)x2 )+w w )g( w,_ i x1 +w:,f2)x2 )

y = w@hD 4 1y @pD

Gradient can be computed provided we know how to differentiate
result of each operationin terms of contributing terms.
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Computational Graphs

Optimization methods often need gradients V,f (X; 6).

Symbolic representations of f(8) useful for automatic differentiation to obtain V4 f.
Computational graph represents function evaluation in terms of more basic operations.
Example:y=f(x) =x+5.

Example:y = f(x) = cos(x?) + 1.

; 2 1
Example:y = f(xy,x;) = w g( w11 x; + wl(z)x2 )+w w )g( w2 : x1 + w‘,_(’z)x2 )

y = w@hD 4 1y @pD

Gradient can be computed provided we know how to differentiate
resultof each operationinterms of contributing terms.

Function derivatives can then be builtup using the chain-rule of calculus.
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Chain-Rule

Chain-Rule of Calculus:

u® = f(u®D), uM=¢ (f (... (u®) ))
du™  gu™ gu®

aud ~ au® aud
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Chain-Rule

Chain-Rule of Calculus:

u® = f(u*k D), oM™= f(f(...f(u(l)) ))
du™  gu™ gu®

au® ~ oau® agud

Example: L = f(2), z = f(3),y = f(x) wethen have L = f (f(f(x)))
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Chain-Rule

Chain-Rule of Calculus:

u® = f(u*k D), oM™= f(f(...f(u(l)) ))
du™  gu™ gu®

au® ~ oau® agud

Example: L = f(z), z = f(y),y = f(x) wethenhave = f (f(f(x)))

dL _ OJL 0z dy
ox 0z dy Ox

, can also be expressed as (i)g—i = f(f(f(x)) f (f(x))f (x) or (ii) g—i = f'(2)f (y)f ().
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Chain-Rule of Calculus:

u® = f(u®D),  u® = f(f(...f(u(l)) ))
ou™  u™ gu®

ou? ~ au® gud

Example: L = f(2), z = f(),y = f(x) wethenhave L = f (f(f(x)))

dL _ OJL 0z dy
ox 0z dy dx

, can also be expressed as (i)g—i = (f(f(x)) ' (f(x))f (x) or (ii) g—i = (2)f ()f (x).

First expression (i) “naive”chain-rule can require manyfunction evaluations (exponential number some
cases).
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Chain-Rule of Calculus:

u® = f(u®D),  u® = f(f(...f(u(l)) ))
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, can also be expressed as (i)g—i = (f(f(x)) ' (f(x))f (x) or (ii) g—i = (2)f ()f (x).
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First expression (i) “naive”chain-rule can require manyfunction evaluations (exponential number some
cases).

Second expression (ii) composite chain-rulereuses previous functional evaluations (costin memory).
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Chain-Rule

Chain-Rule of Calculus:

u® = f(u® D), wuW=f (f(...f(u(l)) ))
du™  u™ gu®

au® ~ oau® agud

Example: L = f(2), z = f(¥),y = f(x) wethen have L = f (f(f(x)))

dL _ OJL 0z dy

9% 329y ax’ A" also be expressed as (i)Z—i = f(f(f(x)) ' (f(x))f (x) or (ii) g—i = f'(2)f (y)f (x).

First expression (i) “naive” chain-rule can require manyfunction evaluations (exponential number some
cases).

Second expression (ii) composite chain-rulereuses previous functional evaluations (costin memory).

Computational can either assemble productto evaluate or store symbolic representation.
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Chain-Rule

Chain-Rule of Calculus:

u® = fu® D),  u® = (f(.f(u®)..))
du™  u™ gu®

u? ~ au® gud

Example:L = f(2), z=f(y),y = f(x) wethenhaveL = f(f(f(x)))

gi - ZI; Z; Zir can also be expressed as(i)z_i = F(f(fx)) F (1)) (%) or (i) g_i =PRI

First expression (i) “naive” chain-rule can require manyfunction evaluations (exponential number some
cases).

Second expression (ii) composite chain-rulereuses previous functional evaluations (costin memory).
Computational can either assemble productto evaluate or store symbolic representation.

