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Abstract. A mechanism is presented which drives a fluid flow using two chemically reacting
molecular species and osmotic effects. For concreteness the mechanism is discussed in the context of a
tube which at each end has a capping membrane which is permeable to the fluid but impermeable to
the two molecular species. The chemical reactions occur at sites embedded in the capping membrane.
Labeling the two chemical species A and B, at one end the reactions split each molecule of species
B into two molecules of species A. On the other end two molecules of species A are fused together
to form a single molecule of species B. A mathematical model of the solute diffusion, fluid flow,
and osmotic effects is presented and used to describe the non-equilibrium steady-state flow rate
generated. Theoretical and computational results are given for how the flow rate depends on the
relative diffusivities of the solute species and the geometry of the system. An interesting feature of
the pump is that for the same fixed chemical reactions at the tube ends, fluid flows can be driven
in either direction through the tube, with the direction depending on the relative diffusivities of the
solute species. The theoretical results are compared with three-dimensional numerical simulations of
the pump.
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1. Introduction. In recently proposed technological devices and in many bio-
logical systems, gradients in fluid pressure are generated by osmotic effects to drive a
flow [5; 7; 8; 18; 23; 25; 26; 36; 37]. Osmosis occurs when solute molecules immersed
in a fluid are confined within a region delineated by a boundary less permeable to
molecules of the solute than the fluid. When the boundary in question is rigid, this
results in a pressure exerted on the confining boundary, which exceeds that of the
solvent pressure, with a dependence on the concentration of the solute and the tem-
perature of the system. This additional pressure in the system is referred to as the
“osmotic pressure”. For systems in which the confining boundary is flexible, swelling
can also occur as water flows into the confining region, increasing its volume until
the elastic stresses in the flexible walls have built up enough to balance the osmotic
pressure [21; 36], which meanwhile has been somewhat reduced by the dilution of the
confined solute.

Various microfluidic pumps and actuator devices have been proposed which ex-
ploit osmosis either making use of swelling structures or electrostatic effects [5; 25;
26; 28]. In [25; 26; 28] osmotic swelling is exploited to generate forces in a microactu-
ator or to generate deformations in vessels containing a drug for delivery. In [36; 37]
propulsion mechanisms are proposed which make use of a concentration gradient in
the environment which induces unbalanced osmotic pressures on a small particle or
lipid vesicle. In [5] an electrostatic field drives a fluid flow through a flux of ions which
develops in a boundary layer of the charged wall of the pump.

In cell biology, osmotic effects play an important role. Within cells and organelles
there are high concentrations of charged proteins and counter-ions. The effects of
osmotic pressure must be actively mitigated by ion pumps or other means to avoid
excessive swelling which could burst the cell or organelle [13; 38]. Regulation of the
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volume of such structures can be used to drive an in-flux or out-flux of fluid which
may be important in many biological processes in the cell [8; 17]. Osmotic effects
are also thought to play an important role in tissues of epithelial cells in the kidney,
liver, and intestine in which a large volume of fluid is processed each day. A number
of pumping mechanisms have been proposed that make direct use of osmotic effects
[2; 8; 9; 13; 16; 18; 22; 23].

In the systems mentioned above an osmotic pressure gradient is set up either by
active pumping of solute molecules from a large external store into a confined region
or by an external electrostatic field. In the present work a pumping mechanism is
discussed which does not require an external store of solute molecules or electrostatic
effects. In the mechanism proposed here the solute molecules are recycled in the
process that sets up the osmotic pressure gradient.

A variety of approaches have been taken to modeling osmotic phenomena ranging
from thermodynamic relations to microscopic statistical mechanical descriptions [27;
30; 31; 33–37]. The classical work by van ’t Hoff gives an equilibrium thermodynamic
law for macroscopic osmotic pressure in terms of the overall temperature of the system
and the difference in concentration of the solute which is confined by a semi-permeable
membrane with that of the solute in the outside bulk solvent [27]. A microscopic
approach can also be taken based on the mechanics of the solute-wall interactions
which does not necessarily require the system to be in thermodynamic equilibrium
[30; 31].

In this paper we shall take a microscopic approach to the study of how the osmotic
pressure arises in the non-equilibrium setting of active chemical reactions and fluid
flows. We shall then perform analysis to obtain a description of the osmotic pressure
of the pump by taking the limit in which the solute confining potentials at the semi-
permeable membranes only act in a very small boundary layer of the capping ends
of the pump, which corresponds to what we term the ”hard-walled limit”[31]. This
description is then used to carry-out three-dimensional numerical simulations of the
microfluidic pumping mechanism using a variant of the finite-volume method of [29]
and the immersed boundary method [32].

The paper is organized as follows. In Section 2, the pumping mechanism is dis-
cussed. To demonstrate the mechanism, a mathematical model of a pump with cylin-
drical geometry is formulated in Section 3. To obtain an analytically tractable set
of equations, reductions are then made to the model in Section 4 and theoretical
predictions for the steady-state pumping rate are given. Numerical methods for the
full system of equations for the osmotic phenomena which accounts for general con-
fining potentials, the fluid flows, and chemical reactions are presented in detail in
Section 5. The specific numerical methods used for the full three-dimensional model
of the osmotic pump are then presented and the results of simulations are discussed
in comparison to the theoretical predictions made from the reduced model.

2. The Pumping Mechanism. For concreteness we shall discuss the mecha-
nism in the context of a system which has two solute species A and B which are
assumed to be confined to the interior of a cylindrical tube. Two planar cross sections
of the tube are spanned by membranes which are permeable to solvent but imper-
meable to the solute species A and B. The curved cylindrical walls of the tube are
impermeable to solute and solvent alike. For the purpose of our analysis we shall
regard the entire cylinderical pump as being embedded in a longer tube which is bent
to reconnect with itself so that solvent fluid is recirculated. We shall assume that this
is done in such a manner that the curvature has a negligable effect on the solvent flow.
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Fig. 2.1. Pump Schematic. On the left end of the tube two molecules of species A bind to
form a single molecule of species B. When molecules of species B diffuse or are transported by the
fluid to the right end of the tube the molecule of species B is split into two molecules of species A.
Throughout the chemical reactions the total number of elementary chemical units is conserved as
either free species A molecules or as bound pairs which form a single molecule of species B.

More general geometries and additional solute species could of course be considered
to obtain other variants of the proposed pumping mechanism.

The chemistry of the system will occur only in the viscinity of the membranes
spanning the cross section of the tube. Since these membranes act like ”caps” for
the cylinderical region defined between the cross sections we shall refer to the semi-
permeable membranes as ”capping membranes”. The capping membrane at one end
of the tube contains reaction sites (embedded enzymes) at which a solute molecule of
species B is split into two solute molecules of species A. At the other end of the tube
is a capping membrane with embedded reaction sites which combine two molecules of
species A to form a single molecule of species B. We remark that even though one of
the chemical reactions is the reverse of the other, an energy source is needed to power
the pump in general. This is because the chemical reactions are localized and not
directly coupled, with one reaction occurring independently at one end of the tube,
provided there are sufficient reactants, while the other reaction occurs independently
at the other end of the tube.

Suppose for example that one of the chemical reactions, say B → A + A, is
strongly favored (for energetic and/or entropic reasons) under the prevailing condi-
tions throughout the pump, and therefore requires only a catalyst to occur. Then no
energy source is needed at the capping membrane where this reaction occurs. How-
ever, precisely because the B → A + A reaction is favored, we cannot expect the
reverse reaction A+A → B to happen preferentially at the other capping membrane.
For the reaction A + A → B to occur requires an energy source. In an experimental
system the chemistry might be realized by enzymes embedded in the membranes of
the capping ends which derive energy from an auxiliary source such as hydrolysis
of ATP molecules, see [1]. Another approach to obtain a similar effect as we shall
discuss could be to utilize for ions or small molecules a form of ”facilitated diffusion”
for transport across the capping membranes which has different kinetics for the two
membranes [38]. For a schematic of the pumping mechanism see Figure 2.1.

