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Regression

Consider > ;;:‘;
yi = f(x;) + €i, where f € F is sampled with x ~ Dy and ¢; is noise with E[¢;] = 0. .",": ® e
Task: From data samples S = {(x;, yi)}iZ, find model h € H so that y ~ h(x). ot e

v

Linear regression: h(x) = w- x + b. Kernel regression: h(x) = w - ®(x) + b, with k(x;,x;) = (®(xy), ®(x;))-
Linear regression and variants amongthe most common.

Insights from weights w into how features x; = (x/,x?,...,x;) contribute toy;,.
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Regression

Consider
yi = f(xi) + €i, where f € F is sampled with x ~ Dx and ¢; is noise with E [¢;] = 0.

Task: From data samples & = {(x;, yi)}/~1 find model h € H so that y ~ h(x).

Loss Function: L(y',y): )Y x)Y —R.

Examples: L,-loss: L(y',y) = ||y’ — y||5, special case L-loss (least squares) L(h(x), f(x)) = ||h(x) — f(x)|I3.
Generalization Error (Risk):

R(h) = Exvp [L(h(x), f(x)].

Empirical Error (Empirical Risk):

R(h) = 7 3271 L(h(xi). f(xi)).

Technical Assumption: We may find it useful to bound the loss functions L(y’, y) < M, referred to as
(bounded regression problem) .

Example: Loss L(h(x), f(x)) = min{|||h(x) — f(x)|||3, M}.
Many variants of regression:
@ Linear Regression, Kernel Ridge Regression

@ Support Vector Regression, LASSO Regression, ...

Paul J. Atzberger Machine Learning: Foundations and Applications http://atzberger.org/
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Regression: Motivation of Least-Squares

Regression: Consider

yi = f(x;) +mi, with ii.d. i ~n(0,0%) = [Gausssian mean 0, variance ¢2], and f(x) = w, x.

Task: From S = {(x;, yi)}7; find model h € H = {h | h(x) = w'x}.

Probabilistic Model: Predictions of the data use distribution y; = w’x; + n; with n; ~ n(0, o?).

Probability Densities:

—1/2 2
noise: p(n) = (2%02) exp (— 1

—1/2 i — WX
ﬁ) = observation: p(y; | xi, w) = (271'02) exp (— v
a

For the full data set S we have

m m 2
—m/2 o yi — WTXf
p(ylv"-aym|X15---7Xm;w): | |p(Yf|Xf'7W):(27TO-2) exp (_ 1(2 2 ) ) :K’(Wls)
i=1 o v
Likelihood
Maximum Likelihood Method: We can estimate w, as

3 . 1 _:

* = LwlS) = w* = = ( - ) .
W" = arg max (w|S) W’ = argmin — yi— w' X

=1
This gives Method of Least-Squares.
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Regression: Bayesian Motivation

Probability of Observations for Model w:

T 2\ —m/2 D ity (y,' - WTX")2
p(y]-?“'ﬂym |X11-“7Xm;W): | |p(yﬂ |X1'7W): (2770— ) exXp | — ) :L(ng)
i1 20 . ,
Likelihood

Bayes Rule for Posterior Distribution over Models w:

likelihood prior

—N———
Pr{S|w} Pr{w} _ L(w|S) Pr{w}.

Priwlsh = =15y Pr{S)
N——

evidence

Maximum A Posteriori (MAP) Estimate : We can estimate w. as

1 20572

m 2
~k (N ~k s o T —_ _
W' = argmin log (Pr{w|S}) = W™ =arg min Z (y, w x,) +AR(w), R(w) = —log (Pr{w}),\ = -

=
Role of Prior: For Pr{w} with p(w) = (27w2)71/2 exp (—w?/20%) we can take R(w) = w?, A = r:_j? € Ry
Bayesian prior provides regularization R(w) for selection of w (related to "ridge regression” methods).

As v — oo the prior becomes increasingly less informative and A — 0 reducing regularization of least-squares.
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Bias-Variance Trade-Off: L[,-Risk

L>-Risk: L(h(x), f(x)) = ||h(x) — f(x)||3 with

H = {all measurable functions x ~ D}, f measurable.

Optimal Solution: m = arg minycy Ep [L(h(X), Y)] is given by
m(x) =E[Y|X = x].

