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Abstract. In modeling many biological systems, it is important to take into account the in-
teraction of flexible structures with a fluid. At the length scale of cells and cell organelles, thermal
fluctuations of the aqueous environment become significant. In this work it is shown how the im-
mersed boundary method of (64) for modeling flexible structures immersed in a fluid can be extended
to include thermal fluctuations. A stochastic numerical method is proposed which deals with stiff-
ness in the system of equations by handling systematically the statistical contributions of the fastest
dynamics of the fluid and immersed structures over long time steps. An important feature of the
numerical method is that time steps can be taken in which the degrees of freedom of the fluid are
completely underresolved, partially resolved, or fully resolved while retaining a good level of accu-
racy. Error estimates in each of these regimes are given for the method. A number of theoretical and
numerical checks are furthermore performed to assess its physical fidelity. For a conservative force,
the method is found to simulate particles with the correct Boltzmann equilibrium statistics. It is
shown in three dimensions that the diffusion of immersed particles simulated with the method has
the correct scaling in the physical parameters. The method is also shown to reproduce a well-known
hydrodynamic effect of a Brownian particle in which the velocity autocorrelation function exhibits
an algebraic (τ−3/2) decay for long times (6; 16; 20; 23; 37; 38; 54; 67; 78). A few preliminary results
are presented for more complex systems which demonstrate some potential application areas of the
method. Specifically, we present simulations of osmotic effects of molecular dimers, worm-like chain
polymer knots, and a basic model of a molecular motor immersed in fluid subject to a hydrodynamic
load force. The theoretical analysis and numerical results show that the immersed boundary method
with thermal fluctuations captures many important features of small length scale hydrodynamic sys-
tems and holds promise as an effective method for simulating biological phenomena on the cellular
and subcellular length scales.
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1. Introduction. In modeling many biological systems it is important to take
into account the interaction of flexible structures with a fluid. The immersed boundary
method of (64) has found wide use as an efficient numerical method for simulating such
systems. Some examples include the study of blood flow around heart valves (65),
wave propagation in the inner ear (32), and the generation of lift in insect flight (56).
With experimental advances in molecular and cellular biology has come an increasing
interest in developing methods to model qualitatively and quantitatively microscopic
biological processes at the cellular and subcellular level (12; 27; 41). The immersed
boundary method provides a promising framework for simulating such systems.

At the cellular level the fluid may consist of either the aqueous environment
outside of the cell or the cytoplasm within. Some important flexible structures in the
cellular context include the outer cell membrane, intracellular vesicles, cytoskeletal
fibers, and molecular motor proteins. These structures play an important role in cell
motility or cell division among other processes (8).
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In such systems the relevant features can span a range of length scales from
tens of microns or more for the outer cell membrane and cytoskeletal fibers to tens
of nanometers for individual cytoskeletal monomers and motor proteins. At these
length scales thermal fluctuations of the system become significant and in many cases
appear crucial to achieve biological function. Some examples include force generation
and progression of molecular motors along cytoskeletal fibers (1; 41; 84), osmotic
effects such as vesicle and gel swelling (26; 33; 51; 61; 83), and polymerization effects
involved in force generating processes in cell motility (34; 60; 72; 81).

Modeling such complex cellular systems in molecular detail is infeasible with
methods such as molecular dynamics as a consequence of the immense computational
cost required to resolve the broad range of active length and time scales. This suggests
that a coarse-grained numerical approach must be taken which does not resolve all of
the detailed physics but rather attempts to make approximations that yield effective
equations to capture the most relevant features of the dynamical phenomenon being
studied. Here we discuss how the framework of the immersed boundary method can
be extended for use in such modeling by including thermal fluctuations to capture
dynamical phenomena at the cellular length scale.

The theory of nonequilibrium statistical mechanics indicates that the influence of
thermal fluctuations on a mechanical system can typically be represented through the
addition of thermal forcing terms which decorrelate rapidly in time. The forcing can
then be represented by appropriate “white noise” processes. This generally involves
a nontrivial structure of correlations between the state variables in such a way that
there is an energy balance between the thermal forcing and dissipation of the system
so that a corresponding fluctuation-dissipation theorem for the system is satisfied
(47; 70).

Several computational fluid dynamical schemes have been extended toward the
microscale through such an inclusion of thermal forces. The most widely used ap-
proach is known as Stokesian or Brownian dynamics (15; 22; 75; 77). In this approach
the structures are modeled as collections of rigid “elementary particles” which inter-
act through force laws derived by approximating the fluid dynamics by a quasi-steady
Stokes flow. This latter approximation is strictly appropriate only when, among other
assumptions, the fluid density is much less than the density of the structures (19),
a condition better met in engineering applications (such as suspensions (14; 15; 77))
than in physiological settings (13). The result of the underlying approximations in
the Stokesian/Brownian dynamics method is a rather strongly coupled system of sto-
chastic equations for the motion of the elementary particles. For a well-designed com-
putation the cost of a simulation can be rendered roughly proportional to N log N ,
where N is the number of elementary particles (77). In the presence of fast time
scales arising from thermal fluctuations and possibly chemically activated processes,
the impact of the quasi-steady Stokes approximation and the representation of the
elementary particles as rigid (rather than flexible) on the accuracy of the simulation
is not yet clear (73).

Another approach for modeling fluids with immersed structures is Dissipative
Particle Dynamics (9; 18; 24; 25; 35; 39; 53; 58; 63). The method is built phenomeno-
logically in terms of “fluid particles” which represent a parcel of fluid along with its
collection of immersed structures. When thermal forces are included in the method
the fluid particles are simulated with a stochastic system of equations modeling their
(soft) interactions. This method however does not readily extend to the microscopic
domain since the immersed structures within a parcel are not resolved in detail. Dis-
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sipative Particle Dynamics may however be appropriate for somewhat larger scale
simulations in which one is interested in the effects of a numerous collection of im-
mersed polymers or other structures on the dynamics of a fluid flow.

A different class of approaches which emphasize the role of the fluid dynam-
ics while making other simplifications has also been proposed. These include finite-
element (76) and lattice-Boltzmann (48) methods, in which the computational fluid
dynamics are extended to include thermal forces in the fluid equations following the
framework of (49). The immersed boundary method which we shall discuss belongs to
this broad class of methods (45). A theoretical approach with certain similarities to
the immersed boundary method with thermal fluctuations has been proposed in (62),
but differs in how thermal forces are treated for the immersed structures. A virtue of
the immersed boundary method when compared to other methods is the straightfor-
ward physical manner in which it approximates the interaction of the fluid with the
flexible structures.

A key feature of the immersed boundary method, distinguishing it from Stoke-
sian/Brownian dynamics, is that the dynamics of the fluid are represented in the
immersed boundary equations so that subtle inertial effects of the fluid can be in-
corporated into the thermally fluctuating dynamics. For example, as demonstrated
in Subsection 5.2, the method captures the slow decay (τ−3/2) in the tail of the au-
tocorrelation function of the velocity of an immersed particle. Another advantage
of tracking the fluid dynamics is the natural way in which the immersed boundary
method can respect the topology of flexible structures so that, for example, polymers
do not cross themselves or each other. This feature gives the immersed boundary
method the potential for efficient simulation of polymer links and knots.

A basic description of how thermal fluctuations can be incorporated within the
immersed boundary method was presented in (45), and theoretical analysis of the
physical behavior of the method through an asymptotic stochastic mode reduction
calculation was developed in (46). The immersed boundary method was found in
these theoretical works to produce generally the correct physical behavior for the
thermal fluctuations of immersed structures.

Here we present a derivation for the thermal fluctuations of the immersed bound-
ary method in the context of the time dependent Stokes equations. We then present
a new numerical method developed from a novel time discretization of the stochastic
equations. In addition, further theoretical analysis of the framework is performed to
investigate the physical behavior of the method and comparisons are made between
theory and numerical simulations.

For stochastic differential equations most traditional finite difference methods,
such as Runge-Kutta, achieve a lower order of accuracy than for deterministic ordinary
differential equations as a consequence of the nondifferentiability of Brownian motion
and its order t1/2 scaling in time (44). When considering the full system of equations
of the immersed boundary method, these issues are further compounded by a wide
range of length and time scales that arise in many problems.

For small length scale systems in which the Reynolds number is small and the
fluid flow is Stokesian to a good approximation, the time scales associated with the
fine-scale fluid modes can be considerably faster than the time scales of the large-
scale fluid modes and the immersed structures. In many problems it is the dynamics
of the immersed structures and the large-scale features of the fluid flow that are of
interest. The fine-scale features of the fluid are incorporated in simulations primarily
to determine their effects on the larger scales but are often not of direct interest in
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and of themselves.

Since the full system is rather stiff as a result of the fast time scales of the fine-
scale fluid modes, we would like to be able to take time steps which underresolve those
scales of the fluid which are not of primary interest in the simulation. However, we
must take care in how this is done, because otherwise the effects of the underresolved
fluid modes on the more interesting degrees of freedom can be misrepresented. For
example, the simple use of a method such as Euler-Marayama (44) leads to poor
accuracy for the stochastic dynamics when long time steps are used. In this case, the
particle trajectories are found to be overly diffuse in the sense that the wrong scaling
is obtained for the mean squared distance traveled.

After a presentation of the general framework of the immersed boundary method
without spatiotemporal discretization in Section 2, a stochastic analysis is developed
in Section 3 to design a numerical method which maintains accuracy over time steps
which can be longer than the time scales of some or all of the fluid modes. The sys-
tematically derived numerical scheme presented here improves upon in several ways
a correction-factor approach taken in (45) to achieve long time steps. The numeri-
cal method is constructed from a new time discretization of the immersed boundary
equations, in which the equations are integrated analytically using standard tech-
niques from stochastic calculus under well controlled approximations. The numerical
method allows for the statistical contributions of the fast stochastic dynamics of the
fluid, which are not explicitly resolved over long time steps, to be accounted for in
the dynamics of the immersed structures. Moreover, the correlations in the statistics
between the fluctuations of the degrees of freedom of the system are handled sys-
tematically, allowing for consistent realizations of the velocity field of the fluid and
immersed structures to be simulated.