At steady-state the system is expected to have an imbalance in the number of
solute molecules at the opposing ends of the tube. Osmotic pressure differences at
the ends of the tube are then expected to drive a fluid flow through the tube from the
end with a greater number of solute molecules toward the end with fewer molecules.
However, predicting features of this steady-state on intuitive grounds is made chal-
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lenging given the coupling between the chemical reactions, transport by the fluid, and
diffusion. As we shall discuss, the flow may be made to move opposite to the natural
direction suggested by the chemical reactions by an appropriate choice of the relative
diffusivities of the solute species.

3. A Theoretical Model of the Pump. The geometry of the model system
consists of a long tube having total length L∗ and radius R. The pump will be
embedded in this long tube and consist of a sub-segment of the tube of length L
which is delimited by two semi-permeable membranes. We shall refer to this region
as the ”tube” of the pump. References to the ”ends of the tube” will refer to the
boundaries defined by the semi-permeable membranes. Throughout, the pump should
be regarded as being embedded within a longer tube of length L∗ which reconnects
with itself to re-circulate the solvent fluid, which corresponds to periodic boundary
conditions on the tube of length L∗.

To take into account how osmotic effects arise in the system, explicit solute-wall
interactions are modeled through two conservative forces having potentials VA and
VB , which act on the solute particles of species A and B respectively. To separate
those forces acting on the solute inside the tube and those forces acting merely to
confine solute particles to the tube, the geometry used in the mathematical model
will consist of a slightly larger cylindrical tube having radius R + ξ and extending in
length from [−ǫ, L+ǫ]. For systems having purely confining forces this will be modeled
by potentials VA and VB which are non-constant only outside of the tube of radius R
and length L. The ξ and ǫ parameters then specify the width of the boundary layers
on which the confining forces act. To ensure that conservative forces indeed confine
the solute to the extended tube, the potentials VA and VB are required to diverge
over the boundary layer. This can be expressed by the following conditions which
will be assumed throughout: VA(L + h, y, z) → ∞, VB(−h, y, z) → ∞, as h → ǫ, and
VA(x, (R + r) cos(θ), (R + r) sin(θ)) → ∞, VB(x, (R + r) cos(θ), (R + r) sin(θ)) → ∞
as r → ξ, where x ∈ [−ǫ, L + ǫ], y2 + z2 < R2, and θ ∈ [0, 2π]. We remark that
these confining potentials play a crucial role in the mechanism underyling the osmotic
pressures of the system, which arise from the persistent confining forces exerted on the
solute particles maintained in the boundary layer by diffusion. A detailed discussion
of this mechanism is given in [31].

In the model the reactive membranes will be cross-sections of the tube located at
x = 0 and x = L and will be freely permeable to particles of the non-reactive solute
species. We shall assume that all participating solute molecules which encounter a
reactive cross-section are processed by the chemical reactions.

To model the diffusion, advective transport, and chemical reactions of the solute
particles under these assumptions the following conservation equations are used for
the concentrations of the solute species:

∂cA(x, y, z, t)

∂t
= −∇ · jA(x, y, z, t)(3.1)

−
(

−jA(0+, y, z, t) · e1

)

δ(x)

+
(

2jB(L−, y, z, t) · e1

)

δ(x − L)

∂cB(x, y, z, t)

∂t
= −∇ · jB(x, y, z, t)(3.2)

+

(

−
1

2
jA(0+, y, z, t) · e1

)

δ(x)
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−
(

jB(L−, y, z, t) · e1

)

δ(x − L)

where cA(x, y, z, t) is the concentration of solute particles of species A at location
(x, y, z) at time t, and similarly for cB . The notation e1 denotes the unit vector in the
x-direction. The terms jA, jB model the fluxes of the solute species associated with
the diffusion of particles, the conservative forces acting on particles, and the advective
transport of particles with the fluid flow:

jA(x, y, z, t) = −DA∇cA(x, y, z, t)(3.3)

−
1

γA
∇VA(x, y, z)cA(x, y, z, t)

+ u(x, y, z, t)cA(x, y, z, t)

jB(x, y, z, t) = −DB∇cB(x, y, z, t)(3.4)

−
1

γB
∇VB(x, y, z)cB(x, y, z, t)

+ u(x, y, z, t)cB(x, y, z, t).

The first term in each of the fluxes models the diffusion of the solute by Fick’s law
with diffusion coefficients DA and DB [21; 34]. The second term accounts for the
conservative forces corresponding to the potentials VA and VB which act respectively
on the solute particles of species A and B. The factors γA and γB are the drag coef-
ficients of the solute particles of species A and B respectively [21; 34]. The diffusion
coefficients are related to the drag coefficients by the Einstein relations DA = kBT/γA

and DB = kBT/γB , where T is the temperature in Kelvins and kB is Boltzmann’s
constant [21; 34]. The transport of the solute by the fluid flow is taken into account
through the third term, where u(x, y, z, t) is the fluid velocity at location (x, y, z) at
time t. This velocity will be derived ultimately from the osmotically induced fluid
flow in a self-consistent manner with the concentration fields of the solute.

The terms involving the Dirac δ-function [11] model the exchanges between the
solute species that arise from the chemical reactions at the boundary (sources / sinks).
For example, the term

−
(

−jA(0+, y, z, t) · e1

)

δ(x)(3.5)

in equation 3.1 models a sink for the solute flux into the cross section corresponding
to x = 0. The flux of solute coming from the right into this cross section is given by
−jA(0+, y, z, t). The notation 0+ indicates that the value of the flux to be used is the
one obtained by considering the limit of −jA(x, y, z, t) taken from the right, x > 0,
x → 0. We remark there is no flux of A from the left of x = 0 because that region is
inaccessible to A, all of which is converted to B at x = 0.

In the cross-section corresponding to x = 0, the chemical reactions bind to form
pairs of solute particles of species A to form solute particles of species B. The newly
formed solute particles of species B are accounted for in equation 3.2 by the term

−
1

2

(

jA(0+, y, z, t) · e1

)

δ(x)

which acts as a source ejecting a concentration of B particles at the rate − 1
2 jA(0+, y, z, t).

The factor of 1
2 arises from the stoichiometry of the chemical reaction in which two

solute particles of species A form a single particle of species B.
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Fig. 3.1. Schematic of the Potential Energy. The osmotic pump is embedded in a long tube
of length L∗ which connects with itself to re-circulate the solvent fluid, this corresponds to periodic
boundary conditions on the domain [0, L∗]. In the embedding the interior of the pump extends from
[0, L]. The potential energy for the confining force is assumed to be non-zero only in a boundary
layer of width ǫ at the capping ends of the tube. A notable feature of the potential is that it is zero
at the location of the reaction sites (denoted by boxes) which are modeled by appropriate source and
sink terms in equations 3.1 and 3.2. This prevents the confining forces from interfering with the
diffusion of solute to these sites. The potential is also assumed to diverge in the boundary layer to
prevent solute from diffusing outside the extended tube. We further remark that since all of solute
A is converted to B at x = 0, solute A does not enter the region x < 0, so only the potential VB is
needed there to confine solute B to the tube. Similarly, all of solute B is converted to A at x = L,
so only the potential VA is needed for x > L to confine the solute A.