Recovers m(x) = f(x) except for set of measure zero ~ D.

error

L,-risk

I~ optimal

| trade-of f

v

complexity of g€

Regression: Consider H now more restrictive. Estimate m,(x) € H from n data samples S, = {(x;, yi)} =1

Lo-error can be expressed as

E [|m,,(x) _ m(x)|2} - E [m?,(x) — 2mn(x)m(x) + m2(x)] —E [m

()] = 2B [ma()] m(x) + m’(x)

= E|m()] — Bma) + (& [mo])® — 28 [ma(x)] m(x) + m(x)

= Var [m,(x)] + (E [ma(x)] — m(x))?

= Var [ma(x)] + (bias (ma(x)))>.

Bias-Variance Trade-off: As complexity of H increases bias | but Var {1 since more sensitivity to changes in

data samples S, drawn.

Generalization: Suggests balancing model accuracy on the training set with complexity to help generalization.
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Curse of Dimensionality
Sampling on Unit Cube: Consider samples X, X1, X2, ..., X, € [0,1]? (d-dimensional hypercube).

Minimum Sample Distance: For n samples, denote the minimum distance between X and nearest sample X; by

doo(d, n) =K [min;e[l’n] IlX — Xr”oo] : ‘Sarrjples_". i
We can express in terms of probability as X\\*’,a z"'
doo(d, n) = [;7 Pr{minicp,n | X — Xilloo > t}dt = [° 1 — Pr{minicp q | X — Xil|oo < t}dt. X,'//;. e

. l.' % =€- :',3' -:'
The probability of being at most t apart in || - ||c-norm is N :._..;.:.;:_.”-,._-. "
Pr{miniG[l,n] ”X - Xj”oo S t} S n(2t)d RSN B

1/2nt/d d 1
Lower Bound on Distance: d..(d,n) > / 1 — n(2t)%dt = 5 ~ n~1/d
0

(d + 1) nt/d

samples: n = 102 n = 103 n = 10* n = 10°
de(1,n) =20.0025 =0.00025 =0.000025 =0.0000025
de(10,n) 20.28 >0.22 >0.18 >0.14
de(20,n) 20.37 >0.34 > 0.30 >0.26

Gyorfi 2002

Consequence: Shows for n samples, the minimum distance decreases very slowly for large d, doo ~ n—1/4d

Regression: Without using assumed structure, regression requires many samples to ensure accuracy.
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Generalization Error Bounds
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Regression: Rademacher Complexity

Notation and definitions: e =
& input space, Y output space Q&=
€ conceptclass, conceptf(x): L > Y i I 1 el
g€ hypothesis class, hypothesis h(x): £ = Y. [ ; o

Theorem: (regression bounds) Consider € so that |h(x) — f(x)| < M forall x € ,h € %, then forany p > 1
and any 6 > 0 we have with probability 1 — é that the following bounds hold uniformly for h € %,

[\h ) — ] < 12 F@i)|” + 2pMP~ 'R, (H) + MP °®5 | (Rademacherbound)
m im1 m
1 & b1 » log% .
E Uh(:}:) ] EZ P+ 2pMP~"Rg(H) + 3M el (Empirical Rademacher bound)

Significance: The expected value of the loss can be bounded by the observed empirical average. This differs
at mostby the Rademacher Complexity of regression class € plus a term vanishing as m - .

We see complexity ofthe space of hypothesis functions usedforthe regression effects rate of
convergence of the generalization error as m — co.

Key s to find bounds onthe regressionspace Rademacher complexity R(H).
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Regression: Pseudo-dimension Bounds and VC-Dimension

Motivation: Are there combinatorial bounds similar in spirit to VC-dimensionwe can use
to characterize complexity of regressionspaces F?

Definition: LetG be family of functions & > R. We say a set {X;,X,,...X,,} is shattered by
G if there existst,,t,,...,t,, such that

sgn (g(z1) — t1)
, cge Gyl =2"

sgn (9(xm) — tm)
We call the threshold values t, t,,...,t,, the witness to the shattering. | X1 X

v

Definition: Fora family of functions G: £ - R we definethe pseudo-dimension of G [;ﬂ [tﬂ [iﬂ [:ﬂ
denoted Pdim(G) as the largest m so a set of points is shattered.
Remark: Thisis related to VC-dim by considering corresponding classifiers
Pdim(G) = VCdim({(z,1) — 1) -0: 9 € G})
Lemma (hyperplanes) The pseudo-dimension of hyperplanes in RY is given by
Pdim({x—w-x+b:wecRY bcR}) =N +1
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Regression: Pseudo-dimension Bounds

Theorem: If the pseudo-dimension Pdim(G) = d then forany § > 0 we have with
probability 1 — § that the following bounds hold uniformly forany h € %€

~ 2d log ¢ log L
R(h) < R(h) + My| =2 d_ 4 My |25
m 2m

where ¢ = {x - L(h(x),f(x)): h €H},L < M.