In Section 4, error estimates are given which indicate that the method attains a
good level of accuracy (in a strong statistical sense (44)) whether the fluid modes are
completely underresolved, partially resolved, or fully resolved. Only the degrees of
freedom of the immersed structures constrain the time step. The numerical method
handles a broad range of time steps in a unified manner, so that depending on the
application, the fast dynamics of the fluid can either be explicitly resolved or under-
resolved, with their effects correctly represented on the structural degrees of freedom.

In Section 5, an expression for the diffusion coefficient of immersed particles is
derived. The predictions are compared with the results of numerical simulations
showing good agreement with the theory for different particle sizes and both short
and long time steps. It is further shown that for intermediate time steps, the method
captures a well-known hydrodynamic effect of a Brownian particle, in which the decay
of the autocorrelation function of the velocity of the particle decays algebraically
(τ−3/2) (6; 16; 20; 23; 37; 38; 54; 67; 78). Also in Section 5, numerical simulations
are performed which confirm that the method produces the correct osmotic pressure
and equilibrium statistical distribution for the position of particles within an external
potential at finite temperature. To demonstrate more complex applications of the
method, simulations are then presented which investigate behavior of the osmotic
pressure associated with confinement of molecular dimers and polymer knots in a
microscopic chamber, as well as a basic model of a molecular motor protein immersed
in a fluid subject to a hydrodynamic load force.

The physical consistencies we demonstrate in the method through our analysis
and numerical experiments indicate that the stochastic immersed boundary method
is a viable means to model on a coarse scale the influence of thermal fluctuations on
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the interaction of fluids and flexible structures. This suggests that the method holds
promise as an effective approach in modeling complex biological phenomena which
operate at the cellular and subcellular level.

2. Fluid-Particle Equations. For the physical systems with which we shall be
concerned, the relevant length scales will typically be on the order of tens of microns
or smaller. The amplitude of the velocity fluctuations on these scales are sufficiently
small, relative to the viscosity and length scale, that the Reynolds number is very
small. This will allow us to neglect the nonlinear advection term in the Navier-Stokes
equation for the fluid dynamics. However, we will not drop the time derivative term
(as is often done in low Reynolds number limits (50)) because the dynamical time
scales arising from Brownian motion and possibly certain vibrational modes of the
immersed structures are in general too fast to allow this. That is, the dynamics can
generally exhibit time scales which are much shorter than the advection time scale
(length scale divided by velocity scale), so we can drop the nonlinear advection term
but not the time derivative of the velocity. This leads us to the time-dependent Stokes
equations for an incompressible fluid, which read

ρ
∂u(x, t)

∂t
= µ∆u(x, t) −∇p + ftotal(x, t)(2.1)

∇ · u = 0,(2.2)

where p is the pressure arising from the incompressibility constraint, ρ is the fluid
density, µ is the dynamic viscosity, and ftotal is the total force density acting on the
fluid.

The force density acting on the fluid arises from two sources. The first source is the
forces applied to the fluid by the immersed structures and particles. This component
of the force density, denoted fprt, generally arises from the elastic deformations of
immersed structures, but they may also be applied externally and transmitted by the
immersed structures to the fluid. The second contribution to the force density is from
the thermal fluctuations of the system and is denoted by fthm. Each of these force
densities will be discussed in greater detail below. Together, they comprise the total
force density acting on the fluid

ftotal(x, t) = fprt(x, t) + fthm(x, t).(2.3)

The immersed boundary model for fluid-structure and fluid-particle coupling
treats the flexible structures and particles to first approximation as part of the fluid,
representing their structural properties (such as elasticity) through the force density
term fprt (64). All structures, such as membranes, polymers, and particles, are
modeled as a collection of M discrete “elementary particles,” with locations denoted
by {X[j](t)}M

j=1, which interact with force laws appropriate to their structural prop-
erties. For simplicity, we consider the case in which all forces can be described in
terms of a conservative potential V ({X}) depending on the positions of the collection
of elementary particles. More general force relations, including active forces, can be
included (64). For notational convenience in the exposition, the range of indices for
the collection of elementary particles will often be omitted. We will often refer to the
forces exerted by the immersed structures as “particle forces,” since the structures
are represented in the numerical method as a collections of interacting particles.

In the immersed boundary method, elementary particles of size a are represented
by a function δa(x) which may be thought of as a Dirac delta function smoothed
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over a length scale a in such a manner that the smoothed delta function has good
numerical properties (See Appendix A and (64)).

This smoothed delta function is used both in converting the force associated with
an elementary particle to a localized force density acting on the fluid:

fprt(x, t) =

M
∑

j′=1

(−∇
X[j′]V )({X(t)}) δa(x − X[j′](t))(2.4)

and in computing the velocity of the elementary particle by an interpolation of the
fluid velocity in its vicinity:

dX[j](t)

dt
=

∫

Λ

δa(x − X[j](t))u(x, t)dx.(2.5)

The integration is over the entire domain Λ of the fluid. In the immersed boundary
formulation, this includes the space occupied by the immersed particles and structures,
which are thought of as parts of the fluid in which additional forces happen to be
applied. In particular, the domain Λ is independent of time, despite the motion of
the immersed material.

We also note that in the present context the parameter a is a physical parameter
of the model, since it is supposed to represent a physical dimension of an elementary
particle. In particular, a is not a numerical parameter which is supposed to vanish
along with the meshwidth for the fluid computations as it is refined. In this respect,
the use of smoothed delta functions described here is different from the standard use
of such functions in immersed boundary computations. The idea that smoothed delta
functions could be used to model the physical dimensions of immersed objects was
previously proposed in (55) under the name ”force cloud method”.

3. Numerical Method. We shall now discuss a numerical discretization and
specification of the thermal force density for the equations 2.1–2.5 defining the im-
mersed boundary method. A summary of the numerical method in algorithmic form
is given in Subsection 3.1, followed by a heuristic discussion in Subsection 3.2 and a
mathematical derivation in Subsection 3.3.

3.1. Summary of the Numerical Method. The numerical method is based
upon a finite difference discretization of the differential equations 2.1–2.5 describing
the coupled dynamics of the fluid and the immersed structures. The fluid variables
(velocity field u and pressure field p) are represented on a periodic grid with length L
along each direction, N grid points along each direction, and grid spacing ∆x = L/N .
The values of these fields on the lattice will be denoted through subscripted variables
such as um and pm, where the subscript m = (m1,m2,m3) is a vector with integer
components indicating the grid point in question (relative to some arbitrarily specified
origin). The position of the grid point with index m is denoted by xm.

The Discrete Fourier Transform (DFT) of the fluid variables plays an important
role in the numerical simulation scheme, and is related to the physical space values
on the grid through the formulas:

ûk =
1

N3

∑

m

um exp (−i2πk · m/N)(3.1)

um =
∑

k

ûk exp (i2πk · m/N) ,(3.2)
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where each of the sums in the above equations runs over the N3 lattice points
defined by 0 ≤ k(ℓ) ≤ N − 1, and 0 ≤ m(ℓ) ≤ N − 1, where the parenthesized
superscripts ℓ = 1, 2, 3 denote the Cartesian components of the indicated vector. In
fact any translate of these blocks of lattice points could be used equivalently in the
sums, due to the underlying periodicity.

Time is discretized into time steps ∆t, and the values of the system variables at
the nth time step, corresponding to the time tn = n∆t, are denoted with a superscript
integer n. The procedure by which these variables are updated from one time step to
the next is now described:

1. The structural forces exerted by the immersed structures are computed and
the lattice values of the particle force density field which is applied to the
fluid is obtained from

fn
m

=
N
∑

j′=1

− (∇
X[j′]V ) ({Xn}) δa(xm − Xn,[j′]).(3.3)

Here and afterwards, we drop the subscript “prt” from the particle force
density. The Fourier coefficients f̂n

k
of this particle force density field are

computed using a Fast Fourier Transform (FFT).
2. The Fourier coefficients of the velocity field of the fluid are updated by the

stochastic recurrence

ûn+1
k

= e−αk∆tûn
k +

1

ραk

(

1 − e−αk∆t
)

℘⊥
k f̂n

k + ℘⊥
k Ξ̂

n

k,(3.4)

where ℘⊥
k

denotes the projection orthogonal to ĝk defined by

ĝ
(j)
k = sin(2πk(j)/N)/∆x(3.5)

which is used to enforce the incompressibility constraint 2.2. The factor
Ξ̂

n

k
= σkη̃k accounts for the thermal fluctuations over the time step, where η̃k

denotes a complex vector-valued random variable independent in k, having
independent real and imaginary components, each of which are Gaussian
random variables with mean zero and variance one. The variance of Ξ̂

n

k
is

determined in Subsection 3.3.4 and is given by

σ2
k =

Dk

αk

(1 − exp (−2αk∆t)) ,(3.6)

where

αk =
2µ

ρ∆x2

3
∑

j=1

(1 − cos(2πk(j)/N)))(3.7)

and

Dk =

{

kBT
ρL3 αk , k ∈ K
kBT
2ρL3 αk , k 6∈ K(3.8)

with

K =
{

k | k(j) = 0 or k(j) = N/2, j = 1, 2, 3
}

.(3.9)



8 P. ATZBERGER, P. KRAMER

3. The elementary particle positions are updated by

Xn+1,[j] − Xn,[j] =
∑

m

δa(xm − Xn,[j])Γn
m

∆x3,(3.10)

where Γn
m is the time integrated velocity field of the fluid. It is obtained by

a discrete Inverse Fast Fourier Transform (IFFT) of appropriately generated

random variables Γ̂n
k

in Fourier space:

Γn
m

=

∫ tn+1

tn

um(s)ds =
∑

k

Γ̂n
k
· exp (i2πk · m/N) .(3.11)

The Γ̂n
k

are computed from

Γ̂n
k

= Ĥk + c1,k℘⊥
k
Ξ̂

n

k
+ c2,k℘⊥

k
Ĝk,(3.12)

where Ξ̂
n

k
is obtained from step 2 and Ĥk is computed from steps 1 and 2 by

(3.13)

Ĥk =
1 − exp (−αk∆t)

αk

ûn
k

+

(

∆t

αk

+

(

1

αk

)2

(exp (−αk∆t) − 1)

)

ρ−1℘⊥
k
f̂n
k
.