Advantages of (i) when memory storage issues, otherwise(ii) is usually preferred.

Machine Learning: Foundations and Applications
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Back-Propagation Method

Back-Propagation Method:
u® = fu®D), u® = £ (£(.. F(uD) ..))
du'™ z du'™ gu®

ud) - 2u® gul)
i:j€E Pa(u(' )
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Back-Propagation Method

Back-Propagation Method:

u® = f(u® D), u® = £ (£(... f(u®)...))
Au™ Z Au™ du®

ud) - 2u® gul)
i: j € Pa(u'?)

Algorithm | (Forward-Pass):
Input: x@, x@, .., x()

fork:=12..;n;
210 o 5500

form=n;+1,..,n
UM {u) | j € Pau™)}
u(m  f(m) (]U(m))
4T
Output: u™, {uV} _ .
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Back-Propagation Method

Back-Propagation Method:

u® = f(u® D), u® = £ (£(... f(u®)...))

Au™ Z Au™ du®

ud) . 2u® guh)
i: j € Pa(u'?)

Algorithm | (Forward-Pass):
Input: x, x®@, ., x(n)

for k= 1,2, e, Ny
L) ()

Algorithm | computesthe functional evaluations {u(‘)}?= -
form=n;+1,..,n

UM {u) | j € Pa@™))}
u(m  £(m) (U(m))

Output: u™, {u®}" .
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Back-Propagation Method

Back-Propagation Method: Algorithm Il (Backward-Pass):

u® = fu® D), u® = £ (f(.. f(uD) )  Input: u™ m =1, ..n.

Ju'™ B Au™ gu® grad table[u(")] e

dul) Z . ou® gulh) .

i: j € Pa(u®) Forj=n—1,..1

- i duld

Algorithm I (Forward-Pass): P Et:)] i

Input: x(, x@, . x( Output: Zzw k=1,..n.

fork:=12..;n;
ull)  x () Algorithm | computesthe functional evaluations {u(")}?= .

form=n;+1,..,n
UM {u) | j € Pa@™))}
u(m  £(m) (U(m))

Output: u™, {u(i)}?= 3

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications
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Back-Propagation Method

Back-Propagation Method: Algorithm Il (Backward-Pass):

u® = fu® D), u® = £(£(.. f(uD) )  Input: u™,m = 1,...n.

du'™ du'™ gu'® (n)

_ rad_table 1
Jul) Z . ou'® gul) 2 . [u ] &
i: j € Pa(u®) Forj=n—1,..1

i i du'd

Algorithm | (Forward-Pass): P Et:)] 2, ;e Pa(uo)8rad table[u®]

Input: x(, x@, . x( Output: Zzw)' k=1,..n.

fork:=12..;n;
) gy () Algorithm | computesthe functional evaluations {u(")}:; .

form=n;+1,..,n
UM {u) | j € Pa@™))}
u(m  £(m) (U(m))

Output: u™, {u(")}:'= 3

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications
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Back-Propagation Method

Back-Propagation Method: Algorithm Il (Backward-Pass):
u® = f(u® D), u® = £ (f(..f(uD)..)) Input:u™ m=1,..n
du'™ du'™ u® (n)
_ rad_table 1
duld) Z . du® gulh) 2 - [u ] N
i: j € Pa(ul?) Forj=n—1,..1
i du'd)
ilandithont EonmaciPhseh grad_ table[u‘!’]«z .7 e Pa(u)8rad_table[u®@] 2
Input: x(, x@, . x( Output: 2 8u(k)' =170
fork:=12..;n;
ull)  x () Algorithm | computesthe functional evaluations {u(")}?= .
form=n;+1,..,n
o . (n)
U™ (O | j € Pa@u™)) Algorithm Il maintains ateach stage: grad_table[u"| = i
dull)

u(m  £(m) (U(m))
Output: u™, {u(")}?= :

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications
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Back-Propagation Method

Back-Propagation Method:

u® = F(uE D), u® = £ (£(.. Fu®)..))
du'™ Z du'™ u®

du) _ 3u® guh
i: j € Pa(u'¥)

Algorithm | (Forward-Pass):
Input: xV, x@, ., x™)

fork:=12..;n;
210 o 5500

form=n;+1,..,n
UM {u) | j € Pa@™))}
u(m e £m) (U(m))
1L
Output: u™, {uV} _ .

