Introduction to Machine Learning
Foundations and Applications

Paul J. Atzberger
University of California Santa Barbara
Generative Adversarial Networks (GANs)

Paul J. Atzberger

Diagram showing the process of GANs:
- Training target data
- Noise
- Generator G(z)
- Discriminator D(x)
- Classification of target data and generated data
- Generated data
Motivations: Image Generation

GANs: CIFAR-10, 32x32

GANs: LSUN, 256x256

CycleGANs

GANs Celeb-HQ

Many other applications...

Karras 2018

Zhu 2018

Paul J. Atzberger, UCSB

Machine Learning

http://atzberger.org/
Motivations

Manifold-like structures in high dimensional spaces (natural images, audio, physical fields, PDE solutions).

Challenge: How to learn high dimensional probability distributions, generators $G(z)$ for sampling?

Generative Modeling

Approaches for learning models:
- Bayesian Methods
- Maximum Likelihood Estimation (MLE)
- and many more...

Challenge: How to do this in a tractable way?
Generative Modeling

$p_{model}(z; \theta)$

generated data

$p_{data}(z)$

$p_{data}(z)$ $p_{model}(z; \theta)$
Generative Models

Goal

Learn a model distribution $p_{\text{model}}(z; \theta)$ approximating the data distribution $p_{\text{data}}(z)$.

Classification: For input x assign the class $y^* = \arg\max_y p_{\text{model}}(y|x; \theta)$ (approximates the Bayes classifier).

For $z = (x, y)$ this is typically broken down using $p(x, y) = p(y|x)p(x)$. The model distribution with parameter θ is then $p_{\text{model}}(x, y; \theta) = p(y|x; \theta)p_{\text{data}}(x)$, where $p_{\text{data}}(x) = \int p_{\text{data}}(x, y) d\mu_y$.

Optimization Formulation

For an objective function $J[p_{\text{model}, \theta}, p_{\text{data}}]$, find

$$\theta^* = \arg\min_{\theta} J[p_{\text{model}, \theta}, p_{\text{data}}].$$

Maximum Likelihood is a widely used approach, corresponds to the objective

$$J[\theta] = J[p_{\text{model}, \theta}, p_{\text{data}}] = -\mathbb{E}_{(x, y) \sim p_{\text{data}}} \left[\log \left(p_{\text{model}}(x, y; \theta) \right) \right].$$

This is equivalent to minimizing the **Kullback-Leibler Divergence** D_{KL} with

$$J[\theta] = D_{KL} \left(p_{\text{data}} \parallel p_{\text{model}, \theta} \right).$$
Generative Models

In practice: We do not have data distribution but only training samples \(\{z_i\}_{i=1}^m \).
We construct the **empirical data distribution**

\[
\tilde{p}_{\text{data}}(z) = \frac{1}{m} \sum_{i=1}^{m} \delta(z - z_i).
\]

Goal (empirical distribution)

Learn a model distribution \(p_{\text{model}}(z; \theta) \) approximating the data distribution \(\tilde{p}_{\text{data}}(z) \).

Find

\[
\theta^* = \arg\min_{\theta} J[p_{\text{model}, \theta}, \tilde{p}_{\text{data}}].
\]

Maximum Likelihood (empirical data distribution): For \(\tilde{p}_{\text{data}} \) becomes

\[
J[\theta] = -\mathbb{E}_{(x, y) \sim \tilde{p}_{\text{data}}} \left[\log \left(p_{\text{model}}(x, y; \theta) \right) \right] = -\frac{1}{m} \sum_{i=1}^{m} \log \left(p_{\text{model}}(x_i, y_i; \theta) \right).
\]

In practice: \(p_{\text{data}} \) often high dimensional requiring rich class of \(p_{\text{model}, \theta} \). Above requires some way to compute the log-likelihood function. To get good gradient need overlap of distributions (absolute continuity). Often difficult to compute functional form of \(p_{\text{model}} \). Need for alternatives.
Generative Adversarial Networks (GANs)

Goodfellow 2014: Generative Adversarial Networks (GANs).

GANs: Utilizes deep learning with DNNs for generators $G(z; \theta)$.

Key idea: Use properties of supervised learning and generalization behaviors of classifiers D to train generators $G(z; \theta)$.

Synthetic data distribution mixture of “real” and “fake” samples.

Two player-game:
(i) D aims to classify x as “real” or “fake.”
(ii) G aims to generate “fake” samples so well D can not tell difference.