The random variable Ĝk is computed from scratch for each mode k by gener-
ating a complex vector-valued random variable having independent real and
imaginary components, each of which are Gaussian random variables with
mean zero and variance one. The constants in 3.12 are given by

c1,k =
1

αk

tanh

(

αk∆t

2

)

(3.14)

and

c2,k =

√

(

2Dk

α3
k

)(

αk∆t − 2 tanh

(

αk∆t

2

))

.(3.15)

In this manner the time integrated velocity field is consistently generated
with the correct correlations with {un

k
} and {un+1

k
} from steps 1 and 2. For

more details, see Subsections 3.3.5 and 3.3.6.
The computational complexity of the method, when excluding the application specific
forces acting on the immersed structures, is dominated by the FFT and IFFT, which
for a three dimensional lattice requires O(N3 log(N)) arithmetic steps.

3.2. Heuristic Discussion of the Numerical Method. We now briefly dis-
cuss each step of the numerical scheme to give some intuition into how the method
operates. A more rigorous mathematical discussion and derivation is given in Subsec-
tion 3.3.

The first step of the numerical scheme computes the structural forces exerted
by the elementary particles as a function of their configuration, and computes the
discrete Fourier transform of the corresponding force density field acting on the fluid.
The second step updates the fluid velocity in Fourier space by integrating over the
structural forces and thermal forces experienced over a time step. The appearance
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of the time step ∆t in exponential factors is due to the design of the method to
maintain accuracy even if the fluid dynamics are partially resolved or underresolved
by the time step, as in “exponential time differencing” schemes (30; 36; 42). The key
time scale paired against the time step in these formulas is 1/αk, which describes the
time scale of viscous damping of the Fourier mode k of the fluid, as simulated by the
numerical method. The first term of the stochastic recurrence equation 3.4 represents
the viscously dissipated contribution of the fluid velocity from the previous time step.
The second term represents the contribution from the structural forces during the time
step. Since the elementary particle dynamics are assumed to be resolved by the time
step, the structural force density itself appears in a simple way as effectively constant
over the time step. The response of the fluid velocity to this force has an exponential
dependence on the time step to account for the possible levels of resolution of the
viscous damping. The third term accounts for the thermal fluctuations over the time
step through a mean zero Gaussian random variable Ξ̂

n

k
with variance σ2

k
describing

the magnitude of the net contribution of the thermal fluctuations to the fluid velocity
over the time step, see equation 3.6. Note that for time steps ∆t long compared to
the relaxation time 1/αk of the velocity Fourier mode, the variance approaches the
constant value kBT/(ρL3) corresponding to the equilibrium equipartition value. On
the other hand, for ∆t ≪ 1/αk, the variance of the thermal velocity increment is
proportional to ∆t, so the magnitude of the increment is proportional to

√
∆t. This

latter scaling is typical for the response of physical systems to noise driven by a large
number of weak inputs (i.e., molecular fluctuations) (44). In both the second and third
terms, the projection ℘⊥

k
enforces the incompressibility of the fluid. The distinction

in the definition of the factor Dk with respect to wavenumbers k, as specified by
the set K, is a purely technical issue related to the discrete Fourier transform; see
Subsection 3.3.3.

The third step of the numerical method updates the positions of the elementary
particle positions composing the immersed structures. The random variable Γn

m
rep-

resents the fluid velocity at lattice point xm integrated over the time step, and is
generated in Fourier space using a procedure which also ensures that the immersed
structures move with the correct correlations with the previously computed fluid ve-
locity values ûn

k
and ûn+1

k
. The formulas defining Γn

m
arise from an exact formula

for integrating the fluid velocity over a time step, under the assumption that the
structural forces can be treated as constant over the time step.

3.3. Derivation of the Numerical Method. The derivation first considers a
spatial discretization of equation 2.1 while leaving the system of equations continuous
in time to avoid technical issues associated with the continuum formulation of the
stochastic immersed boundary method with thermal forcing (46). Since the equations
are meant to serve as a physical model for the dynamics of the immersed structures and
fluid, a thermal forcing is derived for the semi-discretized system which is consistent
with equilibrium statistical mechanics in Subsection 3.3.3. The time discretization of
the numerical method for both the dynamics of the fluid and immersed structures is
then discussed in Subsection 3.3.4 and Subsection 3.3.5. The method takes special
care to account for correlations between the dynamics of the fluid and immersed
structures, which is discussed in Subsection 3.3.6. We remark that throughout the
derivation, the integration steps of the numerical method are designed to maintain
accuracy even when the time step does not fully resolve the dynamics of the fluid
modes.
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3.3.1. Semi-discretization. The equations 2.1 and 2.2 can be discretized in
space by finite difference approximations for the spatial derivatives (64)

ρ
du

(ℓ)
m

dt
= µ

3
∑

q=1

u
(ℓ)
m−eq

(t) − 2u
(ℓ)
m (t) + u

(ℓ)
m+eq

(t)

∆x2
(3.16)

− pm+eℓ
− pm−eℓ

2∆x
+ f

(ℓ)

total
(xm, t)

3
∑

ℓ=1

u
(ℓ)
m+eℓ

(t) − u
(ℓ)
m−eℓ

(t)

2∆x
= 0,(3.17)

where eℓ denotes the standard basis vector with all zero entries except for a one in
the ℓth position. The parenthesized superscripts denote the vector component.

The equations for the fluid-particle coupling become

fprt(xm, t) =

M
∑

j′=1

−(∇
X[j′]V )({X(t)}) δa(xm − X[j′](t))(3.18)

dX[j](t)

dt
= U(X[j](t), t)(3.19)

U(x, t) =
∑

m

δa(xm − x)u(xm, t)∆x3.(3.20)

Since we do not take the limit a → 0 as the meshwidth is refined (see above),
U(X[j](t), t) does not become the same as u(X[j](t), t), even in the limit ∆x → 0.
That is, we are not simply evaluating the fluid velocity at X[j](t), but instead av-
eraging it over a region of width determined by the parameter a. This averaging
procedure ensures that the particle velocity remains finite and well-defined in the con-
tinuum limit, in which the pointwise values of the thermally fluctuating fluid velocity
diverge. Indeed, according to general statistical mechanical principles for continuum
fields (47; 49; 70) (and not from any feature particular to the numerical method), the
thermally fluctuating fluid velocity field manifests increasingly wilder fluctuations on
smaller scales, and in the theoretical continuum limit approaches a sort of white noise
structure. This is not inherently problematic for physical interpretation, which only
requires that meaningful values be obtained from averages over finite volumes, such
as the size of a probe or an immersed structure. Such averages are indeed finite, as
can be understood intuitively through central limit theorem considerations by viewing
them as averages of a large number of independent mean zero random variables due
to the rapid spatial decorrelation of the noisy continuum velocity field. From a more
mathematical standpoint, an application of the convolution theorem to the definition
of U in (3.18) yields that U can be represented as a nicely convergent Fourier series
due to the decay of the Fourier coefficients of the smooth function δa.

To obtain other desirable behaviors, we also remark that it is important that we
use the same weight function δa in averaging the fluid velocity as we do in applying
force to the fluid, since this ensures that energy is properly conserved in the fluid-
particle interaction. With appropriate care in the construction of δa, one can further
ensure that momentum and angular momentum are conserved as well; see (64).
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3.3.2. Fluid Equations in Fourier Space. The Stokes equation is given in
Fourier space by

dûk

dt
= −αkûk − iρ−1p̂kĝk + ρ−1f̂total,k(3.21)

ĝk · ûk = 0,(3.22)

where

αk =
2µ

ρ∆x2

3
∑

j=1

(1 − cos(2πk(j)/N)))(3.23)

ĝ
(j)
k = sin(2πk(j)/N)/∆x.(3.24)

Since the velocity field of the fluid is real-valued, a further condition that must
be satisfied by solutions of the equations 3.21 - 3.22 is

ûN−k = ûk,(3.25)

where N is shorthand for (N,N,N)T and the overbar denotes complex conjugation.
Provided the force is real-valued, it can be shown that if this constraint holds for the
initial conditions it will be satisfied for all time.

The Fourier coefficients p̂k(t) of the pressure need to be chosen in order to ensure
that the incompressibility constraint is satisfied. They can be determined by pro-
jecting both sides of equation 3.21 onto ĝk. By the incompressibility constraint 3.22,
both of the terms involving ûk and its time derivative are zero under the projection.
This gives at each time

p̂k(t) =
iĝk · f̂total,k(t)

|ĝk|2
.(3.26)

For those values of k that make ĝk = 0, the incompressibility constraint is trivial,
and by convention we shall take p̂k(t) = 0 for such k.

For future reference, let the projection in the direction ĝk be denoted by

℘
‖
k

=
ĝkĝ

T
k

|ĝk|2
(3.27)

and the projection orthogonal to ĝk be denoted by

℘⊥
k =

(

I − ĝkĝ
T
k

|ĝk|2
.

)

(3.28)

For those modes for which ĝk = 0, the corresponding projections will be understood

to be defined ℘
‖
k

= 0 and ℘⊥
k

= I. The set of indices on which ĝk = 0 is given by

K =
{

k | k(j) = 0 or k(j) = N/2, j = 1, 2, 3
}

.(3.29)

For a function wm defined over the discrete lattice sites indexed by m, the cor-
responding projection operations in physical space are given by

(℘‖w)m =
∑

k

℘
‖
k
ŵk exp (i2πk · m/N)(3.30)

and

(℘⊥w)m =
∑

k

℘⊥
k ŵk exp (i2πk · m/N) .(3.31)
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3.3.3. Thermal Forcing. Following standard practice in nonequilibrium sta-
tistical mechanics (47; 70), the thermal fluctuations of the system are modeled as
Gaussian white noise. Formally, the Fourier coefficients of the thermal forcing can be
written as

f̂thm,k = ρ
√

2Dk

dB̃k(t)

dt
.(3.32)

The factor Dk (which is to be specified) describes the strength of the thermal forcing of
the kth mode and B̃k(t) denotes a complex-valued Brownian motion with the real and
imaginary parts of each component consisting of an independent standard Brownian
motion (44). The dependence on k will be discussed below.

