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Linear regression: ℎ 𝑥 = 𝒘 ∙ 𝒙 + 𝑏. Kernel regression: ℎ 𝑥 = 𝒘 ∙Φ 𝒙 + 𝑏, with k x𝑖, 𝑥𝑗 = Φ 𝒙𝒊 ,Φ 𝒙𝒋 .

Linear regression and variants among the most common.

Insights from weights w into how features xi = (xi
1,xi

2,…,xi
N) contribute to yi.  
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samples: 𝑛 = 102 𝑛 = 103 𝑛 = 104 𝑛 = 105

𝑑∞(1,𝑛) ≥ 0.0025 ≥ 0.00025 ≥ 0.000025 ≥ 0.0000025

𝑑∞(10,𝑛) ≥ 0.28 ≥ 0.22 ≥ 0.18 ≥ 0.14

𝑑∞(20,𝑛) ≥ 0.37 ≥ 0.34 ≥ 0.30 ≥ 0.26
Györfi 2002

Samples

𝑋𝑖

𝑋
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Generalization Error Bounds
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Regression: Rademacher Complexity
Notation and definitions:

X input space, Y output space

C concept class, concept f(x): X → Y
H hypothesis class, hypothesis h(x): X → Y.

Theorem: (regression bounds) Consider H so that h x − f(x) ≤ M for all x ∈ X,ℎ ∈ H, then for any p ≥ 1
and any 𝛿 > 0 we have with probability 1− 𝛿 that the following bounds hold uniformly for ℎ ∈ H, 

Significance: The expected value of the loss can be bounded by the observed empirical average.  This differs 
at most by the Rademacher Complexity of regression class H plus a term vanishing as m → ∞.

We see complexity of the space of hypothesis functions used for the regression effects rate of 
convergence of the generalization error as 𝑚 → ∞.

Key is to find bounds on the regression space Rademacher complexity R(H).

,  (Rademacherbound)

,  (Empirical Rademacher bound)

http://atzberger.org/
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Regression: Pseudo-dimension Bounds and VC-Dimension
Motivation: Are there combinatorial bounds similar in spirit to VC-dimension we can use 
to characterize complexity of regression spaces H?

Definition: Let G be family of functions X→ ℝ.  We say a set {x1,x2,…xm} is shatteredby 

G if there exists t1,t2,…,tm such that

We call the threshold values t1,t2,…,tm the witness to the shattering.

Definition: For a family of functions G: X → ℝ we define the pseudo-dimension of G 
denoted Pdim(G) as the largest m so a set of points is shattered.

Remark: This is related to VC-dim by considering corresponding classifiers

Lemma (hyperplanes) The pseudo-dimension of hyperplanes in ℝ𝑁 is given by

𝑥1 𝑥2

𝑡1
𝑡2

−1
+1

+1
−1

+1
+1

−1
−1
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Regression: Pseudo-dimension Bounds
Theorem: If the pseudo-dimension Pdim(G) = d then for any 𝛿 > 0 we have with 

probability 1− 𝛿 that the following bounds hold uniformly for any ℎ ∈ H

where 𝐺 = {𝑥 → 𝐿(ℎ 𝑥 ,𝑓 𝑥 ): ℎ ∈ 𝐻}, 𝐿 ≤ 𝑀.

Remark: This gives analogous result as for VC-dimension.  This is not tightest bound but 
gives worst-case guarantees when bounds on Rademacher complexity are difficult.

Remark: Hyperplanes in ℝ𝑁 (linear regression) H = {ℎ | ℎ 𝑥 = 𝑤𝑇𝑥 + 𝑏} have d = N + 1.

Remark: Note, these bounds are when using only ERM. Alternatively, we also can use 
regularization and other strategies to select model h(x) (discussed later).

http://atzberger.org/
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Linear Regression
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Linear Regression
Optimization Problem:

Equivalent Optimization Problem I:

Solution: 𝑊 = 𝑋𝑋𝑇 †𝑋𝑌

http://atzberger.org/
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Equivalent Optimization Problem I:

Solution: 𝑊 = 𝑋𝑋𝑇 †𝑋𝑌

Issues when features xi
a are strongly correlated with xi

b , say equal, or one has a fixed value.

Strong correlations or co-linearity can result in XXT nearly-singular. Results very sensitive to noise in data!

