
Take-home Final

Machine Learning: Foundations and Applications Paul J. Atzberger
MATH 260J http://atzberger.org/

Do any 3 of the following 5 problems.

1. Show that the concept class of hyper-rectangles [a1, b1]× [a2, b2]× · · · × [an, bn] ∈ Rn in PAC
learnable. Hint: Start by considering n = 2 and showing this is learnable and then work from
there.

2. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates
the relation y = f(x) from samples obscured by noise yi = f(xi) + ξi, where ξi is Gaussian.
As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the
optimization problem

min
w

J(w), where J(w) =
1

2

m∑
i=1

(
wTφ(xi)− yi

)2
+

1

2
γwTw.

(a) Show that the solution weight vector w always can be expressed in the form w =∑m
i=1 αiφ(xi). Hint: Compute the gradient ∇wJ = 0.

(b) Consider the design matrix Φ = [φ(x1), . . . , φ(xm)]T defined by the data so we can
express w = ΦTα. Substitute this into the optimization problem to obtain the dual
formulation in terms of minimizing over a function J(α). Express this in terms of the
design matrix Φ and Gram matrix K, where Kij = k(xi,xj) = φ(xi)

Tφ(xj).

(c) Compute the gradient ∇αJ = 0 to derive equations for the solution of the optimization
problem. Express the linear equations for the solution α in terms of the Gram matrix
K.

(d) Explain briefly the importance of the term γ and role it plays in the solution.

(e) Suppose we consider the regression problem to be over all functions f ∈ H in some
Reproducing Kernel Hilbert Space (RKHS)H with kernel k and use regularization ‖f‖2H.
This corresponds to the optimization problem

min
f∈H

J [f ], with J [f ] =
1

2

m∑
i=1

(f(xi)− yi)2 +
1

2
‖f‖2H.

Show the solution to this optimization problem yields the same result as in the formu-
lation above using α. Hint: Use the representation results we discussed in lecture for
objective functions of the form J [f ] = L(f(x1), . . . , f(xm)) +G(‖f‖H).

3. The Support Vector Machine (SVM) is a widely used method that performs classification
by finding in some sense the best hyperplane that separates the data. The criteria used by
SVM for defining the best hyperplane is to try to obtain good generalization by looking for a
hyperplane with largest margin separating the classes of the training data samples {xi, yi}mi=1.
In the case of separable data sets this is captured by the constrained optimization problem

min
w,b
‖w‖2 (1)

subject:
(
wTxi + b

)
yi ≥ 1. (2)
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(a) What is the VC-dimension of the set of hyperplane classifiers for x ∈ Rn? The hypothesis
space is H = {h|h(x) = sign(wTxi + b),w ∈ Rn, b ∈ R}.

(b) We discussed in lecture the derivation of the dual problem by defining the dual function
and use of the Karush-Kuhn-Tucker conditions. Derive the dual formulation of the SVM
in the separable case.

(c) How does the weight vector w depend on the training data samples {xi, yi}mi=1? In
particular, which training data samples contribute with non-zero coefficients to w? Hint:
Use the KKT conditions to obtain representation formula for w in terms of the data.

4. (RKHS) Consider the classification of points x = (x1, x2) ∈ R2 having labels associated
with the XOR operation y = x1 ⊕ x2 with S = {(−1,−1, F ), (−1, 1, T ), (1,−1, T ), (1, 1, F )}.
There is no direct linear classifier h(x) = sign(wTx + b) that can correctly label these points,
where (F = −1, T = 1). However, if we use the feature map φ(x) = [φ1(x), φ2(x), φ3(x)] =
[x1, x2, x1x2] into R3 there is a linear classifier of the form h(x) = sign(wTφ(x) + b).

(a) Find weights w and b that correctly classifies the points with XOR labels.

(b) Give the kernel function k(x, z) associated with this feature map into R3.

(c) Show the Reproducing Kernel Hilbert Space (RKHS) H for this feature map consists of
all the functions of the form f(·) = ax1 + bx2 + cx1x2. Using that φ(z) = k(·, z), give
the inner-product 〈f, g〉H for two functions f(·) and g(·) from this space.

(d) Show k(·, z) has the reproducing property under this inner-product.

(e) Show that we can express w =
∑

i αik(·,xi) and that the classifier can be expressed
using only kernel evaluations as h(x) = sign(

∑
i αik(x,xi) + b).

Hint: Recall that the dot-product expressions are short-hand wTφ(x) = 〈w,φ(x)〉H.

5. (Neural Networks) Consider a basic Multilayer Perceptron (MLP) with two inputs x1, x2,
single output y, and a hidden layer with n units hi. Corresponding to this MLP is the

hypothesis space H = {q : R2 → R|q(x1, x2;W) =
∑n

i=1w
(2)
i hi,where hi = σ(w

(1)
i1 x1 +

w
(1)
i1 x2)}. The output is y = q(x1, x2;W) where the W denotes the collection of weights.

(a) Consider the case where we set x2 = 1 and x1 ∈ [0, 1] with activation the Rectified
Linear Unit (ReLU) σ = max(0, z). Show that with at most n = k + 2 hidden units
we can exactly represent any function f(x1) that is piece-wise linear with k internal
transition points on [0, 1] and f(x) = 0 for x 6∈ (0, 1). For instance, show that f(x) = 2x
for x ≤ 1/2 and f(x) = 2(1− x) for x > 1/2, which has k = 1 internal transition points,
can be exactly represented on [0, 1] by a MLP with n = 3 hidden units.

(b) Consider approximating a general function f(x) on [0, 1] by using a gradient descent
ẇ = −α∇wL to minimize the loss L(q) = 1

m

∑m
i=1(f(zi)− q(zi; w))2. Consider m data

points zi ∈ [0, 1] where we take in the MLP x1 = zi and x2 = 1. State for the MLP
the back-propagation method for computing the gradient in w. Draw the computational
graph in the case when n = 1 and m = 1 for both the ”forward pass” and the ”backward
pass.”

(c) Explain techniques for how you might mitigate getting stuck in local minima or overfit-
ting the data?
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