Standard Brownian motion B(t) for our purposes will refer to the continuous
stochastic process which is defined by the following properties:

(i) B(0) = 0,
(ii) E (B(t2) − B(t1)) = 0,

(iii) E
(

|B(t2) − B(t1)|2
)

= |t2 − t1|,
(iv) The increments B(t2) − B(t1) and B(t4) − B(t3) are

independent Gaussian random variables whenever t1 < t2 ≤ t3 < t4,

where E (·) denotes the expected value. Standard Brownian motion in d dimensions
is defined as a stochastic process where each vector component is an independent one-
dimensional Brownian motion. For a further discussion of the properties of Brownian
motion and related technical issues, see (59) or (31).

The discretized Stokes equation 3.21 with only thermal forcing (no immersed
structural forces) can be expressed in stochastic differential notation as

dûk =
[

−αkûk − iρ−1p̂kĝk

]

dt +
√

2DkdB̃k(t)(3.33)

ĝk · ûk = 0(3.34)

ûN−k = ûk,(3.35)

where dB̃k(t) denotes increments of the complex-valued Brownian motion associated
with the kth mode. To ensure that the thermal forcing be real-valued, the Brownian
increments are correlated in k by the constraint

dB̃N−k = dB̃k.(3.36)

As discussed in Section 3.3.2, the pressure can be expressed in terms of the force
acting on the fluid using 3.26. By formal substitution into 3.33, the incompressibility
constraint can be incorporated through an appropriate projection operation which
allows for the two equations 3.33 and 3.34 to be expressed as the single equation

dûk + αkûkdt =
√

2Dk℘⊥
k

dB̃k(t).(3.37)

Since the incompressibility constraint is equivalent to ℘⊥
k
ûk = ûk, the constraint

will be satisfied for all time provided it holds at the initial time. Consequently, when
ĝk 6= 0 (k 6∈ K as defined in 3.29), the real and imaginary part of the stochastic process
ûk(t) remain in the plane orthogonal to ĝk for all time. When ĝk = 0 (k ∈ K), no
constraint is imposed on the real part, but the real-valuedness condition 3.25 requires
that the imaginary component vanish.
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Equation 3.37 can be solved by the method of integrating factors to obtain

ûk(t) =
√

2Dk℘⊥
k

∫ t

−∞

e−αk(t−s)dB̃k(s).(3.38)

Since ûk(t) is the projection of an Ito integral with deterministic integrand, it is at
each time t a Gaussian random variable with mean zero.

The variance of ûk(t) can be computed from 3.38 by

E
(

|ûk|2
)

= Tr
(

E
(

ûkûk

T
))

(3.39)

= 2Dk Tr

(

℘⊥
k

∫ t

−∞

∫ t

−∞

e−αk(2t−s−s′)E
(

dB̃k(s)dB̃T
k
(s′)
)

)

.

To proceed further, we must distinguish between the cases k ∈ K and k 6∈ K, where
K is defined in 3.29.

For k ∈ K, we have ℘⊥
k

= I and from constraint 3.36 that the Brownian motion

B̃k(s) is real valued. Therefore,

E
(

dB̃k(s)dB̃T
k
(s′)
)

= Iδ(s − s′)dsds′,(3.40)

and it follows that

E
(

|ûk|2
)

=
3Dk

αk

(3.41)

when k ∈ K.
For k 6∈ K, the Brownian motion is complex valued and ℘⊥

k
is a projection onto

the two-dimensional subspace orthogonal to ĝk. Therefore,

E
(

dB̃k(s)dB̃T
k
(s′)
)

= 2℘⊥
k

δ(s − s′)dsds′(3.42)

and

Tr
(

℘⊥
k

)

= 2,(3.43)

from which it follows that

E
(

|ûk|2
)

=
4Dk

αk

(3.44)

for k 6∈ K. We remark that the formal calculations above can be justified rigorously
by applying Ito’s Isometry directly to equation 3.39; see reference (59).

To determine Dk, we shall now compare these results with those that are obtained
if we impose the condition that the immersed boundary method exhibit fluctuations
governed by the Boltzmann distribution, as required by classical statistical mechanics.
By Parseval’s Lemma, the total kinetic energy can be expressed in terms of the Fourier
modes of the fluid by

E [{uk}] =
ρ

2

∑

m

|um|2∆x3(3.45)

=
ρ

2

∑

k

|ûk|2L3.
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The density of the Boltzmann distribution is then given by

Ψ̃({ûk}) =
1

Z̃
exp

(

−ρL3
∑

k
|ûk|2

2kBT

)

,(3.46)

where Z̃ is the partition function obtained by integrating ûk over the constrained
subspace

Ω = {{ûk} | ĝk · ûk = 0, ûN−k = ûk}.(3.47)

Each degree of freedom of the fluid contributes a quadratic term to the energy of the
system, giving a Boltzmann distribution which is Gaussian. Therefore, the equipar-
tition theorem holds and each independent degree of freedom contributes on average
1
2kBT to the kinetic energy.

For a particular wavenumber k ∈ K, the mean contribution to the energy is

ρL3

2

3Dk

αk

,(3.48)

where the expression 3.41 for E
(

|ûk|2
)

has been used. For such wavenumbers there
are 3 independent degrees of freedom corresponding to the 3 real components of ûk.
By the equipartition theorem this requires

ρL3

2

3Dk

αk

=
3

2
kBT,(3.49)

which gives

Dk = αk

kBT

ρL3
(3.50)

when k ∈ K.
For k 6∈ K, we must consider the pair (k,N−k) together, since ûk = ûN−k. The

contribution to the mean energy of these two wavenumbers is

2
ρL3

2

4Dk

αk

,(3.51)

where the expression 3.44 for E
(

|ûk|2
)

and E
(

|ûN−k|2
)

has been used. The number
of independent degrees of freedom corresponding to the pair of wavenumbers (k,N−k)
is 4, since the real vector space orthogonal to ĝk is two-dimensional and ûk is complex
valued.

The equipartition theorem in this case requires that

2
ρL3

2

4Dk

αk

=
4

2
kBT,(3.52)

which gives

Dk = αk

kBT

2ρL3
(3.53)

when k 6∈ K.
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To summarize, the following fluctuation-dissipation relation (47; 70) is obtained
when considering the constraints 3.25 and 3.22 imposed on the velocity field of the
fluid:

Dk =

{

kBT
ρL3 αk , k ∈ K
kBT
2ρL3 αk , k 6∈ K.

(3.54)

We remark that the Fourier mode of the fluid associated with k = [0, 0, 0]T

corresponds to translation of the fluid as a whole. From 3.23 the zero mode has
α0 = 0, which indicates that the fluid has no translational damping. As a consequence
of 3.54 the mode û0 is not thermally forced, which can also be understood physically
by the conservation of total momentum by the internal thermal fluctuations. Thus
for a fluid initially at rest with no net external force on the fluid as a whole, the
translational mode remains zero û0 = 0 under the thermal forcing.

3.3.4. Numerical Method for the Fluid. To deal with the significant range
in time scales for the modes of the fluid and immersed structures, we develop a time-
stepping scheme that freezes the positions and forces exerted by the elementary par-
ticles over a time step ∆t, but otherwise integrates the dynamical equations exactly.
With this approximation the set of equations 3.37 can be solved analytically using
the methods of stochastic calculus (59). This strategy has similarities to “exponential
time differencing” or “exact linear part” numerical methods (30; 36; 42).

In stochastic differential notation, the fluid equations with both thermal and
particle forces can be expressed as

dûk = −αkûkdt + ρ−1℘⊥
k f̂kdt +

√

2Dk℘⊥
k dB̃k(t),(3.55)

where to simplify the notation the subscript will be dropped for the Fourier modes of
the particle force density so that f̂k always refers to f̂prt,k.

Approximating the particle force as constant over the time interval [t′, t] gives

ûk(t) = e−αk(t−t′)ûk(t′) +
1

ραk

(

1 − e−αk(t−t′)
)

℘⊥
k f̂k(t′)(3.56)

+
√

2Dk

∫ t

t′
e−αk(t−s)℘⊥

k dB̃k(s),

where ℘⊥
k

is the projection operation defined in 3.28 and
∫

·℘⊥
k

dB̃k(s) denotes inte-
gration in the sense of Ito (59) over the projected complex-valued Brownian motion
B̃k(t) defined in Section 3.3.3.

To obtain a numerical scheme for the fluid with finite time step ∆t, each mode is
updated at discrete times n∆t using the analytic solution 3.56, yielding the stochastic
recurrence equation

ûn+1
k

= e−αk∆tûn
k

+
1

ραk

(

1 − e−αk∆t
)

℘⊥
k
f̂n
k

+ ℘⊥
k
Ξ̂

n

k
,(3.57)

where ûn
k

= ûk(n∆t), f̂n
k

= f̂k(n∆t), and Ξ̂
n

k
= σkη̃k.

The notation η̃k denotes a three dimensional complex-valued random variable,
with each real and imaginary component being an independent Gaussian random
variable with mean 0 and variance 1. The random variable Ξ̂

n

k
accounts for the
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contributions of the stochastic integral in 3.56 over the time step. The variance σ2
k

can be determined by Ito’s Isometry (59) and is given by

σ2
k =

Dk

αk

(

1 − e−2αk∆t
)

.(3.58)

The constraint 3.25 that ensures the real-valuedness of the velocity field is re-
spected by only applying the update 3.57 to one member of each complex-conjugate
pair, and then setting the new value for the partner mode as the complex conjugate of
the computed mode. The condition 3.25 also requires that the modes ûk with indices
k ∈ K have zero imaginary part; this is enforced explicitly in each time step.

3.3.5. Numerical Method for the Immersed Structures. A time-discretization
for the equation (3.19) is developed for the advection of the elementary particles by
integrating the fluid velocity field over a time step and then averaging the integrated
velocity over a spatial neighborhood centered on the old particle position:

Xn+1,[j] − Xn,[j] =
∑

m

δa(xm − Xn,[j])

∫ tn+1

tn

um(s)ds∆x3,(3.59)

where tn = n∆t and Xn,[j] = X[j](n∆t).