Algorithm Il (Backward-Pass):
Input: ™ m=1,..n.
grad_table[u™] < 1

FOr =0 —1;1

grad_table[u(? ]« %, ; e Pa(u®) grad_table[u(® g:—zz
,ou™
Output: 2 k=:1,..1.
Algorithm | computesthe functional evaluations {u(")}?= .
. (n)
Algorithm Il maintains ateach stage: grad_table[u’] = Z’;( i

Back-Propagation consists of the two steps (i) forward pass of
algorithm | followed by (ii) backward pass of algorithm 1.

Machine Learning: Foundations and Applications
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Back-Propagation Method

Back-Propagation Method:

e . f(u(k—l)), u™ = f (f(...f(u(l)) ))
du'™ z Au™ au®

Jul)  u® guh
i: j € Pa(u®)

Algorithm | (Forward-Pass):
Input: x, x@, ., x(n)

fork:=1.2;..;n;
210 55

form=n;+1,..,n
pim {u(j) |j € Pa(u(m))}
u(m) 2 f(m) ([U(m))
Output: u™, {u(i)}?: 2

Algorithm Il (Backward-Pass):
Input: u'™ m=1,..n.
grad_table[u'™] « 1

FOr = — 1yl

du'd

dull)

grad_table [u(j)] = Zi:j = pa(um)grad_table[u(")]

ulm
duk)

Output:

k = ]., .. .

Algorithm | computesthe functional evaluations {u®} .

aul™
oul)’

Algorithm Il maintains ateach stage: grad_table[u"’| =

Back-Propagation consists of the two steps (i) forward pass of
algorithm | followed by (ii) backward pass of algorithm |II.

Parallelized versions and other variants also used for efficiency.
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Feed-Forward Neural Networks (FFNN)
Basic Examples of NN's

Paul J. Atzberger, http:/atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks Neural Network Architecture

Neural network architecture with one processing layer feeding
forward into the next processing layer.

Hidden Layer 1

|

Input Layer

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks Neural Network Architecture

Neural network architecture with one processing layer feeding
forward into the next processing layer.
Hidden Layer 2

|

Hidden Layer 1

|

Input Layer

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks Neural Network Architecture

Output Layer
Neural network architecture with one processing layer feeding I

forward into the next processing layer.
Hidden Layer 2

|

Hidden Layer 1

|

Input Layer

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks Neural Network Architecture

Output Layer y = f(x) Q

Neural network architecture with one processing layer feeding

forward into the next processing layer. I
Hidden Layer 2

|

Hidden Layer 1

|

Input Layer x O

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks Neural Network Architecture

Output Layer y=f(x) ©
Neural network architecture with one processing layer feeding
forward into the next processing layer.

Hidden Layer 2
Intermediate hidden processing layers of the form g(XW + b). I
Nonlinear transformation by some activation function g(2).

Hidden Layer 1
Last processing layer typicallyislinear XW + b. I

Input Layer x O

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks Neural Network Architecture

Output Layer y=f(x) ©
Neural network architecture with one processing layer feeding
forward into the next processing layer.

Hidden Layer 2 h2 Qg} ®
Intermediate hidden processing layers of the form g(XW + b). I )

N 2ENA

e S
LXXXXXXL L] | |
SRR 1

Nonlinear transformation by some activation function g(2). ,.
Hidden Layer 1 hy O

Last processing layer typicallyislinear XW + b. I

Feed-Forward Neural Network (FFNN) provide model for y = f(x). Input Layer < &

Machine Learning: Foundations and Applications




Feed-Forward Neural Networks Neural Network Architecture

Output Layer y=1f(x) O
Neural network architecture with one processing layer feeding
forward into the next processing layer.
Hidden Layer 2
Intermediate hidden processing layers of the form g(XW + b). I
Nonlinear transformation by some activation function g(z). i "’*3"'* )
y 9(2) Hidden Layer 1 hy do"?o’*b'b%b
Last processing layer typicallyis linear XW + b. I
Feed-Forward Neural Network (FFNN) provide model for y = f(x). Input Layer < 8

Learning involves adjustingweightsW and bias b of layers.