A similar interpretation holds for the other terms involving the δ-function. These
terms model the chemical reactions which split solute particles of species B, which
occur in the cross-section corresponding to x = L. The notation L− denotes that the
leftward limit x < L, x → L is to be taken in determining the value of the flux. The
region to the right of x = L is inaccessible to B.

From the assumption that all participating solute molecules which encounter a
reactive cross-section are processed by the chemical reactions, there are two additional
boundary conditions:

cA(0, y, z) = 0(3.6)

cB(L, y, z) = 0.(3.7)

We remark that non-reactive solute species are permitted in the model to freely perme-
ate the cross sections of the tube at x = 0 and x = L. For a schematic representation
of the boundary conditions see Figure 3.1 and Figure 2.1.

In the model the chemical reactions act either to bind together two elementary
chemical units to form a molecule of species B or to separate the paired units to form
two molecules of species A. Thus the elementary units are recycled in the chemical
reactions and none are created or destroyed. The conservation of the total number of
units throughout the chemical reactions can be expressed as:

∫

(cA(x) + 2cB(x)) dx = N0(3.8)

where V denotes the region corresponding to the tube and N0 denotes the total number
of elementary chemical units. The equations 3.1 and 3.2 together with the conditions
3.6, 3.7, and 3.8 give a theoretical model for the pump.
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To obtain a tractable system of equations which can be solved analytically we shall
reduce the model to one spatial dimension by averaging over the cross sections of the
tube (i.e., over y and z) and thus obtaining a system of equations for the averaged
concentrations as functions of the single variable x. Let the average concentration
over a cross-section be denoted by:

CA(x) =
1

πR2

∫

y2+z2<R2

cA(x, y, z)dydz(3.9)

CB(x) =
1

πR2

∫

y2+z2<R2

cB(x, y, z)dydz.(3.10)

We also define the average flux of concentration over a cross-section by:

JA(x, t) =
1

πR2

∫

y2+z2<R2

jA(x, y, z) · e1dydz(3.11)

JB(x, t) =
1

πR2

∫

y2+z2<R2

jB(x, y, z) · e1dydz(3.12)

and the average fluid velocity by:

ū0(t) =
1

πR2

∫

y2+z2<R2

u(x, y, z, t) · e1dydz.(3.13)

In this notation, e1 denotes the unit vector in the axial direction (x-direction) and R
is the radius of the tube. We remark that from the incompressibility of the fluid flow
and the impermeability of the walls to the fluid, the flow is confined to the interior of
the tube and is volume conserving, therefore, the average fluid velocity over a cross
section is independent of x.

To obtain a closed system of conservation equations for the cross-sectional con-
centrations we shall make a number of assumptions and approximations. For the con-
finement potential for the curved cylindrical boundary of the tube we take the limit of
the confinement potential to a hard-wall potential, ξ → 0. In this limit the solute can
be handled by no-flux boundary conditions jA(x, y, z, t) · nR = jB(x, y, z, t) · nR = 0
when y2+z2 = R2, where nR is the outward normal in the radial direction. Under this
simplification the potentials VA and VB appearing in the conservation equations will
be used to model only the confinement forces of the solute at the planar boundaries
of the tube where the fluid can permeate. We shall also assume that the confine-
ment forces act only in the axial direction at the ends of the tube, and require that
VA(x, y, z) = VA(x) and VB(x, y, z) = VB(x).

To obtain an expression for JA, and similarly for JB , we shall approximate the
cross-sectional average of the term u(x, y, z)cA(x, y, z, t), appearing when 3.3 is sub-
stituted into 3.11, by the term ū(t)CA(x, t). There are two different circumstances in
which this would be an especially good approximation. The first is when the tube is
sufficiently narrow that cA(x, y, z, t) is effectively independent of y or z. The second
is when the interior of the tube is a porous medium in which case there is a plug flow
with a flat velocity profile across a section of the tube so that u(x, y, z, t) is effectively
independent of y and z. In both cases, the vector value u would have a non-negligible
component only in the e1 direction since the fluid is incompressible and the tube is
straight. A similar set of approximations will also be made for JB .
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With these considerations the equations 3.1 - 3.4 can be reduced to the conserva-
tion equations:

∂CA(x, t)

∂t
= −

∂

∂x
JA(x, t) + JA(x, t)δ(x) + 2JB(x, t)δ(x − L)(3.14)

∂CB(x, t)

∂t
= −

∂

∂x
JB(x, t) −

1

2
JA(x, t)δ(x) − JB(x, t)δ(x − L)(3.15)

with

JA(x, t) = −DA
∂CA

∂x
(x, t) −

1

γA
V ′

A(x)CA(x, t) + ū0(t)CA(x, t)(3.16)

JB(x, t) = −DB
∂CB

∂x
(x, t) −

1

γB
V ′

B(x)CA(x, t) + ū0(t)CB(x, t)(3.17)

where DA = kBT/γA, DB = kBT/γB , and ū0(t) is the average velocity. The cross-
sectional average velocity of the flow ū0, defined in 3.13, will be computed more
explicitly in Section 3.1 by assuming a Poisuelle flow [4; 15].

The absorbing boundary conditions 3.6, 3.7, and the conservation condition 3.8
extend naturally to the reduced equations, with CA(0) = 0, CB(L) = 0 and

∫

V

(CA(x) + 2CB(x)) dx =
N0

πR2
(3.18)

where, as before, N0 denotes the total number of elementary chemical units. For a
schematic of the one-dimensional model and the confining potential, see Figure 3.1.

At steady-state the equations for CA(x) and CB(x) can be solved exactly. In
Appendix A, we find the steady-state solution with the general potentials VA(x) and
VB(x). As mentioned above these potentials are introduced to model explicitly the
solute-boundary interactions at the capping ends of the tube confining the solute and
will be used mainly to model effects giving rise to osmosis. More details concerning this
formulation and how osmotic effects arise will be given in Section 3.2 and Appendix
B. An explicit expression for the solute concentrations can be obtained in terms
of elementary functions by considering the limit in which the confining potentials
at the capping ends become hard-wall potentials, ǫ → 0. In this limit the solute
concentrations are given by (see Appendix A):

(3.19)

CA(x) =

N0

πR2

[

exp
(

γAū0x
kBT

)

− 1
]

[

kBT
γAū0

(

exp
(

γAū0L
kBT

)

− 1
)]

−
[

kBT
γB ū0

(

1 − exp
(

−γB ū0L
kBT

))]

CB(x) =

N0

2πR2

[

1 − exp
(

−γB ū0

kBT (L − x)
)]

[

kBT
γAū0

(

exp
(

γAū0L
kBT

)

− 1
)]

−
[

kBT
γB ū0

(

1 − exp
(

−γB ū0L
kBT

))] .

In the regime |ū0| ≪ kBT/γAL, |ū0| ≪ kBT/γBL where the transport by the
fluid flow is small relative to the diffusivity of the solute molecules, a relatively simple
expression can be obtained. By Taylor expanding the exponential terms in 3.19 the
steady-state solutions can be approximated by:

CA(x) ≈
2N0

πR2L2

[

γA

γA + γB

]

x(3.20)

CB(x) ≈
N0

πR2L2

[

γB

γA + γB

]

(L − x) .(3.21)
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3.1. Approximation of the Fluid Flow by Poiseuille Flow. To model the
effective transport of the solute molecules by the fluid flow, we shall use the average
velocity of the fluid over a cross-section of the tube, as defined in 3.13. We shall make
the approximation that the fluid undergoes a Poiseuille flow inside the tube [4; 15].