A precise integration of the fluid velocity u is taken which allows for time steps
which underresolve the dynamics of some of the Fourier modes of the fluid. This
capability is important due to the wide range of time scales that may be associated
with the fluid modes and immersed structures in applications. If the time integral is
approximated through numerical methods built from (stochastic) Taylor expansions
about discrete times, such as Runge-Kutta methods and their stochastic variations
(44; 80), then it is important that the method sufficiently resolve the fluctuations
of the processes to capture cancellations that occur over time. For instance, if the
cancellation is not adequately captured, the numerical value of the integral of velocity
will be larger in magnitude than the actual time integrated velocity. For immersed
particles, this leads to an overly diffuse behavior where the particles overshoot their
correct positions each time step.

From 3.37 the time scale associated with the dynamics of the kth mode of the
fluid is 1/αk. For the fastest modes of the fluid relevant for the immersed particle
dynamics, the above considerations would place a severe restriction on the time step.
While there may be clever numerical methods involving (stochastic) Taylor expansions
which perform better than anticipated, a different approach will be taken here.

To develop a method that remains accurate for a range of time steps, from those
that fully resolve, partially resolve, or completely underresolve the fluid modes, we
calculate the time integral in 3.59 by substitution of the analytical expression 3.56 for
the Fourier modes of the fluid velocity field. We recall that this approximation only
assumes that the elementary particle positions and forces can be considered frozen
over a time step. The resulting numerical scheme can therefore be expected to be
accurate provided the time step ∆t is chosen small compared to the time scales of
the immersed structures, but with no restriction on the size of the time step relative
to the time scales of the fluid modes. We will explain this property more precisely
through numerical error analysis in Section 4.

In updating the elementary particle positions in the numerical method, the time
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integral in 3.59 will be simulated as a random variable

Γn
m =

∫ tn+1

tn

um(s)ds =
∑

k

Γ̂n
k exp (i2πk · m/N) ,(3.60)

Γ̂n
k

=

∫ tn+1

tn

ûk(s)ds,(3.61)

with ûk(s) given by (3.56).
By using standard techniques from stochastic calculus, the time integral can be

evaluated by defining Γ̂n
k

to give the Gaussian random variable

(3.62)

Γ̂n
k

= −e−αk∆t − 1

αk

ûn
k

+

(

∆t

αk

+

(

1

αk

)2
(

e−αk∆t − 1
)

)

ρ−1℘⊥
k
f̂n
k

−
√

2Dk

αk

∫ tn+1

tn

e−αk(tn+1−r)℘⊥
k

dB̃k(r) +

√
2Dk

αk

(

℘⊥
k
B̃k(tn+1) − ℘⊥

k
B̃k(tn)

)

.

Using 3.56 at times n∆t and (n + 1)∆t, this can be expressed more simply as

Γ̂n
k

= − 1

αk

(

ûn+1
k

− ûn
k

)

+ ρ−1 ℘⊥
k
f̂n
k

αk

∆t(3.63)

+

√
2Dk

αk

(

℘⊥
k B̃k(tn+1) − ℘⊥

k B̃k(tn)
)

.

The numerical scheme to update the elementary particle positions is then given
by

Xn+1,[j] − Xn,[j] =
∑

m

δa(xm − Xn,[j])Γn
m

∆x3,(3.64)

where Γn
m is generated each time step. To consistently update the particle positions

with the velocity field of the fluid it is required that Γ̂n
k

be generated with the correct
correlations to the fluid modes at the beginning and end of each time step, {un

k
} and

{un+1
k

}. In the next Subsection, a practical approach for doing so is presented.

3.3.6. Method for Generating Modes of the Time Integrated Velocity

Field. Since the modes Γ̂n
k

of the time integrated velocity field and the modes ûn
k

and ûn+1
k

of the velocity field evaluated at the beginning and end of a time step are
not statistically independent, some care must be taken in generating the correspond-
ing random variables that are used in the simulation. Since Γ̂n

k
, ûn

k
, and ûn+1

k
are

jointly Gaussian distributed random variables with mean zero, we need only ensure
they have the correct covariances between their components. Since the real and imag-
inary parts of each mode are independent, we shall for clarity consider only the real
components with the understanding that the imaginary components are handled in a
similar manner.

In deriving a method to generate the time integrated field, it is useful to express
the real part Re(Γ̂n

k
) in terms of the following random variables

Re(Γ̂n
k
) = ℘⊥

k
A0 + ℘⊥

k
A1 + ℘⊥

k
A2,(3.65)
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with

A0 =
1 − e−αk∆t

αk

Re(ûn
k) +

(

∆t

αk

+

(

1

αk

)2
(

e−αk∆t − 1
)

)

ρ−1Re(f̂n
k )(3.66)

A1 = −
√

2Dk

αk

∫ tn+1

tn

e−αk(tn+1−s)Re(dB̃k(s))(3.67)

= − 1

αk

Ξn
k

A2 =

√
2Dk

αk

Re
(

B̃k(tn+1) − B̃k(tn)
)

(3.68)

=

√
2Dk

αk

∫ tn+1

tn

Re(dB̃k(s)).

The random variables were obtain by reorganizing the terms of 3.62.
This expression recasts the problem of determining the correlations of Re(Γ̂n

k
) to

the problem of determining the correlations of A0, A1 and A2 with each other and
the modes of the fluid velocity. A convenient feature of this approach is that A0 is
already determined at the beginning of the time step, and is statistically independent
of A1 and A2 by the independent increment property of Brownian motion. This
reduces the problem to finding the covariance of A1 and A2. A useful identity for Ito
integrals in this context is (59)

E

(
∫ t

0

f(s)dBs

∫ t

0

g(r)dBr

)

=

∫ t

0

f(s)g(s)ds,(3.69)

where the notation E(·) denotes expectation with respect the underlying Brownian
motion (59).

Using 3.69, the covariance is given by

E(A
(j)
1 A

(j)
2 ) = −2Dk

α3
k

(1 − exp (−αk∆t)) ,(3.70)

where the parenthesized superscripts denote the indices of the vector components.

When j 6= j′ the components A
(j)
1 and A

(j′)
2 are independent and have zero correla-

tion.
The variance of the components of A1 and A2 are given by

E(|A(j)
1 |2) =

Dk

α3
k

(1 − exp (−2αk∆t))(3.71)

E(|A(j)
2 |2) =

2Dk

α2
k

∆t.(3.72)

From the numerical updating of the fluid variables described in Subsection 3.3.4,
A1 = − 1

αk

Ξn
k

is already known each time step, so only A2 need be generated. Ob-
taining this random variable with the correct correlations can be accomplished by
generating new standard Gaussian random variables η

(j) (independent in j with mean
0 and variance 1) and by taking the linear combination of the two random variables

A
(j)
1 and η

(j) given by

A
(j)
2 = a1A

(j)
1 + a2η

(j),(3.73)
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with

a1 =
E
(

A
(j)
1 A

(j)
2

)

E
(

|A(j)
1 |2

)(3.74)

and

a2 =

√

√

√

√

√

√

E
(

|A(j)
1 |2

)

E
(

|A(j)
2 |2

)

− E
(

A
(j)
1 A

(j)
2

)2

E
(

|A(j)
1 |2

) .(3.75)

In this manner, Re(Γ̂
n

k) can be generated from A0, A1, and A2 with proper
accounting of correlations with the modes of the velocity field. The imaginary com-
ponent Im(Γ̂

n

k
) is generated in an analogous manner.

4. Accuracy of the Method. In this section the accuracy of the numerical
method is investigated. Three asymptotic scaling regimes of the time step are consid-
ered. The first regime applies when the time step is taken sufficiently small to fully
resolve the dynamics of the fluid. The second applies when the time step is taken
large and completely underresolves the dynamics of the fluid. We finally consider the
case in which the time step resolves some but not all of the fluid modes.

Formal error estimates are given which show how the numerical errors scale with
respect to the time step and various key parameters. While a rigorous analysis making
use of standard stochastic Taylor expansion approaches (44) can be carried out for
time steps which are small when compared to the time scales of the fluid and immersed
structure dynamics, a completely rigorous analysis of the numerical error when the
time step is large and underresolves a subset of the fluid modes is considerably more
difficult.

An important feature of the numerical method is the way in which the statisti-
cal contributions of the fluid dynamics are taken into account, even when the fluid
dynamics are underresolved. As discussed in Subsections 3.3.4 and 3.3.5, the random
increments of the elementary particle positions and fluid modes are simulated in such
a way that the correct statistics and correlations are preserved over time steps which
need only be small compared to the time scales of the immersed structures. While
the time step relative to the time scale of the fastest modes of the fluid may be large,
this procedure helps keep the local time discretization error small. By contrast, stan-
dard finite difference schemes would generally have poor accuracy once the time step
exceeded the time scales of the fastest fluid modes.

To quantify the accuracy of the method, the strong error is considered, as defined
in (44). Let X[j](t) denote the exact solution of equation 3.19 for the elementary
particles and ûk(t) denote the exact solution to equation 3.16 for the Fourier modes
of the velocity field of the fluid. Let the numerically computed trajectories of the
elementary particles be denoted by X̃[j](t) and the numerically computed fluid modes
be denoted by ˜̂uk(t). Since we shall be interested in the error associated with a typical
elementary particle, the superscript j will be dropped throughout the discussion.

The strong error of the numerical method associated with the kth mode of the
fluid is defined as

êfld,k(∆t) = E
(∣

∣

∣
ûk(∆t) − ˜̂uk(∆t)

∣

∣

∣

)

,(4.1)



20 P. ATZBERGER, P. KRAMER

and the strong error associated with an elementary particle is defined as

eprt(∆t) = E
(∣

∣

∣
X(∆t) − X̃(∆t)

∣

∣

∣

)

.(4.2)

The error associated to the velocity field in physical space is defined as

efld(∆t) = E

(

1

L3

∑

m

|um(∆t) − ũm(∆t)|∆x3

)

.(4.3)

For further discussion of the strong error see (44).
The error expressions above and the estimates given below are intended to char-

acterize the “typical” error for the numerical method; in reality they will of course
depend on the particular configuration the elementary particles happen to be in at
the beginning of a time step and the details of the forces acting between them. For
the purposes of describing the errors incurred in the numerical method’s handling of
the force interactions, we shall therefore concern ourselves with describing how the
errors scale with respect to the various numerical parameters.