Linear Regression

fit with features 

correlated or fixed
pseudo-inverse fit with features

correlated or fixed

fit with features 

uncorrelated

http://atzberger.org/
https://vimeo.com/503704235/2bd7a4f775
https://vimeo.com/503703677/ef710a0429
https://vimeo.com/503703724/eb6ff18434
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Kernel Ridge Regression
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Theorem: (ridge regression bounds) Consider kernel regression using H= ℎ 𝑥 = 𝑤 ∙ Φ 𝑥 | 𝑤 2 ≤ Λ with 
𝐾 𝑥, 𝑥 ≤ 𝑟2 and 𝑓 𝑥 ≤ Λ𝑟 then for any 𝛿 > 0 we have with probability 1− 𝛿 that the following bounds hold
uniformly for ℎ ∈ H

Significance: Provides tighter bounds than the combinatorial approach using pseudo-dimension.

Second bound provides tighter estimatesince 𝑇𝑟 𝐾 ≤ 𝑚𝑟2 , trace makes use of properties of the kernel.

Tightest bound from minimizing the RHS. This yields an optimization problem.  

We need 𝑤 2 ≤ Λ2 so making Λ2 as small as possible corresponds to making 𝑤 2 small.  Can view bound as                                                                    

Kernel Ridge Regression

where

Yields optimization problem

http://atzberger.org/
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Kernel Ridge Regression

Optimization Problem:

Ordinary 

Least Squares

Ridge 

Regression

L2-

Regularization

Least-Squares

Objective

Kernelization using the dual formulation.

,​

http://atzberger.org/
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Kernel Ridge Regression

Primal Problem:

Equivalent optimization problem I:

Equivalent optimization problem II:

Kernelization of the regression makes use of the dual formulation.

Lagrangian

,

http://atzberger.org/
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Kernel Ridge Regression : Dual Formulation
Lagrangian

KKT Conditions

http://atzberger.org/
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Regression Examples
- Kernel Ridge Regression
- Support Vector Regression
- LASSO & Tomography Problem

http://atzberger.org/
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Kernel Ridge Regression
Example
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Kernel Ridge Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Kernel Ridge Regression (KRR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), 

N = 100, gamma = 10, vary lambda)

How does fit vary with different choices of the lambda?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

KRR typically use grid-search try to obtain best fit in CV.

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖,𝑥)

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

𝛾 = 10

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

,

http://atzberger.org/
https://vimeo.com/513228299
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Kernel Ridge Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Kernel Ridge Regression (KRR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), 

N = 100,  gamma = 10, vary lambda)

How does fit vary with different choices of the lambda?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

KRR typically use grid-search try to obtain best fit in CV.

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

𝛾 = 10

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖,𝑥),

http://atzberger.org/
https://vimeo.com/513228273
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Kernel Ridge Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Kernel Ridge Regression (KRR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

lambda = 0.1, vary gamma)

How does fit vary with different choices of the lambda?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

KRR typically use grid-search try to obtain best fit in CV.

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖,𝑥),

http://atzberger.org/
https://vimeo.com/503702804/2104888791
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Kernel Ridge Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Kernel Ridge Regression (KRR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

lambda = 0.1, vary gamma)

How does fit vary with different choices of the lambda?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

KRR typically use grid-search try to obtain best fit in CV.

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖,𝑥),

http://atzberger.org/
https://vimeo.com/503702697/08d589b736
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Support Vector Regression
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Definition: For any 𝜀 > 0 we define the support-limited loss function

also referred to as the 𝜺-insensitive loss function.

Theorem (support vector regression) Consider kernel regression using H = ℎ 𝑥 = 𝑤 ∙Φ 𝑥 | 𝑤 2 ≤ Λ with 
𝐾 𝑥, 𝑥 ≤ 𝑟2 and 𝑓 𝑥 ≤ Λ𝑟 then for any 𝛿 > 0 we have with probability 1− 𝛿 that the following bounds hold
uniformly for ℎ ∈ H

Remark: The bound takes on the form 

Optimization Problem (Support Vector Regression (SVR))

Support Vector Regression

x

y

http://atzberger.org/
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Definition: For any 𝜀 > 0 we define the support-limited loss function

also referred to as the 𝜺-insensitive loss function.

Optimization Problem (Support Vector Regression (SVR))

Interpretation: 

Incurs penalty only when loss exceeds 𝜀. Data with y′− 𝑦 𝜀 > 𝜀 are called Support Vectors.

Promotes fitting a “tube” that covers large part of the data set.  

Helps filter out within data high-frenquency noise, control weighting of outliers, account for density effects.

Shares similarities with Support Vector Machines (SVM).  

Support Vector Regression

x

y

http://atzberger.org/
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Equivalent Optimization Problem I:

subject

Dual Formulation:

Representation of solution

where b can be determined from any xj with 0 < 𝛼𝑗 < C or 0 < 𝛼𝑗
′ < C

Support Vector Regression

x

y

Complimentary Conditions (KKT)

When we have  𝛼𝑖
′ ≠ 0 then

which corresponds to xi outside of 𝜀-tube.