Consider a cylindrical tube of radius R with a length L* that occupies 0 < x < L∗

with y2 + z2 ≤ R2. We regard the tube as periodic, i.e., we identify x = 0 with
x = L∗. Let the part of the tube given by 0 < x < L contain the osmotic pump.
For reasons related to how osmotic pressure arises from the solute interactions with
the confining boundaries, we expect that the presence of the solute will result in
an increased pressure inside the region of the tube corresponding to the pump and
that there will be pressure differences across the capping membranes which serve as
boundaries between the inside and outside of the pump (see Section 3.2). Let these
be denoted

(∆P )0 = P (0+) − P (0−) = P (0+) − P (L∗−)(3.22)

(∆P )L = P (L−) − P (L+)(3.23)

where P (x+) and P (x−) denote a pressure at x obtained by a limit from the right or
left, respectively. In this case, the ∆P correspond to pressures at the left and right
capping ends of the tube of the pump just inside or outside the capping membranes.
Note the sign convention that in both cases ∆P is the pressure inside the osmotic
pump minus the pressure outside. Thus, we expect both of the ∆P to be positive
since the presence of the solute is anticipated to increase the pressure inside the pump
relative to the region outside. We remark that the pump corresponds to the segment
of the tube from [0, L] and is embedded in a larger tube from [0, L∗] which reconnects
with itself to re-circulate the solvent. The periodicity of the larger tube gives that
P (0−) = P (L∗−).

Now we assume Poiseuille flow in both segments of the tube. Since the tube is
rigid, and the two segments are in series and have the same radius, this implies that
the (linear) pressure gradient is the same in the two segments. Thus

G = (P (0+) − P (L−))/L(3.24)

G = (P (L+) − P (L∗−))/(L∗ − L)(3.25)

where −G is the axial pressure gradient in either of the two segments of the tube.
Multiply the first of these equations by L, the second by (L∗−L), and add the results.
Making use of the above definitions of (∆P )0 and (∆P )L, we see that

GL∗ = (∆P )0 − (∆P )L.(3.26)

It follows that the effective driving pressure for flow through the entire tube of
length L∗ is the difference between the pressure jumps at the capping membranes. In
particular, the fluid velocity in either segment of the tube is given by

u(x, y, z) =
(∆P )0 − (∆P )L

4µL∗

(

R2 − y2 − z2
)

e1(3.27)

and the mean velocity in a cross-section of the tube in either segment is

ū0 =
(∆P )0 − (∆P )L

8µL∗
R2.(3.28)
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3.2. Pressure at the Capping Ends: A Model of Osmotic Effects. At the
ends of the tube of the pump the solvent fluid molecules are allowed to freely permeate
the capping membranes while the solute particles interact with the membrane and are
restricted to remain in the interior of the pump. As a consequence of these solute-
membrane interactions and the solute-solvent interactions, a fluid pressure arises from
the confinement of the solute particles, which is generally referred to as ”osmotic
pressure” [31].

To obtain the pressures (∆P )0 and (∆P )L for the proposed pumping mecha-
nism, we must consider the non-equilibrium setting. In Appendix B we discuss the
non-equilibrium pressures which arise when taking into account both the role of the
chemical reactions and fluid flow. We then consider the limit as the potential becomes
”hard-walled”, in the sense that the solute interacts with the confining walls only over
a very small boundary layer. In this case, it is found that for the non-equilibrium
steady-state of the pump the van ’t Hoff’s Law [27] holds in a local sense at the
capping ends of the tube. This gives for the pressures:

(∆P )0 = kBTC(0+)(3.29)

(∆P )L = kBTC(L−)(3.30)

where C(x) = CA(x) + CB(x) is the average concentration of solute particles in a
cross-section of the tube at axial coordinate x. We remark that from the absorbing
boundary conditions 3.6, 3.7 at the capping ends, this can be simplified by using that
the concentrations reduce to C(L) = CA(L) and C(0) = CB(0).

4. Theoretical Predictions for the Steady-State Pumping Rate. To pre-
dict the steady-state pumping rate, the equations for the solute concentration must
be coupled to the fluid flow. This can be done by assuming that the fluid is pumped
as a Poiseuille flow having pressures at the ends of the tube given by the local van ’t
Hoff’s Law discussed in Subsections 3.1 and 3.2. This gives for the average velocity
of the fluid over a cross-section of the tube:

ū0 = −
R2kBT

8µL∗
(CA(L) − CB(0)) .(4.1)

By substituting the steady-state solutions 3.19 for the solute concentrations into
4.1, the following non-linear equation is obtained:

(4.2)

ū0 = −
N0kBT

8πµL∗

[

exp
(

γAū0

kBT L
)

− 1
]

− 1
2

[

1 − exp
(

−γB ū0

kBT L
)]

[

kBT
γAū0

(

exp
(

γAū0

kBT L
)

− 1
)]

−
[

kBT
γB ū0

(

1 − exp
(

−γB ū0

kBT L
))] .

While finding an analytic expression for the solution of the non-linear equation
4.2 is not possible the equations can be readily solved using a numerical method such
as Newton iteration [20]. To obtain approximate analytic expressions for ū0, we shall
consider the asymptotic regime |ū0| ≪ kBT/γAL, |ū0| ≪ kBT/γBL which allows for
linearization of 4.2. The asymptotic results will then be compared with numerical
solutions of 4.2 and numerical simulations of a three-dimensional model of the pump.
The parameters used throughout are given in Table C.2.

In the regime where |ū0| << kBT/γAL, |ū0| << kBT/γBL, we can solve for ū0

by Taylor expanding the exponential terms in 4.2 to obtain:

ū0 ≈
N0kBT

8πµLL∗

[

γB − 2γA

γA + γB

]

.(4.3)
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We remark that this can also be found by substituting the approximate expressions
3.20 and 3.21 for the solute concentrations into 4.1.

The steady-state volumetric pumping rate is then given by:

Q ≈ πR2ū0(4.4)

≈
N0kBTR2

8µLL∗

[

γB − 2γA

γA + γB

]

.

From these expressions a number of interesting features of the pump are suggested.
Letting λ = γA/γB in 4.4 the dependence of the pumping rate on the drag coefficients
can be expressed as:

Q ≈
N0kBTR2

8µLL∗

[

1 − 2λ

1 + λ

]

.(4.5)

One feature of this regime is that the pumping rate depends on the geometry of
the pump through the ratio R2/LL∗ = (R/L)2(L/L∗) which shows a dependence on
the ”shape” of the system but not the size. The ”shape” of the system characterizes
the aspect ratio of the tube of the pump and the fraction the pump comprises of
the tube of total length L∗. We remark that this conclusion is for a fixed number
of elementary solute units N0, however. If N0 scales linearly with the volume of the
tube, as one might reasonably expect, then the pump flow Q (volume/time) will also
scale linearly with the volume of the tube, provided the ”shape” of the system does
not change, which is characterized by holding R2/LL∗ constant.

A general feature of the pump predicted by this expression is that the direction
in which fluid is pumped is controlled by the ratio λ of the drag coefficients. It follows
from 4.5 that when λ > 1

2 , fluid flows at steady-state from the right capping end,
where the paired solute molecules are split, to the left capping end, where the solute
molecules are joined into pairs. This is intuitively expected given the stoichiometry
of the chemistry and the equilibrium van ’t Hoff’s Law for osmosis [27]. However,
the theoretical results predict that the direction of flow can be reversed by taking
λ < 1

2 . In this case molecules of species B have a drag coefficient more than double
that of molecules of species A and fluid flows from the capping end where the solute
molecules are joined into pairs toward the end where the pairs of solute molecules
are split. When γB = 1

2γA no net flow is predicted to be driven by the pump. For
a comparison of the asymptotic expression 4.5 and the pumping rate obtained from
numerical solution of 4.2, see Figure 4.1.