Successes: image generation, video augmentation, and other applications. Challenges (counting, spatial alignment,...)
Generative Adversarial Networks (GANs)

Learn generative models using:

GANs

Generator G: samples $x \sim p_{\text{model}}(x; \theta^G)$.

Discriminator $D(x)$: binary classifier for if
(i) input x is sampled from $p_{\text{data}}(x)$, or
(ii) generated from $p_{\text{model}}(x; \theta^G)$.

Remark: Two-player game with G generating samples so well that the discriminator D can not distinguish from samples of the data distribution.

Remark: The objective is similar to a counterfeiter G printing money so that the police D can not tell if the bills are real or fake.

Key Idea: Replaces the problematic calculation using D_{KL}-objective by instead using the discriminator D to serve to drive the model distribution p_{model} toward p_{data}. Leverages capabilities of supervised learning methods.
Generative Adversarial Networks (GANs)

Learn generative models using:

GANs

Generator G: samples $x \sim p_{\text{model}}(x; \theta^G)$.

Discriminator $D(x)$: binary classifier for if
(i) input x is sampled from $p_{\text{data}}(x)$, or
(ii) generated from $p_{\text{model}}(x; \theta^G)$.

Synthetic Labeled Data: Create a synthetic labeled set of data as follows:
(i) with probability $1/2$ sample x from the data distribution $p_{\text{data}}(x)$ and assign the label 1,
(ii) with probability $1/2$ sample x from the model distribution $p_{\text{model}}(x; \theta^G)$ and assign the label 0.

Binary Classifier: Consider generative classifier that assigns the probability $D(x)$ that x was sampled from the data distribution. Then $1 - D(x)$ is the assigned probability that x was generated from the model distribution.

$$D(x) = p_D(y = 1 | x) \approx \Pr\{Y = 1 | X = x\}, \quad 1 - D(x) = p_D(y = 0 | x) \approx \Pr\{Y = 0 | X = x\}.$$

Classification: For input x assign the class $y^* = \arg\max_y \Pr\{Y = y | X = x\}$ (approximates Bayes classifier).
Generative Adversarial Networks (GANs)

Synthetic Labeled Data: This has the data distribution \(p_{\text{synth-l}} \) given by

\[
p_{\text{synth-l}}(x, y) = 1_{y=1} \frac{1}{2} p_{\text{data}}(x, y) + 1_{y=0} \frac{1}{2} p_{\text{model}}(x, y; \theta^G).
\]

For this distribution we have

\[
\Pr\{ Y = 1 | X = x \} = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}.
\]

Thus, \(D(x) = p_{\text{data}}(x) / (p_{\text{data}}(x) + p_{\text{model}}(x)) \) would give us the best possible discriminator (Bayes classifier).

Remark: If we were successful in getting our model distribution to exactly match the data distribution then \(p_{\text{model}} = p_{\text{data}} \) and \(D(x) = 1/2 \).

Remark: When \(D(x) = 1/2 \) the discriminator can not tell if the sample was more likely to come from the data distribution or from the generator. For generative discriminator, let \(p_D(x, y; \theta^D) := p_D(y|x; \theta^D) p_{\text{synth-l}}(x) \).

We aim to achieve this outcome by learning simultaneously \(\theta^D \) for the optimal discriminator \(D \) and learning \(\theta^G \) for an optimal generator \(G \). Let \(C(\theta^G) \) term be entropy of the synthetic distribution.

We formulate the classification problem for \(D \) using cross-entropy loss with objective function

\[
\hat{J}^D(\theta^D, \theta^G) = -\mathbb{E}_{x,y \sim p_{\text{synth-l}}, \theta^G} \left[\log p_D(x, y; \theta^D) \right] = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log (D(x)) \right] - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{model}}, \theta^G} \left[\log (1 - D(x)) \right] + C(\theta^G).
\]
Generative Adversarial Networks (GANs)

Discriminator D

Find $\theta^{D*} = \text{arg-min} \ J^D(\theta^D, \theta^G)$ with

$$J^D(\theta^D, \theta^G) = -\mathbb{E}_{x,y \sim p_{\text{synth-l}}, \theta^G} [\log p_D(y|x; \theta^D)] = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} [\log (D(x))] - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{model}}, \theta^G} [\log (1 - D(x))].$$

Entropy term $C(\theta^G)$ not used. Generator G aims for distribution close to data distribution.