Remark: This gives analogous result as for VC-dimension. This is not tightest bound but
gives worst-case guarantees when bounds on Rademacher complexity are difficult.

Remark: Hyperplanesin RY (linear regression) #={h | h(x) = w'x + b} have d =N + 1.

Remark: Note, these bounds are when using only ERM. Alternatively, we also can use
regularization and other strategies to select model h(x) (discussed later).

> —<
—_—,— ———

— 4

3

—————
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Linear Regression
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Linear Regression

Optimization Problem:
1 m
min — Z (w- ®(2;) + b—y;)*

w,b m
=1

Equivalent Optimization Problem I:

'U-fl U1

Solution: W = (XXT)TXY
VuF =0, = %x (XTW - Y) =0 = XX W=XY = W= (xXxX") xy.

Pick W with smallest ||W/||> when XX is non-invertible.
Pseudo-inverse: For matrix A the pseudo-inverse is
—1
A = lim (ATA n ’yl) AT
40
For Ax = b, x = A'h <= x” = argmin||Ax — b3 + 7[|x3, x = lim, 0 x".

When A is invertible, AT = A71A"TAT = AL,

v
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Linear Regression t :

o
Equivalent Optimization Problem I: ° "." °
. 'LL:’]_ yll ® ..o‘ o
minw F(W), F(W)=L|XTW-Y|? X=[?0) 2] W= [w-N] Y = [ : ] ® o ° o
b Ym o . ©
0“ .
Solution: W = (XX")tXy ° °

Issues when features x2 are strongly correlated with x° , say equal, or one has a fixed value.

Strong correlations or co-linearity canresult in XX nearly-singular. Results very sensitive to noise in data!

fit with features fit with features pseudo-inverse fit with features
uncorrelated correlated or fixed correlated or fixed

ndin0o
ndin0
|
“~OENWLWa 4
Output

1 aimedd

Feature 1

Feature 2
Feature 2

v
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https://vimeo.com/503703724/eb6ff18434

Kernel Ridge Regression
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Kernel Ridge Regression

Theorem: (ridgeregression bounds) Consider kernel regressionusing = {h(x) = w - ®(x)| |lwll, < A} with
K(x,x) < r?and |f(x)| < Arthen for any § > 0 we have with probability 1 — § that the following bounds hold
uniformly for h € %

~ 8r2A\? Tr[K] 3 [log2
R(h) < R(h) + —7= (\/ — +Z\/T5)

Significance: Providestighter bounds than the combinatorial approach using pseudo-dimension.
Secondbound provides tighter estimate since Tr[K] < mr?, trace makes use of properties of the kernel.
Tightestboundfrom minimizing the RHS. This yields an optimization problem.

We need [[w|[? < A%so making A? as small as possible corresponds to making ||w||? small. Can view bound as

R(h) < R(h) + M2 where A = % (14 4/ ) = o( L)

e f

Yields optimization problem

min F(w) = A||w||* + Z (w-P(r;) — v )’

1=1
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Kernel Ridge Regression

Optimization Problem:

min F(w)

w

@ > u u
X =[] W= | ) Y= [ : ]

e

F(w) = Aw|?+ > (w-®(z;) — 1)’
1i=1

Ym

Equivalent Problem:

miny, F(w), F(w) = Xw|® +[|X"W - Y|?

Solution:

VuF(w)=0 = (XXT+X)w=XY

= w=(XXT + Al XY.

Kernelization using the dual formulation.

A
o .
0"
o '.'
(0] o o]
‘0‘ o
O o
o o O
o °
¢ 0
o ,°
0" i
o ‘0’ o
"
.
»
>

Ordinary
Least Squares

Ridge
Regression

N
Least-Squares

L2- Objective
Regularization
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Kernel Ridge Regression

Primal Problem:

n:&n F(w),  F(w)=Al|w|*+ z (w-®(x;) — yi)°
i=1

Equivalentoptimization problem :

: N 02 . . 2 2
min Zl(w ®(r;) —y;)® subject to: |w|[* < A

Equivalentoptimization probleml:
rr‘.iré > & subject to: (|wl* < A%) A (Vie [1L,m], &=y — w-B(x)))
tai=1
Kernelization of the regression makes use of the dual formulation.