Similar condition holds for 𝛼𝑖
′ ≠ 0.

All xi inside the 𝜀-tube have

𝛼𝑖 = 0 and 𝛼𝑖
′ = 0.

,

http://atzberger.org/
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Support Vector Regression
Example
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Support Vector Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Support Vector Regression (SVR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

epsilon = 0.1, gamma = 1)

How does fit vary with different choices of the 𝜀-tube width?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

SVR typically use grid-search try to obtain best fit in CV.

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖, 𝑥)

http://atzberger.org/
https://vimeo.com/503702822/006b0bded8
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Support Vector Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Support Vector Regression (SVR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

epsilon = 0.1, gamma = 1)

How does fit vary with different choices of the 𝜀-tube width?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

SVR typically use grid-search try to obtain best fit in CV.

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖, 𝑥)

http://atzberger.org/
https://vimeo.com/503702865/ea1b582272
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Support Vector Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Support Vector Regression (SVR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

epsilon = 0.1, gamma = 1)

How does fit vary with different choices of the 𝜀-tube width?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

SVR typically use grid-search try to obtain best fit in CV.

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖, 𝑥)

𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

http://atzberger.org/
https://vimeo.com/503702789/d9901fff85
https://vimeo.com/503702789/d9901fff85
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Support Vector Regression: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Support Vector Regression (SVR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

epsilon = 0.1, gamma = 1)

How does fit vary with different choices of the 𝜀-tube width?

How does fit vary with different choices of the RBF gamma 

width?

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

SVR typically use grid-search try to obtain best fit in CV.
𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖, 𝑥)

http://atzberger.org/
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Comparison KRR and SVR
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Comparison of KRR and SVR: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Support Vector Regression (SVR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

epsilon = 0.1, gamma = 1)

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

SVR/KRR typically use grid-search try to obtain best fit in CV. 𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

Kernel Ridge Regression (KRR): Find minimizer of

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖,𝑥),

http://atzberger.org/
https://vimeo.com/503702882/ee2c49c982
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Comparison of KRR and SVR: Example f(x) = sin(x)
Example: Consider target function 𝑓(𝑥) = sin(𝑥)where data 𝑦𝑖 = 𝑓 𝑥𝑖 + η𝑖 where η𝑖 is noise.  Find ℎ ∈ Hlinear.

Support Vector Regression (SVR): Find minimizer of

Solution: (Radial Basis Function Kernel (RBF), N = 100,      

epsilon = 0.1, gamma = 1)

Hyperparameter choice is crucial to obtain good fits. 

Hyperparameters are tuned through Cross-Validation (CV). 

SVR/KRR typically use grid-search try to obtain best fit in CV. 𝐾 𝑥, 𝑦 = 𝑒−𝛾 𝑥−𝑦 2

Kernel Ridge Regression (KRR): Find minimizer of

ℎ 𝑥 = ෍

𝑖=1

𝑚

𝑎𝑖 𝐾(𝑥𝑖,𝑥),

http://atzberger.org/
https://vimeo.com/503702847/17b9e829fe
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LASSO Regression
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L1-Norm Regularization: Tends to result in weights that are more sparse than                                                                    

L2-Regularization (min 𝑤 2 vs min 𝑤 1).

Theorem (LASSO regression) Consider kernel regression using H = ℎ 𝑥 = 𝑤 ∙ 𝑥 | 𝑤 1 ≤ Λ1 with 𝑥 ≤
𝑟∞ and 𝑓 𝑥 ≤ Λ1𝑟∞ then for any 𝛿 > 0 we have with probability 1 − 𝛿 that the following bounds hold uniformly
for ℎ ∈ H

Optimization Problem:

Equivalent Problem I:

Kernelization trick not available for L1 so would need to compute inner-products in new feature space.

High-dimensional regression problems especially useful to promote sparsity.

LASSO: Least Absolute Shrinkage and Selection Operator

objective

function

L2-regularization

function

solution

objective

function

L1-regularization

function

solution

,

http://atzberger.org/
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing

fda.gov

Computed Tomography (CT) and Radon Transform:

Inverse Problem: Reconstruct density f(x,y) based                                                                                                                  

on projection data 𝑅𝑓.  

Optimization Problem: Over the hypothesis class H of                                                                                                                           

images h(xI,yI) minimize error in matching projection data

𝑚𝑖𝑛ℎ∈H 𝜆 ℎ 1+ 𝑅𝑓 − 𝑅ℎ 2
2

Sparse solutions desirable to reduce ghost artifacts.