Obtaining flow from left to right may seem counterintuitive, since the splitting
reaction would seem the have the effect of increasing the number of molecules at the
right capping end. However, a further consideration must be taken into account and
this dramatically affects the flow direction. From 3.20 and 3.21 we see that the greater
drag coefficient of species B has the effect of solute persisting longer in the form of
molecules of species B as opposed to molecules of species A. As a consequence, there
is a relative build up of species B molecules which interact with the left boundary of
the tube causing through osmotic effects a left to right fluid flow in the tube. One
way species B molecules can become more plentiful at the left end relative to species
A at the right end at steady-state, is for molecules of species A to diffuse sufficiently
fast against the flow to repopulate the species B molecules being relatively slowly
transported by the flow to be split. The analysis shows that λ < 1

2 is sufficient for
this to occur.
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Fig. 4.1. Pumping Rate vs λ. A comparison between the theoretical predictions obtained by
solution of 4.2 (solid curve), asymptotic expression 4.4 (upper dotted curve), and numerical sim-
ulations of the three-dimensional model described in Section 5 (data points). This shows that the
one-dimensional theory does a good job of quantitatively predicting the flow rates obtained in the
three-dimensional model. To vary λ the parameter γA was adjusted while γB was held fixed at the
value given in Table C.2. Note that the negative pumping rate is given in the plots.

We remark that if we assume that both species of solute molecules A and B are
spherical and have the same mass per unit volume, then, since each molecule of B is
comprised of two molecules of A, we have

2mA = mB ⇒ 21/3rA = rB ⇒ 21/3γA = γB(4.6)

where mA, mB are the masses and rA, rB are the radii of the individual solute
molecules A and B, respectively, and where we have used the Stokes drag formula,
which tells us that the drag coefficient γ of a sphere is proportional to its radius r. It
follows that

λ =
γA

γB
= 2−1/3 > 1/2.(4.7)

In this special case, expression 4.5 reduces to

Q ≈
N0kBTR2

16µLL∗

(

1 − 22/3

1 + 2−1/3

)

(4.8)

and the flow goes in the ”normal” direction, i.e., from the end of the tube where the
dimer B is split toward the end where B is reassembled independent of how the other
parameters are chosen. As a result, in order to reverse the flow, as discussed above,
we need to increase sufficiently the drag coefficient of B relative to that of A, e.g., by
choosing a solute B that adopts an extended floppy conformation when whole, but
whose halves A adopt a more spherical conformation after B has been split.

When using 4.5 to predict behaviors of the pump it is important to keep in mind
that conclusions drawn from that expression are only strictly valid for parameters in
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Fig. 4.2. Pumping Rate vs L. The theoretical prediction for the steady-state pumping rate
obtained by numerical solution of 4.2 (solid curve) and the asymptotic expression 4.8 (dashed curve)
is compared to the results obtained by simulating the three-dimensional model of the pump described
in Section 5 (data points). Note that the negative pumping rate is given in the plots.

the asymptotic regime |ū0| ≪ kBT/γAL, |ū0| ≪ kBT/γBL. To further explore the
behavior of the pump, numerical solutions were computed for 4.2 over a range of γA

and γB values, see Figure 4.3.

A qualitative feature of the pump suggested by 4.5 is that as the drag coefficients
of the solute molecules are taken large, the pumping rate remains bounded. The
numerical solutions also support this conclusion, see Figure 4.3. The structure of
the level curves in Figure 4.3 indicate that the pumping rate converges to zero in
the limit of large drag coefficients when the ratio λ is held fixed. For a fixed drag
coefficient such as γA the level curves indicate that there is an optimal choice for the
other drag coefficient γB which maximizes the pumping rate. The numerical results
also show that as the drag coefficients are taken small the pumping rate dramatically
increases. This behavior is somewhat expected on intuitive grounds as the smaller
drag coefficient increases the diffusive rate of turnover in the chemical reactions.

5. Numerical Methods for the Three-Dimensional Pump Model. In the
one-dimensional model a number of approximations were made to obtain an analyt-
ically tractable set of equations. In order to investigate further the behaviors of the
pump indicated by the one-dimensional analysis, we shall numerically simulate the
full three-dimensional model incorporating both the solute concentration fields and
the steady-state dynamics of the fluid. The simulations are performed using an ex-
tension of the the immersed boundary method which handles the solute concentration
fields through a finite volume method. Details of the numerical method are discussed
in the following two sections. For a comparison between the predictions of the one-
dimensional model and the results of the three-dimensional simulations, see Figures
4.1 and 4.2.
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Fig. 4.3. Pumping Rate vs γA and γB. The theoretical predictions for the pumping rate obtained
by numerical solution of 4.2 as both γA and γB are varied. The colors indicate the magnitude and
direction of the pumping rate as indicated in the color bar to the right, where a positive rate indicates
pumping from right to left. The gray lines denote level curves of the pumping rate. The dark line
indicates the level curve corresponding to a pumping rate of zero. This line separates the two
directions in which the fluid is driven by the pump with the region below this line corresponding to
pumping from right to left and the region above corresponding to pumping from left to right.

5.1. The Immersed Boundary Method for the Fluid. The natural scale
for the pumps we shall consider is at most a few hundred microns in length. For
concreteness, we shall restrict ourselves to modeling pumps immersed in water at
room temperature. For such systems, the Reynolds number is quite small allowing
for the fluid flow to be described to a good approximation by the incompressible
Stokes equations:

ρ
∂u(x, t)

∂t
= µ∆u(x, t) −∇p + f(x, t)(5.1)

∇ · u = 0(5.2)

where u is the velocity of the fluid, ρ is the density of the fluid, µ is the dynamic
viscosity of the fluid, p is the pressure, and f is a forcing term.

In the immersed boundary method [32] the forcing term f is introduced to model
structures interacting with the fluid. In practice, the structures are discretized and
represented by a collection of elementary control points. The dynamics of the collec-
tion of control points and the manner in which corresponding forces are handled is
given by:

f(x, t) =

N
∑

j=1

F(j)δa(x − X(j)(t))(5.3)
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Fig. 5.1. Steady-State Fluid Flow for the Three-Dimensional Pump Model. Tracers particles
are distributed across a cross-section of the tube and are swept along with the flow as immersed
boundary method control points, plotted in (blue). The control points which model the tube boundary
impermeable to both the fluid and solute molecules are plotted in (green). The fluid flow appears to
be approximately Poiseuille.

dX(j)(t)

dt
=

∫

Ω

δa(x − X(j)(t))u(x, t)dx(5.4)

where X(j) is the position of the jth particle, F(j) is the force acting on the jth particle,
and δa is a weight function which integrates to one and is nonzero only on a region
centered on the origin and having diameter equal to a.

In the immersed boundary method the structures are treated essentially as part
of the fluid. Forces that act on a particle are transmitted directly to the fluid through
the weight function δa(X). The particles move at a velocity determined by averaging
with the weight function δa the fluid velocity locally in a neighborhood of the particle.
For a further discussion see [32].