Lagrangian

L(E w0 =Y &+ > aifss =& = w- B(a)) + A(wl? - 42)

Paul J. Atzberger Machine Learning: Foundations and Applications
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Kernel Ridge Regression : Dual Formulation

Lagrangian

L(Ew, o/, )\)= —&—w-P(x;))

Z£2+Za
KKT Condltlons
Vwl = —Za;@(ri) +2xw =0 ==

i=1
V‘ng:Q{l—a;:U =

Vie [lm],aj(y; — & —w-®(2;)) =0

Allwl* =A%) = 0.

Dual Formulation: Substitute w*, £* so F(a') = inf, ¢ L(&, w,a’, )

m

2 m )
Flo) = Z‘%+Za.-yf—2———2a a5 *(x) - ¢(XJ)+”\(4)\2
i=1 i=

i=1

= —Azzm:oz,z —|—2)\Zm:oz,-y,- —
i=1 i=1

Dual Optimization Problem:

ij=1

T T
max —Aa a+2a' Y — «
aceR

li [ty
Y1 i T /1
)+ A([wl? =A%) X=["p o] Y= Ll L Tsr
EH
i)‘ > ol ®(x; Solution:
;= a=(K+A)Y
= ai/2 h(x) = w-®(x) = 5" aik(x;, x)
= L(&,w",a, ).
2
Za d(x;) —/\2)
ij=1
A Z i ®(x) - d(x) — A, o = al /2.
T(XTX)a — max—a’ (K+AM)a+2aTY. = |[(K+M)a=Y
ae
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Regression Examples

- Kernel Ridge Regression
- Support Vector Regression
- LASSO & Tomography Problem
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y; = f(x;) + n; where n; is noise. Find h € %,

Kernel Ridge Regression (KRR): Find minimizer of

m
m

min F(w)  F(w) = ,x|w||'-’-+-Z{w-cb{,r,J ~5)’ = h(x) = Zai K(x;,x)

=1

i=1
Solution: (Radial Basis Function Kernel (RBF),
N =100,gamma= 10, vary lambda)

How does fit vary with different choices of the lambda?

How does fit vary with differentchoices of the RBF gamma
width?

Hyperparameter choiceis crucial to obtain good fits.
Hyperparameters are tuned through Cross-Validation (CV).

KRR typically use grid-search try to obtain bestfit in CV.

target

K(x,y) = e Vx"

KRR: A= 2.51e+02
® —— KRR
L ° e data
24 o °
°
1 s .'ll‘ o0 °
® "
'/ Q% o ®
04 & ~ 3 e A‘
» \ .
L ]
.'.
-1 ° e X
L J
-2
L]

0 1 2 3
data

K(x,y) =e —yllx—=yll?

y =10 E
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y; = f(x;) + n; where n; is noise. Find h € %,

Kernel Ridge Regression (KRR): Find minimizer of
m

rn

min F(w) F(w)=\||w]|?*+ Z (w-®(x;) —y;)° = h(x) = Zai K(x;,x)
i=]

i=1

Solution: (Radial Basis Function Kernel (RBF),  K(x,y) = e l*-
N =100, gamma= 10, vary lambda)

KRR: A= 2.24e-02

L] — KRR
L] e data
21 ®

How does fit vary with different choices of the lambda?

How does fit vary with differentchoices of the RBF gamma
width?

target
o

Hyperparameter choiceis crucial to obtain good fits. Ed

Hyperparameters are tuned through Cross-Validation (CV). . .
0 1 2 3 4 5

KRR typically use grid-search try to obtain bestfit in CV. e

K(x, y) — e—)/||x—y||z Y =10 E
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y; = f(x;) + n; where n; is noise. Find h € %,

Kernel Ridge Regression (KRR): Find minimizer of

m

rn

min F(w)  F(w) = ,x|w||'-’-+-Z{w-cb{,r,J ~5)’ = h(x) = Zai K(x;,x)

=1

i=1

Solution: (Radial Basis Function Kernel (RBF), N = 100,

KRR: gamma = 1.58e-01
lambda = 0.1, vary gamma)

[ ] - KRR
e e data
21 °

How does fit vary with different choices of the lambda?