Generator G: Approach I

Find $\theta^{G*} = \text{arg-max} \ J^G(\theta^D, \theta^G)$ with $J^G = J^D$.

Paul J. Atzberger, UCSB
Machine Learning
http://atzberger.org/
Generative Adversarial Networks (GANs)

Discriminator D

Find $\theta^{D*} = \arg\min J^D(\theta^D, \theta^G)$ with

$$J^D(\theta^D, \theta^G) = -\mathbb{E}_{x,y \sim p_{\text{synth-l}}, \theta^G} \left[\log p_D(y|x; \theta^D) \right] = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log (D(x)) \right] - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{model}}, \theta^G} \left[\log (1 - D(x)) \right].$$

Entropy term $C(\theta^G)$ not used. Generator G aims for distribution close to data distribution.

Generator G: Approach I

Find $\theta^{G*} = \arg\max J^G(\theta^D, \theta^G)$ with $J^G = J^D$.

This gives a zero-sum game, so has valuation function $V(\theta^D, \theta^G) = J^D = J^G$.

Remark: Deep Neural Networks will be used to learn $D(x; \theta^D)$ and $G(z; \theta^G)$.

Remark: Notice the objective functions now no longer require evaluating the expression of the model probability distribution. They only require expectations, which can be approximated from sampling $x \sim p_{\text{model}}$.

We use the **reparameterization technique** to generate $x \sim p_{\text{model}}$ using $x = G(z; \theta^G)$, where $z \sim \hat{p}_{\text{model}}$ with \hat{p}_{model} an easy to generate distribution. The challenge is shifted to learning the function $G(z; \theta^G)$.
Generative Adversarial Networks (GANs)

Discriminator D

Find $\theta^D_* = \text{arg-min } J^D(\theta^D, \theta^G)$ with

$$J^D(\theta^D, \theta^G) = -\mathbb{E}_{x,y \sim p_{\text{synth-l}}, \theta^G} \left[\log p_D(y|x; \theta^D) \right] = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log (D(x)) \right] - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{model}}, \theta^G} \left[\log (1 - D(x)) \right].$$

Entropy term $C(\theta^G)$ not used. Generator G aims for distribution close to data distribution.

Generator G: Approach I

Find $\theta^G_* = \text{arg-max } J^G(\theta^D, \theta^G)$ with $J^G = J^D$.

Vanishing Gradient Issue: For bad generators the discriminator can become very good at just rejecting samples from the model distribution resulting in vanishing gradient in θ^G and no learning.

Alternative Formulation: We aim for generator to make the discriminator probability $D(x)$ as large as possible (hence fooling it). We use

Generator G: Approach II

Find $\theta^G_* = \text{arg-max } J^G(\theta^D, \theta^G)$ with $J^G = \mathbb{E}_{z \sim p_{\text{model}}, \theta^G} \left[\log (D(x; \theta^D)) \right]$.

Paul J. Atzberger, UCSB

Machine Learning

http://atzberger.org/
Generative Adversarial Networks (GANs)

Discriminator D

Find $\theta^D_* = \arg\text{-min} \ J^D(\theta^D, \theta^G)$ with

$$J^D(\theta^D, \theta^G) = -\mathbb{E}_{x \sim p_{\text{synth-l}}^I, \theta^G} \left[\log p_D(y|x; \theta^D) \right] = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log D(x) \right] - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{model}}, \theta^G} \left[\log (1 - D(x)) \right].$$

Generator G: Approach II

Find $\theta^G_* = \arg\text{-max} \ J^G(\theta^D, \theta^G)$ with $J^G = \mathbb{E}_{z \sim p_{\text{model}}, \theta^G} \left[\log (D(x; \theta^D)) \right].$

No longer a zero-sum game, the solution (θ^D_*, θ^G_*) now characterized as a Nash Equilibrium.

Training Protocol: Alternate minimizing discriminator objective with maximizing the generator objective.