Machine Learning: Foundations and Applications




Feed-Forward Neural Networks Neural Network Architecture

Output Layer y=1(x) C
Neural network architecture with one processing layer feeding
forward into the next processing layer. I

Hidden Layer 2 h, QQQQQOOOOL
Intermediate hidden processing layers of the form g(XW + b). I

Nonlinear transformation by some activation function g(2). (RN
Hidden Layer 1 h1 poolelele)le)0)e
Last processing layer typicallyislinear XW + b. I

Feed-Forward Neural Network (FFNN) provide model for y = f(x). Input Layer e

Learning involves adjustingweightsW and bias b of layers.

Stochastic Gradient Descent (SGD) currently widely used for
optimization of weights and bias.

Implicitregularization by choice of batch size and learning rates.



Feed-Forward Neural Networks: Example Neural Network Architecture

Output Layer y = f(x) ,Q-
Example: Approximate the function y = sin(x) using FFNN. I 7\

Architecture: 2-layers with 10-hidden ReLu nodes per layer. Hidden Layer 2

This NN architecture spans piecewise linear functions (10 nodes). I

Hidden Layer 1

|

Input Layer x O

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks: Example Neural Network Architecture

Output Layer y=f(x) ©
Example: Approximate the function y = sin(x) using FFNN. I
Architecture: 2-layers with 10-hiddenReLu nodes per layer. Hidden Layer 2
This NN architecture spans piecewise linear functions (10 nodes). I
Explicitly: f(X) = g(g(g(X - WD + p1)). w@ 4 p@y. B 4 p(3) sl
with g(z) = max(0, z). I
A notion of “loss” requiredto assess level of success in fit. Input Layer X Cj

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks: Example Neural Network Architecture

Output Layer y=f(x) ©
Example: Approximate the function y = sin(x) using FFNN. ‘[
Architecture: 2-layers with 10-hiddenReLu nodes per layer. Hidden Layer 2
This NN architecture spans piecewise linear functions (10 nodes). I
Explicitly: f(X) = g(g(g(X - WD + p1)). w@ 4 p@y. B 4 p(3) sl
with g(z) = max(0, z). I
A notion of “loss” requiredto assess level of successin fit. Input Layer X o

Least-squares loss function ¢({x,yi}) = ¥, (f (xi) -y))?.

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks: Example Neural Network Architecture

Output Layer y=f(x) ©
Example: Approximate the function y = sin(x) using FFNN. I

Architecture: 2-layers with 10-hiddenReLu nodes per layer. Hidden Layer 2, IO

RSk
This NN architecture spans piecewise linear functions (10 nodes). I | DCEEEa |||
% b S ,.,
Explicitly: f(X) = g(g(g(X - w@ 4+ b(l)) W@ 4+ b(Z)) w3 4 p3) Hidden Layerl  h, O .
with g(z) = max(0, z). I

A notion of “loss” requiredto assess level of successin fit. Input Layer X O
Least-squares loss function ¢({x,yi}) = ¥, (f (xi) -y))?.

Learning W,b proceeds by stochastic gradientdescent.

Machine Learning: Foundations and Applications



Feed-Forward Neural Networks: Example Neural Network Architecture

Trained FFNN on set of 1000 samples y; = sin(x;) + ;. Output Layer y=1x) Q
Stochastic Gradient Descent (SGD) used with batch size 10 I
and learningrate 1074 Hidden Layer 2
Feed-Fxorward Neural-Network: Epoch = 0.0pe+00 I
|l
Hidden Layer 1
Input Layer X Cj
>
2k
o.ob_F ofz ofa ofe e 7o Epoch =1 step of SGD throughout these examples.
X

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications
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https://docs.google.com/file/d/1ENp8kJVAAfy4MROJUxEORwe_zbv0qt4D/preview

Feed-Forward Neural Networks: Example Neural Network Architecture

Trained FFNN on set of 1000 samples y; = sin(x;) + ;. Output Layer y=1(x) O
Stochastic Gradient Descent (SGD) used with batch size 10 I
andlearningrate 1074, Hiddén Layer2

Feed-Forward Neural-Network Fit to F(X)

e o Trasning Data 5
® Predicted Result
2 .