To obtain numerical methods for the immersed boundary equations, the system is
discretized in space on a uniform periodic mesh using the standard central difference
approximation for the Laplacian and discretized in time using the Forward-Euler
method:

ρ

(

un+1
m − un

m

∆t

)

= µ
3

∑

q=1

un
m−eq

− 2un
m + un

m+eq

∆x2
+ ℘⊥fn

m(5.5)

where un
m denotes the velocity value at the grid point with index m = (m1,m2,m3)

at the time step with index n corresponding to the time tn = n∆t. For N grid points
in each direction we have ∆x = L/N . The term eq denotes the standard basis vector
which has a value of 1 in the qth component and 0 in all other components. The term
fn
m denotes the force at the mth grid point for the nth time step.

In 5.5 the incompressibility constraint 5.2 is handled by the operator ℘⊥ deter-
mined by the projection method [6]. The projection operator is derived from the
”principle of virtual work” for the discrete divergence constraint:

3
∑

q=1

un
m+eq

− un
m−eq

∆x
= 0.(5.6)
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Fig. 5.2. Schematic of the Three-Dimensional Pump Model. In (green) are the immersed
boundary method control points used to model the cylindrical boundary which is impermeable to both
the fluid and solute molecules. The cubic cells of the finite volume method are shown in the interior
of the tube (grey). The cells participating in the chemical reactions for the splitting reaction are on
the right end of the tube (yellow) and the cells for the binding reaction are on the left end of the
tube (yellow).

The projection operator can be expressed as:

℘⊥um =
∑

k

℘⊥
k ûkei2πk·m/N(5.7)

where ûk denotes the Discrete Fourier Transform (DFT) of the velocity field um, and

℘⊥
k =

(

I −
ĝkĝ

T
k

|ĝk|2

)

(5.8)

where I is the identity matrix and

ĝ
(q)
k = sin(2πk(q)/N)/∆x.(5.9)

In this notation the parenthesized superscript q denotes the vector component. The
projector operator ℘⊥

k and the terms ĝk can be derived by taking the DFT of the
incompressibility condition 5.6, which becomes ĝk · ûk = 0.

The equations of the fluid-structure coupling become:

fn
m =

N
∑

j=1

F[j]δa(xm − Xn,[j])

Xn+1,[j] − Xn,[j]

∆t
=

∑

m

δa(xm − Xn,[j])un
m∆x3.

To model the impermeable boundary of the pump a collection of control points is
distributed over the curved surface of the cylinder. Each control point is then targeted
to a point on the cylinder with the linear restoring force:

F[j] = −K
(

X[j] − X
[j]
0

)
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where the X
[j]
0 denotes the specific target points on the surface of the cylinder indexed

by j. By choosing a sufficiently large stiffness K and density of control points the
curved boundary of the cylinder is to a good approximation impermeable to fluid.
See Figure 5.2 for a schematic of the pump model.

While other methods can be used to solve for Stokes flow in a cylindrical tube
the implementation of the immersed boundary method has the potential of being
amenable to simulations involving complicated geometries and/or elastic boundaries.
To model such a boundary a mesh of control points could again be arranged over the
surface of the cylinder, but instead of targeting control points to specific locations in
space they could be linked to each other by linear springs with nonzero rest lengths or
indeed by nonlinear springs. In principle, more general geometries and models could
be studied with these methods, such as the role of fluid flow in the osmotic swelling
of semi-permeable immersed structures.

5.2. The Finite Volume Method for the Solute Concentration Field. In
this section we discuss the evolution of the concentration fields of the solute. A finite
volume method is developed for equations 3.1 - 3.4 in which the three-dimensional
spatial domain is subdivided into N3 cubic cells. To model the evolution of the
concentration field, fluxes are determined for the exchange of solute between the cells.
In the model the role of the conservative forces, diffusion, and advective transport of
the solute concentration by the fluid are taken into account.

We shall use the following finite volume discretization:

cA
n+1,m − cA

n,m =
(

1 − ζA,B
m

)





∑

q∈Υm

λA
q,mcA

n,q∆t −
∑

q∈Υm

λA
m,qcA

n,m∆t



(5.10)

+ 2ζB,A
m





∑

q∈Υm

λB
q,mcB

n,q∆t −
∑

q∈Υm

λB
m,qcB

n,m∆t





cB
n+1,m − cB

n,m =
1

2
ζA,B
m





∑

q∈Υm

λA
q,mcA

n,q∆t −
∑

q∈Υm

λA
m,qcA

n,m∆t



(5.11)

+
(

1 − ζB,A
m

)





∑

q∈Υm

λB
q,mcB

n,q∆t −
∑

q∈Υm

λB
m,qcB

n,m∆t





where ∆t denotes the time step, cA
n,m denotes the concentration of solute species A

at time n in the cell with index m, with a similar interpretation for species B, and
Υm is the set of indices for the neighbors of cell m in the Cartesian directions. The
factor λA

m,q is the rate that concentration of species A leaves cell m and enters cell

q, with a similar interpretation for species B. The factors ζA,B
m and ζB,A

m model the
chemical reactions and are defined by:

ζA,B
m =

{

1, if m1 = m0
1

0, otherwise
(5.12)

and

ζB,A
m =

{

1, if m1 = mL
1

0, otherwise
(5.13)
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Fig. 5.3. Finite Volume Method. Depicted are the mesh cells of the finite volume method used
to account for the concentrations of the chemical species. The λ terms correspond to the fluxes of
concentration which occurs through each of the cell faces. The ζ terms correspond to exchanges
which occur between the mesh cells involved in the splitting and binding reactions.

where m = (m1,m2,m3), m0
1 is the index corresponding to the cross-section of the

tube at x = 0 near the left end of the tube, and mL
1 is the index corresponding the

cross-section at x = L. To account for the situation in which the chemical reactions
process all available reactants in the cell, absorbing boundary conditions are imposed
with cA

n,(m0

1
,m2,m3)

= 0 and cB
n,(mL

1
,m2,m3)

= 0.

In equations 3.1 - 3.4 the solute concentration is subject to diffusion, drift by
conservative forces, and transport by the fluid. For the concentration of species A
this is taken into account using the following rates of exchange between the cells:

λA
m,q =

DA

∆x2

αA
m,q

(exp(αA
m,q) − 1)

+ ũn
m,q

1

∆x
(5.14)

where ∆x denotes the grid spacing between the center of adjacent cells, DA denotes
the diffusion coefficient of the solute, and

αA
m,q =

V A
q − V A

m

kBT
(5.15)

and

ũn
m,q = max{un

m,q · em,q, 0}.(5.16)

The fluid velocity un
m,q is obtained from the fluid velocity field of equation 5.5 by an

interpolation to the cell faces:

un
m,q =

1

2

(

un
m + un

q

)

.(5.17)

The first term in the rate equation 5.14 follows the derivation in [29] and has
desirable properties with respect to the equilibrium distribution of the solute, which
is discussed below. The second term in 5.14 is added to account for the advection of
the solute by the fluid. The factor ũm,q is the positive component of the velocity in
the direction em,q given by the vector from the center of the cell with index m to
the center of the cell with index q. This ensures that the exchange rates are always
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positive and that in the absence of force or diffusion a cell receives concentration only
from cells located “upwind” with respect to the velocity field. A similar set of rates
using the potential VB is used for the solute concentration of species B.

It can be readily checked that the scheme 5.10 – 5.16 is conservative. Further, it
can be shown in the absence of the chemical reactions, when ζA,B

m = 0 = ζB,A
m for all

m, and transport by the fluid, when um = 0, that detailed balance, in which there is
no net exchange of solute between cells, holds for the distribution:

cA
m =

1

Z
exp

(

−V A
m

kBT

)

(5.18)

where

Z =
∑

m

exp

(

−V A
m

kBT

)

∆x3.(5.19)

This concentration corresponds to the thermodynamic equilibrium associated with
non-interacting particles subject to a conservative force with potential VA(x) re-
stricted to lattice sites xm. Thus the steady-state of the numerical method without
chemical reactions and transport by the fluid corresponds exactly to an equilibrium
distribution. A similar result holds for the species B equations.