Sparse density maps inherent in many cases                                                                                            
(scientific imaging, engineering characterization, industrial applications).

L1-regularization → sparse reconstructions → compressed sensing.

fda.gov

𝛼
𝑦𝐴

𝐵

𝑥
𝑧𝑠

𝑛 = (cos 𝛼 , sin 𝛼 )

𝑓(𝑥, 𝑦)

fda.gov

Arielinson

http://atzberger.org/
https://vimeo.com/513228250
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Example: Consider 2D density with data from 1D projections.  (N = 36 angles).

Density sparsely localized only on boundaries.   

Task: Reconstruct the density map from the projection data.  Compare KRR vs LASSO.

𝜆 = 0.00001𝜆 = 0.2

Gouillart 2018

http://atzberger.org/
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Example: Consider 2D density with data from 1D projections.  (N = 36 angles).

Density sparsely localized only on boundaries.   

Task: Reconstruct the density map from the projection data.  Compare KRR vs LASSO.

http://atzberger.org/
https://vimeo.com/513222076
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Example: Consider 2D density with data from 1D projections.  (N = 36 angles).

Density sparsely localized only on boundaries.   

Task: Reconstruct the density map from the projection data.  Compare KRR vs LASSO.

𝜆 = 0.001𝜆 = 0.2

http://atzberger.org/
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Example: Consider 2D density with data from 1D projections.  (N = 36 angles).

Density sparsely localized only on boundaries.   

Task: Reconstruct the density map from the projection data.  Compare KRR vs LASSO.

𝜆 = 0.01𝜆 = 0.2

http://atzberger.org/
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LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Example: Consider 2D density with data from 1D projections.  (N = 36 angles).

Density sparsely localized only on boundaries.   

Task: Reconstruct the density map from the projection data.  Compare KRR vs LASSO.

𝜆 = 0.1𝜆 = 0.2

http://atzberger.org/


Paul J. Atzberger                                                                      Machine Learning: Foundations and Applications http://atzberger.org/

LASSO Regression: Computed Tomography (CT) & Compressed Sensing
Example: Consider 2D density with data from 1D projections.  (N = 36 angles).

Density sparsely localized only on boundaries.   

Task: Reconstruct the density map from the projection data.  Compare KRR vs LASSO.

𝜆 = 0.001𝜆 = 0.2

http://atzberger.org/
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Curse of Dimensionality
and 

Regression
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samples: 𝑛 = 102 𝑛 = 103 𝑛 = 104 𝑛 = 105

𝑑∞(1,𝑛) ≥ 0.0025 ≥ 0.00025 ≥ 0.000025 ≥ 0.0000025

𝑑∞(10,𝑛) ≥ 0.28 ≥ 0.22 ≥ 0.18 ≥ 0.14

𝑑∞(20,𝑛) ≥ 0.37 ≥ 0.34 ≥ 0.30 ≥ 0.26
Györfi 2002

Samples

𝑋𝑖

𝑋

http://atzberger.org/
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related to:
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When assuming the target function’s form,

Summary: General case has exponential scaling in d!  However, assumed structure → improves to polynomial in d!  

If target function approximated well by above form → even high dimensional d may be tractable.

In practice: Many functions in ML empirically appear well approximated by above (modest k, s).

Deep architectures (not case above) seem empirically to provide even better representations for many ML tasks.

http://atzberger.org/
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Summary
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Regression Summary

Task: Find function ℎ ∈ H that models in data the relationship of yi to xi as yi ~ h(xi).

Ordinary Least-Squares (OLS): Fits considering only least-squared deviations of yi with h(xi).                                      
Can become overly sensitive to noise if features xi

a and xi
b are strongly correlated or co-linear.

Kernel Ridge Regression (KRR): Fits using L2-penalty in addition to least-squares loss.  The penalty helps 

“shrink” weights yielding smaller values in directions where features xi
a and xi

b are strongly correlated or co-
linear.

Support Vector Regression (SVR): Fits using 𝜖-insensitive least-squares loss (𝜖-tube) and L2-penalty.  The 
𝜖-tube helps filter localized variations without incurring loss and L2-penalty results in “shrinkage” as in KRR.

Least Absolute Shrinkage and Selection Operator (LASSO): Fits using L1-penalty in addition to least-
squares loss.  The penalty further helps “shrink” weights in many cases resulting in zero weight components 

giving a sparse representation (very helpful in high-dimensional regression).

Many other forms of regression: Elastic Net, LARS, Bayesian Regression, Neural-Network Methods.

http://atzberger.org/


Paul J. Atzberger                                                                      Machine Learning: Foundations and Applications http://atzberger.org/

http://atzberger.org/