Remark: This can result in oscillatory learning dynamics. Current area of research on best ways to address (likely this is application dependent).
JS-GANs: Jensen-Shannon Distance

Jensen-Shannon Distance

\[
JS(p_{\text{data}}, p_{\text{model}}) = \frac{1}{2} KL \left(p_{\text{data}} \parallel \frac{p_{\text{data}} + p_{\text{model}}}{2} \right) + \frac{1}{2} KL \left(p_{\text{model}} \parallel \frac{p_{\text{data}} + p_{\text{model}}}{2} \right)
\]

\[JS(p, q) \geq 0 \text{ and } JS(p, q) = 0 \Rightarrow p = q \text{ (a.s.). } KL(p \parallel q) = \mathbb{E}_{x \sim p} \left[\log \left(\frac{p}{q} \right) \right].\]

The optimal discriminator is \(D^*(x) = \frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)}\). Substituting, we have

\[
J^D(\theta^D, \theta^G) = -\frac{1}{2} \mathbb{E}_{x \sim p_{\text{data}}} \left[\log \left(\frac{p_{\text{data}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)} \right) \right] - \frac{1}{2} \mathbb{E}_{x \sim p_{\text{model}}, \theta^G} \left[\log \left(\frac{p_{\text{model}}(x)}{p_{\text{data}}(x) + p_{\text{model}}(x)} \right) \right].
\]

This gives

\[
J^D(\theta^D, \theta^G) = -JS(p_{\text{data}}, p_{\text{model}}, \theta^G) + \log(2).
\]

As a result, when \(J^G = J^D\), we have \(\theta^G = \arg\max_{\theta^G} J^D(\theta^D, \theta^G) = \arg\min_{\theta^G} JS(p_{\text{data}}, p_{\text{model}}, \theta^G)\).

Shows that original GANs with optimal discriminator \(D^*(x)\) is equivalent to following gradients to minimize the JS-Distance between the model distribution \(p_{\text{model}}\) and \(p_{\text{data}}\).

GANs have been successfully applied in many practical applications: Image Synthesis, Super-Resolution Imaging, Generative Art, Face and Video Synthesis. Other formulations of GANs (Wasserstein WGANs, E-GANs, etc...)
Task: Use GANs to learn Gaussian target data distribution $\rho_{data}(x)$.

Generator \rightarrow Approximated by Deep Neural Network (DNN) and SGD.

Training: Alternate between minimization for D(x) and maximization for G(z).

Remark: Cumulative Distribution Function (CDF) \rightarrow Inverse gives a generator.

Remark: Gaussians this diverges to give small probability for tails. Noise sources type important consideration in practice.
Example: Gaussian Target Distribution

GANs

Results:

Atzberger 2020
Task: Use GANs to learn Gaussian target data distribution $\rho_{data}(x)$.

Generator \rightarrow Approximated by Deep Neural Network (DNN) and SGD.

Training: Alternate between minimization for $D(x)$ and maximization for $G(z)$.

Remark: Cumulative Distribution Function (CDF) \rightarrow Inverse gives a generator.

Remark: Gaussians this diverges to give small probability for tails. Noise sources type important consideration in practice.
GANs Celeb-HQ
Task: Use GANs to generate images similar $\rho_{data}(x)$.

Generator $G(z)$: maps noise from latent space $Z \rightarrow$ images X.

DNN Generator: Generate images using deep Transpose Convolutional Neural Networks (T-CNNs).

Discriminator $D(x)$: Image classifier based on Convolutional Neural Networks (CNNs).

GANs: Use SGD to learn both classifier and generator at the same time.

Important Considerations: architecture, regularizations (batch normalization), data quality, training protocols (balancing D and G),…
CycleGANs

Zhu 2018
CycleGANs

Task: Use input image to generate image of another class.

GANs trains two generator maps $G(X)$ and $F(Y)$.

Two discriminators: D_X and D_Y try to keep in space of natural images.

Reconstruction condition: $X \rightarrow Y \rightarrow \hat{X}$ for information preservation.

Training: SGD over a large corpus of images or videos.

Results:
- image-to-image conversions (style, time-of-year, object class).
- video-to-video conversions (style, time-of-year, object class).
CycleGANs

horse → zebra

zebra → horse

winter Yosemite → summer Yosemite

summer Yosemite → winter Yosemite
CycleGANs
Summary

GANs provides approach for training Generative Models.

JS-GANs uses properties of supervised learning for discriminator D to obtain loss functions related to classifier behaviors.

Many variants of GANs: Wasserstein (WGANs), Gradient Penalty (GP-GANs), Energy-based (E-GANs), ...

Provides representations and parameterizations for subsets of manifold-like structures.

Challenges remain:
- computationally expensive (involves training DNNs).
- learning full probability distribution (mode collapse).
- reliable training (oscillations, lack of convergence).

Successes in image processing / video (interpolation, super-resolution, reconstruction, augmentation).

Emerging applications in the sciences and engineering (surrogate models, subgrid models, model reductions).