To couple the fluid equations to the solute concentration fields the following force
density is introduced in 5.5:

fn
sol,m = −∇VA(xm)cA

n,m −∇VB(xm)cB
n,m(5.20)

which transmits the force acting on the solute molecules within a given cell directly
to the fluid.

5.3. Conditions Imposed for the Pump with Hard-wall Confining Po-

tential. In the hard-walled confining potential limit, where the length scale of the
solute-wall interactions becomes very small ǫ → 0, the explicit force acting on the so-
lute can be replaced with zero flux boundary conditions. In the finite volume method
this corresponds to setting λm,q = 0 for all cells with index q lying outside of the
tube, see Figure 5.2. In this limit the osmotic effects in the model are taken into
account using the local van ’t Hoff law derived in Appendix B. In particular, for the
cells adjacent to the planar boundaries of the tube the force acting on the fluid arising
from the solute-wall interactions is then given by:

fn
sol,m

= cn,mkBT∆x2nm/∆x3(5.21)

where cn,m = cA
n,m + cB

n,m and nm is the inward normal of the boundary.
For a schematic of the three-dimensional pump model see Figure 5.2. In Figures

4.1 and 4.2 numerical simulations of the three-dimensional pump model are compared
with the theoretical predictions.

6. Conclusions. A basic mechanism has been shown by which chemical reac-
tions can be used to generate osmotic pressure gradients which drive fluid flows. A
specific pumping mechanism was discussed in which two solute species diffuse and
undergo basic chemical reactions at opposite ends of a tube, where one reaction splits
solute molecules while the other fuses together solute molecules. In contrast to other
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osmotically driven systems, the mechanism presented here does not rely on an exter-
nal store of solute molecules. Instead, the process which sets up the osmotic pressure
gradient recycles the solute molecules through the two reversible chemical reactions.

To study the non-equilibrium steady-state behavior of the pumping mechanism,
theoretical models were formulated which self-consistently take into account the diffu-
sion of the solute species, advective transport by the fluid flow, chemical reactions, and
interactions with the confining walls. The analytic results and numerical simulations
demonstrate that the osmotic pump is capable of driving a fluid flow in either direc-
tion through the tube by an appropriate choice of the relative diffusivities of the solute
molecules, while retaining the same chemical kinetics at the capping membranes.

Many variants of the proposed pumping mechanism can be considered. One
possible variant would be to utilize at the membrane boundaries additional chemi-
cal reactions in which more intermediate products and reactants are involved. For
instance, this could be utilized to control the response of the pump to external signal-
ing molecules which turn the pump on or off or change the preferred direction of fluid
flow. Such reactions could also potentially be designed to provide a feedback mecha-
nism which depends on the rate of fluid flow, or introduces additional time scales into
the physical system allowing for oscillatory behaviors in which the pump turns on or
off or reverses direction periodically. In the biological context such chemical kinetics
would be expected to play an important role in regulating the behavior of osmotic
pumps. For example, in a hypothetical mechanism of cell motility involving such
osmotic pumps embedded in the cell membrane, such an oscillatory behavior could
play a constructive role by coordinating the propulsion generated by multiple pumps
and such an ability to turn pumps on or off locally could be used in cell motility to
control speed and direction.

Other variants of the proposed pumping mechanism could also be considered in
which the geometry of the confining region is varied to have different shapes which
are static or change dynamically in response to the osmotic pressures, fluid flow,
and solute concentrations. It is expected that such systems could be designed to
exhibit a rich variety of features making use of the geometry dependent feedback the
fluid flow has on the diffusivity of solute molecules and osmotic pressures generated.
The analytic and numerical techniques introduced in this work offer one approach to
investigating such osmotically driven systems.
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Appendix A. General Solution of the Steady-State Solute Concentra-

tions. The equations for the solute concentrations will now be solved in the steady-
state when the solute molecules are subject to a flow ū0 and conservative forces −∇VA,
−∇VB , for species A and B respectively.

For computational convenience we remark that the equations 3.14 and 3.15 can
be expressed in a form involving the divergence (in one dimension ∂/∂x) of purely
flux-like terms:

∂CA(x, t)

∂t
= −

∂

∂x
J̃A(x, t)(A.1)

∂CB(x, t)

∂t
= −

∂

∂x
J̃B(x, t)(A.2)

with

J̃A(x, t) = JA(x, t)(A.3)

− JA(0+, t) (χ(x) − 1)

− 2JB(L−, t)χ(x − L)

J̃B(x, t) = JB(x, t)(A.4)

+
1

2
JA(0+, t) (χ(x) − 1)

+ JB(L−, t)χ(x − L)

where JA and JB are defined in 3.16 and 3.17. In this notation χ(x) denotes the
Heaviside function defined by:

χ(x) =

{

0, if x < 0
1, if x ≥ 0

.(A.5)
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The steady-state of equations 3.14 - 3.17 requires that the fluxes be constant:

J̃A(x) = J0
A(A.6)

J̃B(x) = J0
B(A.7)

where J0
A and J0

B are arbitrary constants to be determined. We remark that the
constants J0

A and J0
B can be interpreted as the steady-state fluxes of each of the

solute species A and B, respectively. From this, A.3, A.4, and the definition of the
fluxes given in 3.16 and 3.17 it follows by the method of integrating factors that:

JA(0+) = J0
A(A.8)

JB(L−) = J0
B .(A.9)

From A.6 and 3.16 it then follows that:

∂

∂x

(

exp

(

VA(x) − γAū0x

kBT

)

CA(x)

)

(A.10)

= −
1

DA

[

J0
A + J0

A (χ(x) − 1) + 2J0
Bχ(x − L)

]

exp

(

VA(x) − γAū0x

kBT

)

where the Einstein relations DA = kBT/γA, DB = kBT/γB have been used [21; 34].
This can be integrated to obtain:

CA(x) = qA(x, x0
A)CA(x0

A) + αA(x)J0
A + βA(x)J0

B(A.11)

where

qA(x, x0
A) = exp

(

−
VA(x) − γAū0x − VA(x0

A) + γAū0x
0
A

kBT

)

(A.12)

αA(x) = −
1

DA

∫ x

x0

A

χ(y)qA(x, y)dy(A.13)

βA(x) = −
2

DA

∫ x

x0

A

χ(y − L)qA(x, y)dy.(A.14)

A similar calculation can be performed to obtain:

CB(x) = qB(x, x0
B)CB(x0

B) + αB(x)J0
A + βB(x)J0

B(A.15)

where

qB(x, x0
B) = exp

(

−
VB(x) − γBū0x − VB(x0

B) + γBū0x
0
B

kBT

)

(A.16)

αB(x) = −
1

2DB

∫ x

x0

B

(1 − χ(y)) qB(x, y)dy(A.17)

βB(x) = −
1

DB

∫ x

x0

B

(1 − χ(y − L)) qB(x, y)dy.(A.18)

The general solution has four unknown constants J0
A, J0

B , CA(x0
A), CB(x0

B). To
determine these constants the conditions 3.6, 3.7, and 3.8 will be used. This, however,
only gives three conditions for four unknowns. To obtain a fourth condition we shall
assume that the confining potentials VA and VB grow at a sufficient rate so that
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CA(x) → 0 as x → ∞ and CB(x) → 0 as x → −∞. As a consequence, we have that
JA(x) → 0 as x → ∞ and JB(x) → 0 as x → −∞. From A.6, A.7, A.8, and A.9 this
gives a fourth condition:

J0
A = −2J0

B .(A.19)

This condition can be motivated physically by considering the total flux of mass,
including both molecules of species A and B, that passes through a cross-section of
the tube, say at the midpoint. Since the solute molecules are confined to the tube
and recycled by the chemical reactions the total flux of mass across any interior cross-
section at steady-state must be zero, which requires J̃A + 2J̃B = 0.