In the derivation of the estimates we quantify the error incurred by the numerical
method’s representation of the stochastic (thermal) components of the structural and
fluid dynamics. The estimates presented follow from a systematic formal analysis of
the errors resulting from the discretization of the stochastic and deterministic compo-
nents of the dynamics, including their interaction during a time step. This calculation
leads to a uniformly valid expression for time steps sufficiently small that the elemen-
tary particles do not move appreciably (relative to their size) during a time step; no
assumption is made in the derivation about the magnitude of the time step relative to
the time scales of the fluid modes. As the resulting derivations are somewhat techni-
cal, we shall in the present paper be content to state the error estimates, discuss their
significance, and confirm their validity in a few special cases by numerical simulation.
For a detailed derivation see (2).

4.1. Error Estimates for Time Steps which Fully Resolve the Fluid

Dynamics. When the time step is taken sufficiently small so that the dynamics
of all modes of the fluid are resolved by the stochastic immersed boundary method
(∆t ≪ min 1

αk

), the following error estimates can be established:

êfld,k(∆t) ≈ MF ∗

ρ
δ∗a,k

(

M

ℓF
+ C

1

a

)

(C ′vfrc + C ′′vthm) ∆t2(4.4)

efld(∆t) ≈ MF ∗

ρa3/2L3/2

(

M

ℓF
+ C

1

a

)

(C ′vfrc + C ′′vthm) ∆t2(4.5)

eprt(∆t) ≈
(

Q1v
2
thm + Cvfrcvthm + C ′v2

frc

) ∆t2

a
(4.6)

+
MF ∗

ρa3

(

M

ℓF
+ C ′′ 1

a

)

(C ′′′vfrc + C ′′′′vthm) ∆t3,

where M is the number of elementary particles, F ∗ is the magnitude of the force
acting on the elementary particles, and ℓF is the length scale associated with changes
in the particle force of order F ∗. It will be assumed throughout that a . ℓF . The
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factor δ̂∗a,k is the magnitude of the Fourier coefficient for mode k of the function δa,

averaged over all shifts (see Appendix B). We remark that δ̂∗a,k ≈ 1/L3 for |k| ≪ L/a,

while δ̂∗a,k decays rapidly for |k| ≫ L/a.

In this notation the factors C which are superscripted with primes are approxi-
mately independent of the physical parameters, and can be thought of as order unity
constants. To avoid cumbersome notation and overly emphasizing the role of these
factors the notation is reused in each equation, with the understanding that C denotes
distinct factors for each estimate. The subscripted factors Q are also approximately
independent of the physical parameters. They are distinguished since numerical val-
ues will be estimated for these factors in order to make a comparison between the
theoretical estimates and numerical simulations in the case that F ∗ = 0.

To simplify the expressions the following terms are defined vthm =
√

kBT/ρa3

and vfrc = F ∗/µa. The factor vthm can be interpreted via the equipartition theorem
of statistical mechanics (47; 70) as the velocity scale of thermal fluctuations of an
elementary particle of size a, since the associated mass will be proportional to ρa3.
The term vfrc can be interpreted as the velocity scale associated with the motion of
a particle of size a in a viscous fluid when a force of magnitude F ∗ is applied to the
particle, since the friction coefficient of a particle is generally proportional to µa (15).

The error estimates indicate that the stochastic immersed boundary method has
strong first order accuracy as the time step is taken small. An error proportional
to ∆t3 is included in eprt(∆t) because its coefficient in certain circumstances can
make it comparable to the ∆t2. We remark that the reported proportionality of
the errors with respect to M , the number of elementary particles, is based on a
worst-case scenario where all M particles are clustered near each other. In general
the error is expected to scale with a smaller factor reflecting the actual number of
particles clustered in a region. Since this depends on details of the force interaction
between particles, obtaining a more precise error estimate is technically involved and
somewhat application dependent. While in practice the actual numerical error will
likely be somewhat better than these factors indicate, we leave further refinements to
future work in the context of specific applications.

An important observation is that in the absence of forces on the immersed struc-
tures (F ∗ = 0), the fluid modes are simulated exactly (for the reasons discussed
in Subsection 3.3.4). Only the elementary particle dynamics incur a temporal dis-
cretization error in this case (see Subsection 3.3.5), with the strong error incurred
being of first order. A more conventional time stepping scheme based on finite dif-
ferences would typically incur an error for the velocity mode ûk which includes a
contribution which scales as CN−3/2vthm(αk∆t)n+1/2 for some integer n. Such an
error fails to remain small compared to the actual velocity change over a time step
as soon as ∆t & 1/αk. For the numerical method developed in Section 3, the exact
representation of the stochastic fluid dynamics, apart from the response to the forces
exerted by the immersed structures, maintains better accuracy even as the time step
underresolves the fluid dynamics.

As demonstrated in Figure 4.1, the theoretical error estimate for the elemen-
tary particles agrees well with numerical simulations in the absence of particle forces
(F ∗ = 0). The numerical results were obtained from simulations of the fluid-particle
system with physical parameters in Table 4.2. In the comparison, the factors Q were
computed from theoretical expressions arising in the derivation of the estimates, and
their numerical values are given in Appendix D. It should be emphasized that the
error estimates are stated as formal approximations, not as upper bounds. In the case
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that there are particle forces, the discretization error depends on a number of details
of the force structure, and therefore numerical comparison with simulations is left to
future work in the context of specific applications.
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Fig. 4.1. A comparison of the analytic error estimate for the elementary particle positions
eprt(∆t) given in equation 4.6 with a numerical estimation of the error for the small to intermediate
time step regime ∆t ≪ ρa2/µ with F ∗ = 0 and parameter values given in Table 4.2. The dashed line
denotes eprt(∆t). The data points denote the error as estimated from numerical simulations using
the method. The error bars indicate one standard deviation of the sampled values. To compute
the numerical estimates of the error, simulations were performed with each given time step ∆t
and compared with an ensemble of reference trajectories obtained from a high resolution simulation
sufficient to resolve the dynamics of all N3 modes of the fluid. The high resolution simulation had
a time step of ∆t = 10−3ns < min 1/αk, where min 1/αk = 3.94 × 10−2ns for the parameter values
given in Table 4.2. From the results, we see that the estimate given in equation 4.6 quantifies the
error well for ∆t ≪ ρa2/µ = 0.976ns.

4.2. Error Estimates for Time Steps which Underresolve All Fluid

Modes. We now present estimates for the error of the numerical method when the
time step is taken large enough to underresolve all modes of the fluid, but always
small enough to resolve the elementary particle dynamics:

max
1

αk

≪ ∆t ≪ τmov(a).(4.7)

The notation τmov(a) denotes the time required for an elementary particle to move
a displacement equal to its size a either by advection or diffusion. In this regime the
following error estimates can be established:

(4.8)

êfld,k(∆t) ≈ MF ∗L2

µ|k|2 δ∗a,k

(

M

ℓF
+ C

1

a

)

(

C ′vfrc∆t + C ′′
√

D∆t1/2
)
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(4.9)

efld(∆t) ≈
√

a

L

MF ∗

µL

(

M

ℓF
+ C

1

a

)

(

C ′vfrc∆t + C ′′
√

D∆t1/2
)

(4.10)

eprt(∆t) ≈ Q2
D

a
∆t

+

(

C
M

ℓF
+ C ′ 1

a

)

(√
Dvfrc∆t3/2 + v2

frc∆t2
)

,

where D denotes the diffusion coefficient of an immersed particle (see Section 5.1)
and the factors C and Q denote order unity nondimensional constants as discussed in
Subsection 4.1. The other terms are the same as in Subsection 4.1.

The smaller powers of ∆t appearing in the error estimates may suggest that the
accuracy is deteriorating more rapidly with respect to the time step in the underre-
solved regime under discussion, but in fact the opposite is true. The error estimates
reported above are in fact, for the range of time steps defining the underresolved
regime, considerably smaller than the extrapolation of the error estimates in Subsec-
tion 4.1 which are valid only for the fully resolved regime. Indeed, the ratio of terms
appearing in the above estimates to corresponding terms in the equations in Subsec-
tion 4.1 involve ratios such as ρL2/(µ|k|2∆t), D1/2/(vthm∆t1/2), and L1/2a3/2ρ/µ∆t,
all of which are much smaller than one in the asymptotic regime 4.7.

A more important point is that the numerical errors remain small relative to
the changes in the system variables throughout this range of time steps, so that the
numerical method maintains accuracy for all ∆t . τmov(a). This can be seen by
observing that the changes in the system variables over a time step falling in the
regime 4.7 can be estimated as

|δûk| ≈ C
MF ∗δ∗a,k

ραk

+ C ′ vthm

N3/2
,(4.11)

|δu| ≈ Cvfrc + C ′vthm,(4.12)

|δX| ≈ C
√

D∆t + C ′vfrc∆t,(4.13)

where the factors C denote order unity nondimensional constants as discussed in
Subsection 4.1. The notation |δ[·]| indicates the absolute value of an increment of a
variable over the time step.

Since the velocity field of the fluid is completely underresolved, it changes by
an amount comparable to its equilibrium value independently of the size of the time
step. The ratios of the error estimates to the corresponding true changes in the
system variables in 4.13 can be bounded by sums and products of the nondimensional
groups

√
D∆t/a, vfrc∆t/a, M a

L , and M a
ℓF

. The former two nondimensional groups
involving the time step are both small by definition of the constraint ∆t ≪ τmov(a)
determining the asymptotic regime 4.7 under consideration. The nondimensional
parameters M a

L and M a
ℓF

will be order unity or smaller when the system involves
a small number of elementary particles. When the system contains a large number
of elementary particles, these nondimensional groups can become large and the error
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estimates become worse. While it is certainly to be expected that the presence of more
complex structures involving more elementary particles will generally incur more error
in the numerical simulation, we stress that the scaling of our errors with large M are
surely too pessimistic. We therefore do not lay undue emphasis on the behavior of
the errors for large M , which in any event will depend heavily on the details of the
force structure.

