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We give a brief introduction to the stochastic immersed boundary methadhwahows for simulation of small length-scale
physical systems in which elastic structures interact with a fluid flow in treepiee of thermal fluctuations. The conventional
immersed boundary method is extended to account for thermal fluatadtip introducing stochastic forcing terms in the
fluid equations. This gives a system of stiff SPDE’s for which standarderical approaches perform poorly. We discuss a
numerical method derived using stochastic calculus to overcome théestifires of the equations. We then discuss results
which indicate that the method captures physical features predictedtlsfisth mechanics for small length-scale systems.
The stochastic immersed boundary method holds promise as a nuna@prakch in simulating microscopic mechanical
systems in which thermal fluctuations play a fundamental role. A mordet®tiiscussion of this work is given in [1, 2, 3].
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1 Stochastic Immersed Boundary Method

1.1 Time Dependent Stokes Flow
For a fluid flow modeled by the time dependent Stokes equatienstochastic immersed boundary method is given by:

pw = pAu(x,t) = Vp(x,t) +fs(x,1) + fr(x,1) >
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The termp is the pressurey is the fluid densityu is the dynamic viscosity. The force denstly accounts for momentum
transferred to the fluid by elastic deformations of immersgdctures. The force densify is a Gaussian random field
correlated in time which accounts for the thermal fluctusiof the fluid-structure system. Structures are modeled/by
control pointsX /! along with a force interaction law. The force acting on jHecontrol point is denoted bzl ({XU'1}).

The structure dynamics are given by equation 3, which cpamds to advection of the control points with the local fluid
velocity. The term, (x) approximates the Dirag&-function. In the immersed boundary method #hunctions are taken so
that they integrate to one and vanish outside a disk of radilifis gives a brief formulation of the equations of the sastit
immersed boundary method. We now discuss the extensioreafdhventional immersed boundary method to account for
thermal fluctuations.

1.2 Thermal Fluctuations

To account for thermal fluctuations an appropriate choicstine made for the stochastic forcing of the fluid-structyestesm.
Itis shown in [3] that in order for the model to be consisteithvhe principles of statistical mechanics only the fluidjckes
of freedom should be stochastically forced. The spatiahdance structure of the Gaussian random flglds determined
from thefluctuation-dissipation principlef statistical mechanics which relates equilibrium flutitias of the system to the
dissipative mechanism of the dynamics. For brevity we diiatuss only the case in which the equations above have been
spatially discretized by finite differencing on a unifornripelic mesh, withl, denoting the approximation of the Laplacian
LetC = (uu’), G = (fr£fL) denote covariance matrices, respectively, for the eqiilib fluctuations ofa and the Gaussian
random fieldf. Thefluctuation-dissipation principléhen requires covariance structute:= LCT + CL”. At equilibrium
the system has Gibbs-Boltzmann statistics with probghdiénsity¥ (u) = exp(—E[u]/kgT). Since the energy of the fluid
is given by the kinetic energ¥[u] = > plum|?Az® summed over the mesh, the covariance matrix for the eqjuifibr
fluctuations is given by = (kT /pAz3)I. This determines the spatial covariance structie the Gaussian random field
fr. See [3] for a more in depth discussion.
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1.3 Numerical Method

For spatial discretization on a uniform periodic mesh tHe¥ang numerical scheme is used to update the Fourier mages
of the fluid and to update the immersed structure controltpd¥! from time stepa to n + 1:
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Each time step the structure force densjfyand its discrete Fourier transforf’gk are computed. Next the Gaussian random
variableséz andI'} are generated. The random variaﬁ];é has mear and varianceri = (Dy /o) (1 — exp (—2axAt)).

The Fourier representation of the central difference @ét&zation of the Laplacian is given by, = (2u/pAx?) Z?zl(l —
cos(2rk) /N'))). From the constraint that the velocity field must be reaisgdland théluctuation-dissipation principleve
obtain Dy = akkBT/pL3 fork € K and Dy = ayxkpT/2pL? for k ¢ K with the set of self-conjugate modes denoteddby

={k| kW =00rkl) = N/2,j = 1,2,3 }. To enforce incompressibility each Fourier mode is prgddty p;- = Z —
(gx&L /|gx|?) with g (’) = sin(27kY) /N) /Az. The_k then accounts for the contributionsig of the thermal fluctuations

of the fluid over the tlme step. Next the structure controhpsX 7/ are updated by generating the Gaussian random variable
T', which accounts for the contributions of the thermal fludtusg of the fluid to the structure dynamics over the time
step. This can be shown to enter as the time integral of the ¥leiocity, I'l:, = t”“ > i Uk(s) exp (i2nk - m/N) ds.

An important consideration in generating the random véemis to take into account the correlations bethﬁpanduk,
which both account for the same underlying thermal fluctunstiof the fluid. The correct correlations can be obtainedsiygu
equation 8, in which an independent standard Gaussiais generated and linearly combined with the previously e
random variables used to update the fluid modes. For a discusfthe derivation of the numerical method see [1].

2 Conclusion

In formulating the stochastic immersed boundary methodabau of approximations were introduced, both at the levéhef
physical model for fluid-structure interactions and thriodlge spatial and temporal numerical discretizations. A Inemof
checks can be performed to verify whether the method is stergiwith statistical mechanics and adequate to captysqati
phenomena for microscopic systems. In [1] it was found thateaonly the fluid is stochastically forced, both indepemide
and interacting particles diffusing in a conservative &field have Gibbs-Boltzmann equilibrium statistics. Whitetjzles

are represented by the functiép in the immersed boundary method the diffusivities were coteg both analytically and
from numerical simulations and found to have the corredirsgan the physical parameters. In [2] it was also found that
immersed boundary framework can be used to capture osntwgizgmena occurring in microscopic systems. These results
indicate that the method holds promise as a numerical apprimasimulating microscopic mechanical systems in which
thermal fluctuations play a fundamental role. For a more pthidiscussion of this work see [1, 2, 3].
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