The four conditions can be expressed as a linear system of equations:

Λ









CA(x0
A)

J0
A

CB(x0
B)

J0
B









=









0
0
0
N0

πR2









(A.20)

where

(A.21)

Λ =









qA(0, x0

A
) αA(0) 0 βA(0)

0 αB(L) qB(L, x0

B
) βB(L)

0 1 0 2
∫ ∞

−∞
qA(y, x0

A
)dy

∫ ∞

−∞
αA(y) + 2αB(y)dy 2

∫ ∞

−∞
qB(y, x0

B
)dy

∫ ∞

−∞
βA(y) + 2βB(y)dy









.

Further simplifications can be made by a judicious choice of x0
A and x0

B. Setting
x0

A = 0 and x0
B = L we obtain CA(x0

A) = 0 = CB(x0
B). This allows for A.20 to be

readily solved in terms of the matrix entries. The steady-state solution can then be
expressed as:

CA(x) =
N0

2πR2 (βA(x) − 2αA(x))
∫ ∞

−∞

1
2βA(y) + βB(y) − αA(y) − 2αB(y)dy

(A.22)

CB(x) =
N0

2πR2 (βB(x) − 2αB(x))
∫ ∞

−∞

1
2βA(y) + βB(y) − αA(y) − 2αB(y)dy

(A.23)

where

αA(x) = −
1

DA

∫ x

0

χ(y)qA(x, y)dy(A.24)

βA(x) = −
2

DA

∫ x

0

χ(y − L)qA(x, y)dy(A.25)

αB(x) =
1

2DB

∫ L

x

(1 − χ(y)) qB(x, y)dy(A.26)

βB(x) =
1

DB

∫ L

x

(1 − χ(y − L)) qB(x, y)dy.(A.27)

In the limit of a potential which becomes hard-walled, in the sense that the energy
diverges over successively smaller boundary layers ǫ → 0, see Figure 3.1, the above
expressions can be further simplified. In the hard-wall limit of VA, we have βA(x) → 0
for all x. Similarly for VB, we have αB(x) → 0 for all x. We further remark that
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αA(x) = 0 for x ≤ 0 and βB(x) = 0 for x ≥ L. By using the Einstein relations
DA = kBT/γA, DB = kBT/γB and further assuming that VA(x) = 0 = VB(x) for
x ∈ [0, L] we obtain the solutions for the hard-walled limit given by 3.19.

Appendix B. Justification of the Local van ’t Hoff’s Law for the Non-

equilibrium Steady-State.

We now compute the average ”osmotic pressure” generated at the capping mem-
branes of the pump in the limit of a hard-walled potential. For general confining
potentials VA(x), VB(x), the average concentration of solute molecules (without dis-
tinguishing between species A and species B) over a cross-section of the tube is given
by:

C(x) = CA(x) + CB(x)(B.1)

=
N0

2πR2 (βA(x) + βB(x) − 2αA(x) − 2αB(x))
∫ ∞

−∞

1
2βA(y) + βB(y) − αA(y) − 2αB(y)dy

.

We shall consider potentials VA(x) and VB(x) that only act to confine the solute
within the tube through forces in the boundary layers [−ǫ, 0] and [L,L+ǫ], see Figure
3.1. So that solute can not pass through the boundary the potentials will also be
assumed to diverge with V (L+h) → ∞, V (−h) → ∞ as h → ǫ. We refer to the limit
ǫ → 0 which corresponds to the length-scale over which the solute and membrane
interaction goes to zero as the ”hard-wall limit”.

From these assumptions, we have in the boundary layer x ∈ [−ǫ, 0]:

αA(x) = 0(B.2)

βA(x) = 0(B.3)

βB(x) − 2αB(x) =
1

DB

∫ 0

x

qB(x, y)dy(B.4)

=
1

DB

∫ 0

x

exp

(

−
VB(x) − γBū0x

kBT

)

qB(0, y)dy

= exp

(

−
VB(x) − γBū0x

kBT

)

(βB(0) − 2αB(0))

where the last equation follows from A.16. This shows that for x ∈ [−ǫ, 0] we have

C(x) = exp

(

−
VB(x) − γBū0x

kBT

)

C(0).(B.5)

By a similar argument it can be shown that for x ∈ [L,L + ǫ]

C(x) = exp

(

−
VA(x) − γAū0(x − L)

kBT

)

C(L).(B.6)

The general body force exerted on the fluid arising from forces acting on the
solute in the boundary layers is given by

f(x) = −∇VA(x)CA(x) −∇VB(x)CB(x).(B.7)

An effective pressure at the capping ends can be defined by

p(0) =

∫ 0

−ǫ

f(y) · e1dy(1)(B.8)

p(L) = −

∫ L+ǫ

L

f(y) · e1dy(1)(B.9)
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where e1 denotes the unit vector in the x-direction and y(1) = y · e1.
Now in the hard-wall limit of the potentials ǫ → 0 we have the following

p(0) =

∫ 0

−ǫ

f(y) · e1dy(1)(B.10)

=

∫ 0

−ǫ

−V ′
B(y(1))CB(y)dy(1)

=

∫ 0

−ǫ

−V ′
B(y(1)) exp

(

−
VB(y(1)) − γBū0y

(1)

kBT

)

C(0)dy(1)

= C(0)kBT (1 + O(ǫ))

where we have made use of the fluid velocity ū0 remaining uniformly bounded in ǫ,
the fact that |y(1)| < ǫ, and the stated assumptions on the confining potentials. In
this notation g(x) = O(ǫ) denotes the usual order condition that the |g(x)| ≤ Cǫ
where C is a constant [12]. Similarly we have

p(L) = C(L)kBT (1 + O(ǫ))(B.11)

Now one could similarly compute the body force and effective pressure for a
similar boundary layer just outside the tube at the capping membranes. In the hard-
wall limit this would give a difference in the effective pressures across the capping
membrane which is proportional to the concentration difference. In particular,

[p(0)] = kBT [C(0)](B.12)

[p(L)] = −kBT [C(L)] .(B.13)

The notation [g(x)] = limh→0 g(x + h) − g(x − h) denotes the jump discontinuity in
the function g at x. This shows that at steady-state the pressure difference across
each capping end of the tube satisfies an analogue of van ’t Hoff’s Law with respect
to the local concentrations of the solute molecules.
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Appendix C. Tables.
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Table C.1

Description of the Parameters

Parameter Description
kB Boltzmann’s constant
T Temperature
µ Fluid Dynamic Viscosity
ρ Fluid Density
N0 Total Number of Elementary Chemical Units
C0 Total Concentration of Elementary Chemical Units
L Length of the Tube of the Pump
L∗ Total Length of the Tube in which the Pump is Embedded
R Radius of the Tube of the Pump
γA Drag Coefficient of a Molecule of Species A
γB Drag Coefficient of a Molecule of Species B

Table C.2

Parameter Values (unless otherwise specified)

Parameter Description
T 300 K
µ 6.0221 × 105 amu/(nm · ns)
ρ 602.2142 amu/nm3

N0 1000
L 2000 nm
L∗ 3000 nm
R 400 nm
γA 1.1351 × 107 amu/ns
γB 1.1351 × 107 amu/ns