We emphasize that unlike traditional numerical analysis the presence of terms
proportional to ∆t in the error estimate 4.10 does not imply that the method is
inconsistent. It must be remembered that these error estimates are appropriate not in
the ∆t ↓ 0 limit, but rather in the asymptotic regime 4.7. A more careful consideration
of the sizes of the errors relative to the true changes in the system variables over a
time step shows that our numerical method does in fact remain accurate for all time
steps ∆t ≪ τmov(a), even if the fluid modes are underresolved. Vital to this result
was the use of the stochastic integral formula 3.56 for the action of the thermal forces
on the velocity field of the fluid, and the systematic consideration in Subsection 3.3.5
of how to correlate the stochastic component of the velocity field of the fluid with
the random motion of the immersed structures. Without these developments, the
resulting numerical method could not be expected to have good accuracy for time
steps in the regime 4.7.

In Figure 4.2, the theoretical error estimate 4.10 for the elementary particle po-
sitions over a long time step is compared with the results of a numerical simulation
in the case that there are no particle forces (F ∗ = 0). The numerical results were ob-
tained from simulations of the fluid-particle system with physical parameters in Table
4.2. In the comparison, the factors Q were computed from the theoretical analysis
with values given in Appendix D. The numerical simulations show good quantitative
agreement with the formal error estimate 4.10. We remark that the estimate is to be
understood as an approximation and not a rigorous upper bound. This agreement is
evidence of the validity of the formal analysis. As discussed in Section 4.1, the errors
arising in the presence of forces are not as explicitly quantifiable. We leave further
discussion and verification of the estimates to future work in the context of specific
applications.

4.3. Error Estimates for Time Steps which Underresolve Only Some

Fluid Modes. A key feature of the stochastic numerical scheme proposed in this
work is that time steps can be chosen which only partially resolve the fluid dynamics.
That is, the method need neither resolve all of the velocity modes nor completely
neglect the inertia of the velocity field (as in Brownian/Stokesian dynamics (15; 22; 75;
77)). Rather, the time step can be chosen as needed to resolve the appropriate degrees
of freedom of the fluid-particle system, having the fluid and thermal fluctuations
interact appropriately with the structures. The case is now discussed in which the
time step ∆t falls within the intermediate regime

min
1

αk

. ∆t . max
1

αk

,(4.14)

where the dynamics of the fluid is only partially resolved. It turns out that the error
estimates for the fully resolved regime (Subsection 4.1) and the underresolved regime
(Subsection 4.2) each serve separately as formal upper bounds for all time steps,
including the intermediate regime 4.14. Intuitively, then, one expects the numerical
method to behave accurately over this intermediate range of time scales as well. To
provide more quantitative support for this statement, error estimates are developed
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Fig. 4.2. A comparison of the analytic error estimate for the elementary particle positions
eprt(∆t) given in equation 4.10 with a numerical estimation of the error for the large time step
regime max 1/αk ≪ ∆t ≪ τmov with F ∗ = 0 and parameter values given in Table 4.2. The dashed
line denotes eprt(∆t). The data points denote the error as estimated from numerical simulations
using the method. The error bars indicate one standard deviation of the sampled values. To compute
the numerical estimates of the error, simulations were performed with each given time step ∆t and
compared with an ensemble of reference trajectories obtained from a high resolution simulation with
a time step of ∆t = 1.0ns < max 1/αk where max 1/αk = 25.4ns for the parameter values given in
Table 4.2. From the results, we see that the estimate given in equation 4.10 quantifies the error well
for max 1/αk ≪ ∆t ≪ τmov, where τmov ≈ a2/D = 1.95 × 105ns.

for the asymptotic regime

ρa2

µ
≪ ∆t ≪ max

1

αk

.(4.15)

Then, for fluid modes that are well resolved, we have

(4.16)

êfld,k(∆t) ≈ MF ∗

ρ
δ∗a,k

(

M

ℓF
+ C

1

a

)

(

C ′vfrc∆t2 + C ′′
√

D∆t3/2
)

if αk∆t ≪ 1,

while the underresolved modes (with αk∆t ≫ 1) have the same error estimate 4.8 as
in the fully underresolved case.

The errors incurred in the physical space variables describing the velocity and
elementary particle positions can, in the asymptotic regime 4.15, be estimated as

(4.17)

efld(∆t) ≈ MF ∗

ρν3/4L3/2

(

M

ℓF
+ C

1

a

)

(

C ′vfrc∆t5/4 + C ′′
√

D∆t3/4
)

(4.18)



26 P. ATZBERGER, P. KRAMER

eprt(∆t) ≈ Q2
D

a
∆t

+

(

M

ℓF
+ C ′ 1

a

)

(√
Dvfrc∆t3/2 + v2

frc∆t2
)

,

where ν = µ/ρ.
These errors can be compared with the size of the actual changes in the system

variables over a time step in the regime 4.15, which can be estimated by the same
formulas as 4.13 except that the resolved velocity modes have changes of approximate
size

|δûk| ≈ C
MF ∗δ∗a,k

ρ
∆t + C ′ vthm

√
αk∆t

N3/2
.(4.19)

The ratio of the errors to the corresponding magnitudes of the actual changes of the
system variables over a time step is controlled by sums and products of the nondi-
mensional quantities

√
D∆t/a, vfrc∆t/a, (ν∆t)1/4/L1/2, M a

L , and Ma
ℓF

. The former
three remain small in the asymptotic regime 4.15 under consideration, while the last
two nondimensional groups (independent of time step) are related to our somewhat
pessimistic bound on the force errors, as discussed in Subsection 4.1. The numerical
method is thereby shown to remain theoretically accurate within this intermediate
asymptotic regime. In the absence of particle forces (F ∗ = 0), the error estimates
become identical to those for the unresolved fluid regime (Subsection 4.2).

One could also study the intermediate asymptotic regime

min
1

αk

≪ ∆t ≪ ρa2

µ
,(4.20)

which exists only when ∆x ≪ a. For these time steps, all error estimates presented
in Subsection 4.1 for the fully resolved regime remain valid, except that the estimate
for the individual underresolved fluid modes is altered to

êfld,k(∆t) ≈ MF ∗L2

µ|k|2
(

M

ℓF
+ C

1

a

)

δ∗a,k (C ′vfrc + C ′′vthm) ∆t.(4.21)

As with the other regimes, the errors in this regime are small relative to the magnitude
of the changes of the actual system variables over a time step.

By simple extension of the above arguments for time steps falling at the transitions
between the asymptotic regimes, we see that the numerical method has been designed
to remain theoretically accurate for all time steps ∆t ≪ τmov(a), regardless of how
well the fluid dynamics are resolved.

5. Physical Behavior of the Method and Numerical Results. To ensure
that the immersed boundary method with thermal fluctuations serves as a plausi-
ble physical framework for modeling microscale systems, we verify that the method
exhibits several fundamental features which are correct according to the laws of sta-
tistical physics (70). In Subsection 5.1 an expression for the diffusion coefficient of
immersed particles is derived, and it is shown that in three dimensions the mean
squared displacement scales linearly in time and inversely in the particle size. It
is further shown in Subsection 5.2 that the stochastic immersed boundary method
captures the correct τ−3/2 power law for the decay of the tail of the autocorrelation
function of the particle velocity (6; 16; 20; 23; 37; 38; 54; 67).
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In determining the thermal forcing in Subsection 3.3.3, we imposed the require-
ment that the degrees of freedom of the fluid obey Boltzmann statistics in thermal
equilibrium. In fact, the complete system including immersed structures should obey
Boltzmann statistics. In Subsection 5.3, we study the equilibrium statistics of im-
mersed particles subject to a conservative force and show through numerical simu-
lation that they do exhibit the correct Boltzmann statistics. To demonstrate some
applications and as a further verification of the physical plausibility of the method,
it is shown in Subsections 5.4 – 5.6 how the method can be used to model osmotic
effects such as the pressure of confined particles, dimers, and polymers (21; 61). In
Subsection 5.7, another application to a basic model of a molecular motor protein
immersed in a fluid subjected to a hydrodynamic load force is presented (66).

5.1. Diffusion of Immersed Particles. In this section the diffusion of particles
in the stochastic immersed boundary method is discussed and an expression for the
diffusion coefficient is derived. As part of the analysis it is shown that the correct
diffusive scaling is obtained for three dimensional systems. To verify the validity of
the approximations made in the analysis and to demonstrate the applicability of these
results in practice, the results of the analysis are compared to the results of numerical
simulations.

In three dimensions, the diffusion coefficient for a single particle is defined as

D = lim
t→∞

〈

|X(t) − X(0)|2
〉

6t
.(5.1)

In the notation the superscripts on the particle position are suppressed since only a
single immersed particle is considered.

An estimate for the diffusion coefficient of a single particle (with no interactions
with other particles) in the stochastic immersed boundary method is derived in Sub-
section 5.1.1 from the autocorrelation function of the velocity field of the fluid. This
estimate can be expressed as

D =
kBTL3

3ρ

∑

k

|δ̂a,k|2Υk

αk

,(5.2)

where Υk is defined in appendix C and δ̂a,k is defined in appendix B. This diffusivity
as simulated by the stochastic immersed boundary method exhibits the physically
correct scaling with respect to physical parameters (45).

The diffusion coefficient is estimated from the numerical simulations using

D̃ ≈ 1

6nt1

n
∑

m=1

∣

∣

∣
X̃m(t1) − X̃m(0)

∣

∣

∣

2

,(5.3)

where n is the number of sampled trajectories of fixed duration t1. The notation X̃m

denotes the simulated particle position from the mth trajectory.
In Figure 5.1, the theoretical estimate of the diffusion coefficient as given in

equation 5.2 is compared to the numerical estimate given in equation 5.3 for particles
with sizes a = 1, 2, 3, 4, 5 and for a long time step which underresolves the dynamics
of the fluid. For the parameters of the fluid-particle system used in the numerical
simulations, see table 4.2. For each particle size, the numerical estimates were made
from n = 104 sampled trajectories with ∆t = 103ns and t1 = 104ns. We remark that
in the simulations, while the time step underresolves the fastest modes of the fluid,
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Fig. 5.1. A comparison of the analytic estimate 5.2 for particles of the IB method with nu-
merically estimated diffusion coefficients for the parameters given in Table 4.2. The dashed line
indicates the analytic estimate 5.2. The data points denote estimates of the diffusion coefficient ob-
tained from numerical simulations using the method. The error bars denote one standard deviation
of the sampled values. In the numerical simulations long time steps satisfying max 1/αk ≪ ∆t were
taken which under For the parameters values given in Table 4.2 the time step ∆t = 103ns was used
in the numerical simulations, where max 1/αk = 25.4ns. The particle size k0 corresponds to the
parameter value a = k0∆x of the particle representation function δa defined in appendix A, where
k0 controls the number of mesh-widths spanned by the δa function.

there is still good agreement between the diffusion coefficient of the simulated particle
and the theoretical estimate 5.2. A tabulation of the theoretical diffusion coefficient
as given in equation 5.2 for the immersed boundary method with various ratios of
a/∆x and a/L can be found in (45).