How does fit vary with differentchoices of the RBF gamma
width?

target
o

Hyperparameter choiceis crucial to obtain good fits. ™
Hyperparameters are tuned through Cross-Validation (CV). ] .
KRR typically use grid-search try to obtain bestfitin CV. S

K(x, y) — e—yllx—yll2 E
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Kernel Ridge Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y; = f(x;) + n; where n; is noise. Find h € %,

Kernel Ridge Regression (KRR): Find minimizer of

m

rn

min F(w) F(w) = A|w|* + Y (w-®(z;) - 4)° = h(x) = Zai K(x;,x)

=1

i=1

Solution: (Radial Basis Function Kernel (RBF), N = 100,
lambda = 0.1, vary gamma) KRR: gamma = 1.58e-01

° — KRR
[ ] e data
2 °

How does fit vary with different choices of the lambda? .

How does fit vary with differentchoices of the RBF gamma
width?

target
o

Hyperparameter choiceis crucial to obtain good fits. -1
Hyperparameters are tuned through Cross-Validation (CV). -2
KRR typically use grid-search try to obtain bestfitin CV. i 1 C o ‘ 5

K(x, y) — e—yllx—yll2 E
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Support Vector Regression
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Support Vector Regression

Definition: Forany € > 0 we definethe support-limited loss function
|y — yle = max(0, |y’ —y| —€)

also referred to as the s-insensitiveloss function.

Theorem (supportvectorregression) Considerkernel regressionusing € = {h(x) = w - ®(x)||lwll, < A} Witlzl(
K(x,x) < r?and |f(x)| < Ar then for any § > 0 we have with probability 1 — § that the following bounds hold

uniformly for h € € A hﬂj
B (10G) = f@] < E_(Ih() = f@)ld] = ( 2 )

) | 2 *1 Tr| K 3
E i)~ f@l) < E [ - fald + 2 (g + 3 52 )

Remark: The bound takes on the form
R(h) < R(h) + AA
Optimization Problem (Support Vector Regression (SVR))

m

111111 —||w||‘!+("Z|rj, w-@[.r,-)—i—h)h

=1
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Support Vector Regression
Definition: Forany € > 0 we define the support-limited loss function
Y = yle = max(0, |y" — y| —¢)

also referred to as the s-insensitiveloss function.

Optimization Problem (SupportVector Regression (SVR))

1 5 Iri
min —|wl|*+C y; — (w-®(x;)+b
nin _||w| ;Lf (W - ®(z;) +b)],
Interpretation:
Incurs penalty only when loss exceeds ¢. Datawith |y’ — y|, > e are called Support Vectors.
Promotesfitting a “tube” that covers large part of the data set.

Helps filter out within data high-frenquency noise, control weighting of outliers, account for density effects.

Shares similarities with SupportVector Machines (SVM).
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Support Vector Regression

Equivalent Optimization ProblemI:

1, . =
min —||w|*+C i +&
i Sflw] ;(s &)
subjecté; > 0.£ >0, (w-®(x;) +b) —y; < €+ &

yi — (W ®(z;) +b) < e+ ¢

Dual Formulation:

max —ela’ +a) 1+ (e —a) y -
oo’

~(a' —a)’ TK(e — &)

b | =

subject to: (0 < a<C)A(0<a’ <C)A((a - a)’1=0).

Representation of solution

m

h(z) = Z{a; — o )K(x;.x) + b

1=1
where b can be determined fromany x;with 0 <a; <Cor0 <a{<C

=—Zn—., (i, x;) +y; +e

Complimentary Conditions (KKT)
a;((w-®(x;) +b) —yi—e—&) =0
a;((w-®(z;) +b)—yi +e+&) =0

Whenwe have «a; # 0 then
yi— (W ®(z;) +b) —e = €.
which correspondsto x; outside of e-tube.

Similar condition holds for «; # 0.

All x; inside the e-tube have

a; =0and a; = 0.

l
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Support Vector Regression
| Example
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Support Vector Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y, = f(x;) + n;, where 1, is noise. Find h € %;ca-

SupportVector Regression (SVR): Find minimizer of
rre m

I TR _
min EHWH + C Z lyi — (W - ®(x;) + "}JL =  h(x) = Eail((xi,x)
i=1 i=1

Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon=0.1,gamma= 1) SVhcepsron s 1.940

° - SVR

24 ° o @® SVR support vectors

How does fit vary with different choices of the e-tube width? . * g

How does fit vary with differentchoices of the RBF gamma
width?