- Target Function
Hidden Layer 1

|

Input Layer x O

0.0 0.2 0.4 0.6 0.8 1.0
X

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks: Example

Trained FFNN on set of 1000 samplesy; = sin(x;) + ¢;.

Stochastic Gradient Descent (SGD) used with batch size 10

andlearningrate 1074

10¢

101}

10°

w 10

10

102

10+

Training Loss

0 20000 40000 60000 80000 100000

Epoch

Neural Network Architecture

Output Layer y=f(x) C

|

Hidden Layer 2 h, QQQQOOOC

|

Hidden Layer 1 h1 alalalalela "y

|

Input Layer Xx O




Feed-Forward Neural Networks: Example

Trained FFNN on set of 1000 samples y; = sin(x;) + ;.

Stochastic Gradient Descent (SGD) used with batch size 500
andlearningrate 1074

Feed-Forward Neural-Network: Epoch = 0.00e+00

® @ Traming Data
® ® Predicted Result

2 H == Target Function

0.0 0.2 0.4 0.6 0.8 1.0

Neural Network Architecture

Output Layer y=1f(x) O

|

Hidden Layer 2

|

Hidden Layer 1

|

Input Layer x O

Paul J. Atzberger, http://atzberger.org/
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https://docs.google.com/file/d/1W6K9cftoMHhHDBcy7v7IevuYc8atXLYG/preview

Feed-Forward Neural Networks: Example Neural Network Architecture

Trained FFNN on set of 1000 samples y; = sin(x;) + ;. Output Layer y=1(x) O
Stochastic Gradient Descent (SGD) used with batch size 500 I
andlearningrate 1074, Hiddén Layer2
Fged-Forward Neural-Netvgork Fit to FQ() I
® © Prosictes Aesut
2 H— Target Function
Hidden Layer 1
Input Layer X ‘{j

0.0 0.2 0.4 0.6 0.8 1.0
X

Paul J. Atzberger, http://atzberger.org/ Machine Learning: Foundations and Applications



Feed-Forward Neural Networks: Example

Trained FFNN on set of 1000 samples y; = sin(x;) + ¢;.

Neural Network Architecture

Output Layer y= f(x) ~

Stochastic Gradient Descent (SGD) used with batch size 500 I
andlearningrate 1074

10*

10°}

v 1071

107

107

Training Loss

0 20000

40000

Epoch

60000

80000

100000

Hidden Layer 2 h2 QQOQOOO)(

|

Hidden Layer 1 h,

|

Input Layer x O

Additional fine-tuning of hyper-parameters should
be done to enhance efficiency of training.



Feed-Forward Neural Networks: Example

Example: Approximate the function y = sin(6mx) + 2x? using FFNN.

Architecture: 2-layers with 100-hiddenReLu nodes per layer.

This NN architecture spans piecewise linear functions (100 nodes).

Explicitly: f(X) = g(g(g(X - WD + b)) w@ + p@h. wG) 4 p)
with g(z) = max(0, z).

A notion of “loss” requiredto assess level of successin fit.
Least-squares loss function ¢({x,vi}) = ¥; (f(xi) -y,)?.

Learning W,b proceeds by stochastic gradient descent.

Neural Network Architecture

Output Layer y = f(X)

|

Hidden Layer 2 h-

|

Hidden Layer 1 h,

|

Input Layer




Feed-Forward Neural Networks: Example

Trained FFNN on set of 1000 samples y; = sin(6mx;) + 2x% + ;.