target
o

Hyperparameter choiceis crucial to obtain good fits. -11

Hyperparameters are tuned through Cross-Validation (CV). =21

0 1 2 3 R 5

SVR typically use grid-search try to obtain bestfit in CV. dota
K(x,y) = e Yx=yllI* E
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Support Vector Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y, = f(x;) + n;, where 1, is noise. Find h € %;ca-

SupportVector Regression (SVR): Find minimizer of
] m

] 9 |
min E||w||" + C Z i — (w-®(z;) +b)|, = hx)= Zai K(x;, x)
i=1 i=1
Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon=0.1,gamma= 1) SVA: gamima = 100804

® — SR

@® SVR support vectors

21 ®
[ J e data

How does fit vary with different choices of the e-tube width? °

How does fit vary with differentchoices of the RBF gamma | o & “ e
width?

target
o
®

Hyperparameter choiceis crucial to obtain good fits. -1 0 00 o

Hyperparameters are tuned through Cross-Validation (CV). -2

0 1 2 3 4 5

SVR typically use grid-search try to obtain bestfit in CV. data
K(x,y) = e Yx=yllI* E
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Support Vector Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y, = f(x;) + n;, where 1, is noise. Find h € %;ca-

SupportVector Regression (SVR): Find minimizer of

Ire

.1 2 |
min = [|w][* + € Z.li.r;;-—{w-@(ar,-uhnl‘ = h(x) =

Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon=0.1,gamma=1)

How does fit vary with different choices of the e-tube width?

How does fit vary with differentchoices of the RBF gamma
width?

Hyperparameter choiceis crucial to obtain good fits.
Hyperparameters are tuned through Cross-Validation (CV).

SVR typically use grid-search try to obtain bestfit in CV.

m

Z a; K(x;, x)

i=1

target

I
N
"

SVR: gamma = 1.00e-04

(] @® SVR support vectors
[ ° e data
= o8
@
o - = .
_', Q : o
& o
L
o \. o
\00.-

L - SVR

0

K(x,y) = e Yx=yllI*
>
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Support Vector Regression: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y, = f(x;) + n;, where 1, is noise. Find h € %;ca-

SupportVector Regression (SVR): Find minimizer of

m
. 1 , 1 It ~
min EHWH +C Z i — (W-®(x;) +b)| = h()= Zai K(x;, x)
i=1 =1
Solution: (Radial Basis Function Kernel (RBF), N = 100, SVR: epsilon = 0.100

H —_ —_ [ ] — SVR
epS|Ion =0.1, gamma = 1) ] ® SVR support vectors

& data

How does fit vary with different choices of the e-tube width?

How does fit vary with differentchoices of the RBF gamma
width?

target
=

Hyperparameter choiceis crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV). @
=& K(x,y) = e ~Yx=yll*

SVR typically use grid-search try to obtain bestfit in CV.

0 1 2 3 4 5
data
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Comparison KRR and SVR
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Comparison of KRR and SVR: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y, = f(x;) + n; where n; is noise. Find h € %,
KernelRidge Regression (KRR): Find minimizer of

m
min F(w) F(w)=\||w]|?*+ Z (w-®(r;) — )" = h(x)= Z a; K(x;,x)
=1 i=1
SupportVector Regression (SVR): Find minimizer of
1 “¥ - ’ :gamma = 1.00e-
min —||w|*+ C Z lyi — (W - ®(x;) + b)| KR.R s lj)s\?:
wbh 2 ¢ ° P —— KRR
1=1 21 5] ° @ SVR support vectors
m , ) ° e data
= h(x) =Z{u! — oy ) K(x;,x)+ b - ."’Q\ &
i=1 % :L 2% -
Solution: (Radial Basis Function Kernel (RBF), N = 100, AaNE 5 B o N
. _ _ ®
epsilon=0.1,gamma= 1) . . -
Hyperparameter choiceis crucial to obtain good fits. iz °
©
Hyperparameters are tuned through Cross-Validation (CV). 0 1 2 3 i 5

SVR/KRR typically use grid-search try to obtain bestfitinCV.  K(x,y) = e Ylx-yI’ E
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Comparison of KRR and SVR: Example f(x) = sin(x)

Example: Considertarget function f(x) = sin(x) where data y, = f(x;) + n; where n; is noise. Find h € %,

KernelRidge Regression (KRR): Find minimizer of

m
m

min F(w) = F(w) = Alw|l* + Z (w-®(x;) —y)" = h(x)= zai K(xi,x)

=1 i=1
SupportVector Regression (SVR): Find minimizer of

mt

_ 2 |,
min EHWH +C Zl{y,-—{w-@[.r,-]—khjh

= h(x) = Z{u: — o )K(x;,x)+ b
i=1
Solution: (Radial Basis Function Kernel (RBF), N = 100,
epsilon=0.1,gamma=1)

Hyperparameter choiceis crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).