Stochastic Gradient Descent (SGD) used with batch size 20
andlearningrate 1074

Feed-Forward Neural-Network: Epoch = 0.00e+00

® ©® Trainng Data
® ©® Predicted Result
w= Target Function

0.0 0.2 0.4 0.6 0.8 1.0

Neural Network Architecture

Output Layer y= f(X)

|

Hidden Layer 2 h2

|

Hidden Layer 1 h,

|

Input Layer X




13

reaeq

F

orward Neutr

r“"' WOTIs
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Feed-Forward Neural Networks: Example

Trained FFNN on set of 1000 samples y; = sin(6nx;) + 2x2% + ;.

Stochastic Gradient Descent (SGD) used with batch size 20
andlearningrate 1074

Feed-Forward Neural-Network Fit to F(X)

¢ « Traning Data
® ©® Predicted Result
~  Yarget Function

0.0 0.2 0.4 0.6 0.8 1.0

Neural Network Architecture

Output Layer

|

Hidden Layer 2 h-

|

Hidden Layer 1 h,

|

Input Layer

y = f(x)




Feed-Forward Neural Networks: Example Neural Network Architecture

Trained FFNN on set of 1000 samples y; = sin(6mx;) + 2x% + ;. Output Layer y = f(x)
Stochastic Gradient Descent (SGD) used with batch size 20 I
andlearningrate 1074 Hidden Layer2 |

104 Training Los§

A
[ w— Training Lc','.] I
10°

Hidden Layer 1 h1 .

107 1 I

10}

Input Layer

Loss

10%}

10

107}

Additional fine-tuning of hyper-parameters should be
done to enhance efficiency and robustness of training.

10

0 20000 40000 60000 80000 100000
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Summary

Paul J. Atzberger, http:/atzberger.org/ Machine Learning: Foundations and Applications



Neural Networks: Summary i

Deep Neural Network (DNN) Image Classifier: Convolutional Neural Network (CNN) RecurrentNeural Network (RNN)

T3 e N g, o e

‘l\‘ } r’\\- }b-.‘ 4 b{:“‘}v—«

5586
ey

LeCun 1989

« Neural Networks are providing state-of-the-artresults in many fields:
(computer vision, natural language processing, reinforcement learning).
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Neural Networks: Summary

Deep Neural Network (DNN) Image Classifier: Convolutional Neural Network (CNN)
input
2\ Hidden 1
\ O “ mp N, " Hidden L
3 OSBO = C Output
/'."j';’J

LeCun 15983

« Neural Networks are providing state-of-the-artresults in many fields:
(computer vision, natural language processing, reinforcement learning).

- Powerful approximation properties: target functions approximated by
compositions, performwell in high dimensional spaces, manyvariants.

Natural Language Processing
RecurrentNeural Network (RNN)
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Neural Networks: Summary

Deep Neural Network (DNN)
|
O\ nput

Image Classifier: Convolutional Neural Network (CNN)

Hidden 1

Hldden L
Output

4
LA l

LeCun 15983

« Neural Networks are providing state-of-the-artresults in many fields:
(computer vision, natural language processing, reinforcement learning).

- Powerful approximation properties: target functions approximated by
compositions, performwell in high dimensional spaces, manyvariants.

« With appropriate learning protocols, despiterichness of NN's, seems
they can be well-enough regularized to not overfit the training data.

NaturalLanguage Proc
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RecurrentNeural Network (RNN)
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Neural Networks: Summary

Natural Language Processing

Deep Neural Network (DNN) Image Classifier: Convolutional Neural Network (CNN) RecurrentNeural Network (RNN)
input (e o~ )
A s P Hidden 1 ‘,'\. }-(“/;.:._ .'7.(\"}4
PP W S
CA Hldden L (o) .'/I ’\i»"? (T N‘
- OO | Output )
NHOL® iy S0 2
> . : “ )>.<_/’
g LeCun 1983

« Neural Networks are providing state-of-the-artresults in many fields:
(computer vision, natural language processing, reinforcement learning).

- Powerful approximation properties: target functions approximated by
compositions, performwell in high dimensional spaces, manyvariants.

« With appropriate learning protocols, despiterichness of NN's, seems
they can be well-enough regularized to not overfit the training data.

+ Currentresearch to better understand NN's: choice of architectures,
training protocols, approximation properties, reliability, interpretability, ...
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