SVR/KRR typically use grid-search try to obtain bestfit in CV.

KRR, SVR: gamma = 1.00e-04

L —— SVR

° — KRR

[}
™ ®
e data

Y ootag, .

@® SVR support vectors

target
=)
)
(-]

0 1 2 3 R}

K(x,y) =e —yllx—yll?
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LASSO Regression
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linear objective

linear objective 4 function

function
—

- .
solution
solution ;

L2-regularization é L1-regularization

function function

LASSO: Least Absolute Shrinkage and Selection Operator

L1-Norm Regularization: Tends to result in weights that are more sparse than
L2-Regularization (min||w||, vs min||w]|,).

Theorem (LASSOregression) Consider kernel regressionusing % = {h(x) = w- x| |[lw|l; £ A} with ||x|| <
T, and |f(x)| < A;r,,then for any 6 > 0 we have with probability 1 — & that the following bounds hold uniformly
forh e %

2 op2 f o 1 objective objective
R(h) < ﬁ(h] + s ( log(2N) + é\/f log 3 function function

vm 2

Optimization Problem:

I

min F(w,b) F(w,b) = A|wl[; + Z (w-x; +b— y?]?

w.b

i=1

L1-regularization
function

Equivalent Problem I: L2-regularization
function

T
minz (w-x; +b—1;)° subject to: ||w|; < Ay
w,b 4 1
i
Kernelization trick notavailable for L1 so would need to compute inner-products in new feature space.

High-dimensional regression problems especially useful to promote sparsity.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Computed Tomography (CT)and Radon Transform:
(z(2),y(2)) = ((zsina + scosa),(—zcosa + ssina))

Rf(as) = [ " Ha(2), 9(2)) dz

Inverse Problem: Reconstructdensity f(x,y) based
on projectiondata Rf.

]

Optimization Problem: Overthe hypothesis class %€ of
images h(x,,y,) minimize error in matching projectiondata

min, g AllRll, + IRf — RAlI

Sparsesolutions desirableto reduce ghostartifacts.

Sparsedensity maps inherent in many cases
(scientific imaging, engineering characterization, industrial applications). 5 £(x,y)

L1-regularization = sparse reconstructions 2 compressed sensing.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing AN A e

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstructthe density map fromthe projectiondata. Compare KRR vs LASSO.

original image L2 penalization 1 =10.2 L1 penalization 1 =0.00001

Gouillart 2018
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

n = (cos(a),sin(a))
Example: Consider 2D density with data from 1D projections. (N = 36 angles).
Density sparsely localized only on boundaries. \>§
)
Task: Reconstructthe density map fromthe projectiondata. Compare KRR vs LASSO.

original image



http://atzberger.org/
https://vimeo.com/513222076

LASSO Regression: Computed Tomography (CT) & Compressed Sensing

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstructthe density map fromthe projectiondata. Compare KRR vs LASSO.
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing AN A e

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.
Task: Reconstructthe density map fromthe projectiondata. Compare KRR vs LASSO.

L2 penalization 1 = 0.2 L1 penalization A = 0.01
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing AN A e

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.
Task: Reconstructthe density map fromthe projectiondata. Compare KRR vs LASSO.

L2 penalization ] = (.2 L1 penalization ] = (0.1
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

Example: Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

Task: Reconstructthe density map fromthe projectiondata. Compare KRR vs LASSO.
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Curse of Dimensionality
an
Regression


http://atzberger.org/

Curse of Dimensionality
Sampling on Unit Cube: Consider samples X, X1, X2, ..., X, € [0,1]? (d-dimensional hypercube).

Minimum Sample Distance: For n samples, denote the minimum distance between X and nearest sample X; by

doo(d, n) =K [min;e[l’n] IlX — Xr”oo] : ‘Sarrjples_". i
We can express in terms of probability as X\\*’,a z"'
doo(d, n) = [;7 Pr{minicp,n | X — Xilloo > t}dt = [° 1 — Pr{minicp q | X — Xil|oo < t}dt. X,'//;. e

. l.' % =€- :',3' -:'
The probability of being at most t apart in || - ||c-norm is N :._..;.:.;:_.”-,._-. "
Pr{miniG[l,n] ”X - Xj”oo S t} S n(2t)d RSN B

1/2nt/d d 1
Lower Bound on Distance: d..(d,n) > / 1 — n(2t)%dt = 5 ~ n~1/d
0

(d + 1) nt/d

samples: n = 102 n = 103 n = 10* n = 10°
de(1,n) =20.0025 =0.00025 =0.000025 =0.0000025
de(10,n) 20.28 >0.22 >0.18 >0.14
de(20,n) 20.37 >0.34 > 0.30 >0.26

Gyorfi 2002

Consequence: Shows for n samples, the minimum distance decreases very slowly for large d, doo ~ n—1/4d

Regression: Without using assumed structure, regression requires many samples to ensure accuracy.
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Curse of Dimensionality and Generalization Bounds for Regression

Regression Task: From data samples S = {(x;, yi)}/-; find model f € F so that y ~ f(x).

n

R(F) = -3ty F(x)). R(F) = Egpyen [0y FON]L €y, FG)) = 5 (v — FR

i=1

Approach: Regularized Loss Minimization (RLM), f = argminser (I:’(f) + )vy(f)) .

v(f) = g}\f/{ nl(V), Mr={p]|f(x)= / dv(x)du(v)}, V compact, p Radon measure.
H f \%

(V) =sup | g()du(v), G ={g g continuous,g(x) € [~1,1]}.
geEG JV

related to: f = argming_zs R(f), F°{f € F|~(f) < 6} (appropriate choice of §).

Generalization Bound:

~ L . < - L . . = . Fal o . . Fal )
R(f) flgﬁ__R(f) < [flgnffa R(f) flgiR(f) +2 flenjfé |R(f) — R(f)| + |R(f) flen]ifS R(f)|

- -
' -~ -~ -~

generalization error approximation error estimation error optimization error

Bach 2017

~ J N S
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Curse of Dimensionality and Generalization Bounds for Regression

Regression Task:

From data samples S = {(xi, yi)}i~1 find model f € F so that y ~ f(x).

f =arg Mingc s R(f), F°{f e F|~(f) <}

Generalization Bound:

N\,

o . . < - . . . s . Al o - . Al )
R(f) flgg__R(f)l_ flenffa R(f) AQ;R(” +2f|6n;5|R(f) R(f)|+ |R(f) flen]iaR(fN

~

generalization error

Scaling in (n, d): When assuming the target function’s form,

o ) N 7 N 7
~ ~ ~

estimation error optimization error

Bach 2017

approximation error

Case Functional Form L>-risk generalization error
general — n~Y/143) |og(n)

affine w x + b dl/2p=1/2

neural network (single layer) Zj‘zl nj(Wij + bj)+ kd'/2n=1/2

projection pursuit j'(=1 fj(wJ-Tx), wj € RY kd'/2p—1/4 log(n)

Summary: General

subspace projection le fj(VVJ-Tx), W, € RY* kd*/2n=1/(3) |og(n)

Bach 2017
case has exponential scaling ind! However, assumed structure = improves to polynomial in d!

If target function approximated well by above form - even high dimensional d may be tractable.
In practice: Many functions in ML empirically appear well approximated by above (modest K, s).
Deep architectures (not case above) seem empirically to provide even better representations for many ML tasks.
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summary
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Regression Summary

Task: Find function h € € that models in data the relationship of y;to x; as y;, ~ h(x)).

——,— ———

————+ ¢ Dy
b

—_— » ‘v

Ordinary Least-Squares (OLS): Fits considering only least-squared deviations of y; with h(x,).
Can become overly sensitive to noise if features x2 and x° are strongly correlated or co-linear.

Kernel Ridge Regression (KRR): Fits using L2-penalty in addition to least-squares loss. The penalty helps

“shrink” weights yielding smaller values in directions where features x2 and x* are strongly correlated or co-
linear.

SupportVector Regression (SVR): Fits using e-insensitive least-squares loss (e-tube) and L2-penalty. The
e-tube helps filter localized variations without incurring loss and L2-penalty results in “shrinkage” as in KRR.

Least Absolute Shrinkageand Selection Operator (LASSO): Fits using L1-penalty in addition to least-
squares loss. The penalty further helps “shrink” weights in many cases resulting in zero weight components
giving a sparse representation (very helpful in high-dimensional regression).

Many other forms of regression: Elastic Net, LARS, Bayesian Regression, Neural-Network Methods.
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