5.1.1. Derivation of the Diffusion Coefficient. To derive an analytic es-
timate for the diffusion coefficient the semidiscretized equations 3.16 and 3.18 are
considered. Alternatively, the diffusion coefficient can also be derived directly from
the stochastic immersed boundary equations by a stochastic mode reduction proce-
dure (46). In equations 3.16 and 3.18 the immersed particle dynamics are given by

dX(t)

dt
= U(X(t), t),(5.4)

where U is given in Fourier space by

U(x, t) =
∑

k

L3δ̂a,k(x)ûk(t) exp (i2πx · k/L) ,(5.5)

with the coefficient δ̂a,k(x) defined in appendix B.
The autocorrelation function of the velocity of an immersed particle is

R(t, t + τ) = 〈U (X(t), t) · U (X (t + τ) , t + τ)〉 .(5.6)
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To estimate this, we use the fact that the statistics of U(x, t) are approximately
shift invariant in both t and x, with the approximation improving as the spatial grid
is refined. We further assume that the time scale associated with the fluid velocity
is small relative to the time scale of the immersed particle motion, so that a particle
moves a negligible distance relative to its size a during the correlation time of the
fluid velocity. These approximations give

R(t, t + τ) ≈ 〈U(0, 0) · U(0, τ)〉 := R(τ).(5.7)

By applying (C.5), the autocorrelation function of the velocity of an immersed
particle can then be expressed as

R(τ) ≈
∑

k,k′

L6δ̂a,kδ̂a,k′ 〈uk(t) · uk′(t + τ)〉(5.8)

=
∑

k∈K

L6|δ̂a,k|23
Dk

αk

e−αk|τ |

+
∑

k6∈K

L6|δ̂a,k|24
Dk

αk

e−αk|τ |

=
kBTL3

ρ

∑

k

|δ̂a,k|2Υke−αk|τ |,

where Υk is defined in appendix C.

An important point for the numerical method developed in Section 3 is that this
structure of the correlation function is preserved even for finite time steps, provided
only that the time step is small enough that the immersed elementary particles do
not move significantly during a time step (∆t ≪ τdiff(a)), where τdiff(a) is the time
scale of a particle to diffuse over a distance equal to its size a. Were we to have used
instead a numerical method based on a stochastic Taylor expansion (44), we would
have to restrict the time step ∆t to be small enough so that R(τ) is well approximated
by a Taylor expansion for |τ | . ∆t, which would add the additional restriction that
∆t ≪ 1/αk. Our more accurate representation for the fluid dynamics over a time
step allows us to obviate this other condition, as demonstrated in Figure 5.1.

A useful identity relating the autocorrelation function to the mean squared dis-
placement of an immersed particle is

〈

|X(t) − X(0)|2
〉

=

〈
∫ t

0

dX(s)

ds
ds ·

∫ t

0

dX(r)

dr
dr

〉

(5.9)

= 2

∫ t

0

R(r) · (t − r)dr.

This allows for the diffusion coefficient to be estimated by the Kubo formula (47):

D =
1

3

∫ ∞

0

R(r)dr,(5.10)

By substituting the estimate 5.8 into 5.10 and evaluating the integral, the expression
5.2 for the diffusion coefficient is obtained.
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5.2. Algebraic Decay of Velocity Autocorrelation Function. For immersed
particles diffusing in a viscous fluid, the particle motion is strongly coupled to the mo-
tion of the fluid. As a particle moves along a particular direction, fluid is dragged
along with it. When the particle changes direction, it is resisted by a viscous force
arising from its motion relative to the nearby fluid with momentum related to the
recent past of the particle’s motion. This induces a somewhat stronger memory in
the particle velocity than a standard model based on a constant Stokes drag would
predict. In particular, a careful analysis of physical Brownian motion, including a
more detailed model for the force between an immersed particle and the surrounding
fluid, yields for D ≪ µ/ρ (6; 16; 20; 23; 37; 38; 54; 67; 78)

R(τ) ≈ kBTρ1/2

4µ3/2
τ−3/2 for τ ≫ ρa2/µ.(5.11)

The condition D ≪ µ/ρ can readily be checked to hold for typical microbiological
systems.

For the stochastic immersed boundary method, it is shown in Subsection 5.2.1
that this general behavior is recovered with

R(τ) ≈
[

CIB

kBTρ1/2

µ3/2

]

τ−3/2 for ρa2/µ ≪ τ ≪ ρL2/µ,(5.12)

where CIB = 1
4π3/2 . The constant prefactors differ slightly due to the different ways

particles are represented in the physical model and immersed boundary method.
The restriction that τ ≪ ρL2/µ for the τ−3/2 scaling in the immersed boundary

method is a finite size effect which should have an analogue for physical Brownian
motion. For very long times where τ ≫ ρL2/µ the correlation function R(τ) decays
exponentially, with rate governed by that of the lowest wavenumber modes in the
Fourier series (5.8). However, by these times the autocorrelation function would
already be very small so this very long time regime is of little practical interest.

These results show that the decay of the particle velocity autocorrelation function
in the stochastic immersed boundary method has the correct scaling with respect to
time and physical parameters.

5.2.1. Derivation of Algebraic Decay of Velocity Autocorrelation Func-

tion. In this discussion, the reference to wavenumbers k implicitly indicates the
value within the equivalence class of aliased wavenumbers such that each compo-
nent |k(j)| ≤ N/2. For this purpose one can choose any scheme to select a unique
value when k lies on the boundary of this set.

First observe from the scaling properties of Fourier transforms and the definition
of δa from (A.2) that

δ̂a,k ≈ δ̂a,0 =
1

L3
for |k| ≪ L/a,(5.13)

and δ̂a,k decays rapidly with respect to |k|a/L. Along with the fact that the high
wavenumber components of R(τ) decay at a faster rate αk than the low wavenumber
components, it then follows from the Fourier series representation 5.8 for the particle
velocity autocorrelation function that the sum will be dominated by the terms with
|k| . L/a

Over the intermediate asymptotic time interval indicated in 5.12, the time t is
small compared to the decay time 1/αk ∼ ρL2/µ of the low wavenumber modes
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|k| ∼ 1, but large compared to the decay time 1/αk ∼ ρa2/µ of the (relatively high)
wavenumber modes |k| ∼ L/a corresponding to the length scale of the particle. Com-
bining these observations, there exists a time-dependent wavenumber scale kc(t) which
satisfies 1 ≪ kc(t) ≪ N/2 such that e−αkt ≈ 1 for |k| ≪ kc(t) and e−αk(t) ≈ 0 for
wavenumbers such that |k| ≫ kc(t). Consequently, over the intermediate asymptotic
time interval, the Fourier series 5.8 is dominated by contributions from wavenumbers
1 ≤ |k| . kc(t) ≪ N/2. These observations allow us to make the following simplifying
approximations over the time interval ρa2/µ ≪ t ≪ ρL2/µ:

• The prefactors multiplying the exponential in each Fourier series term may
be approximated by their low wavenumber limits:

|δ̂a,k|2Υk ≈ 2/L6 for |k| ≪ N/2.(5.14)

• The decay rate in the exponential may be approximated for |k| ≪ N/2 by its
low wavenumber asymptotics

αk ≈ A|k|2;A = 4π2µρ−1L−2.(5.15)

• The Fourier sum may be extended to the full integer lattice, because with
the replacement 5.15, the additional terms for large wavenumbers will be
exponentially small and make a negligible contribution.

• This Fourier sum over the integer lattice can be approximated by an integral
over continuous k, because the dominant contribution comes from a large
number of lattice sites 1 ≤ |k| . kc(t), with kc(t) ≫ 1.

Applying these simplifications and then changing to spherical coordinates with
radial variable k = |k|, we obtain

R(τ) ≈
∫

R3

2kBT

ρL3
exp(−A|k|2τ) dk(5.16)

=
8πkBT

ρL3

∫ ∞

0

k2 exp(−Ak2τ) dk

=
8πkBT

ρL3

1

2

(

√

2π
1

2Aτ

1

2Aτ

)

,

where the second equality follows readily by using standard facts about Gaussians.
In particular, the integral can be treated as the expectation of the second moment
by introducing the standard normalization factor. Using 5.15 and simplifying the
expression yields 5.12.

5.3. Equilibrium Statistics of Immersed Particles. For the particle-fluid
system with the fixed temperature T , volume V , and number of elementary particles
M , with the particles subject to a conservative force field, we have from statistical me-
chanics that the equilibrium probability density Ψ of the elementary particle positions
should have Boltzmann statistics:

Ψ({X}) =
1

Z
exp

(

−E({X})
kBT

)

,(5.17)

where E is the energy of a configuration of elementary particles. The factor Z is the
normalization factor so that the density integrates to one. The Boltzmann distribution
arises from the thermodynamic condition that the equilibrium probability distribution
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Fig. 5.2. Boltzmann Distribution vs Numerical Equilibrium Distribution. The spherical po-
tential energy has the parameters R1 = 125, R2 = 250, c = 6kBT/(R2 − R1). The simulation
was run with the parameters N = 16, L = 1000 nm, ∆x = L/N , µ = 6.02 × 105 amu/(nm · ns),
ρ = 602 amu/nm3, T = 300 K, ∆t = 1000 ns. 200, 000 time steps were simulated.

of the microscopic states maximize entropy while maintaining a fixed average energy
for the system (70).

In deriving the thermal forcing of the system in Subsection 3.3.3, only the energy
associated with the fluid modes was considered. When immersed structures are sub-
ject to a force, it is not entirely clear that the correct equilibrium distribution for the
system as a whole will be attained.

When formulated in continuous time, the fluid-particle coupling in the immersed
boundary method conserves energy exactly (64). While this may suggest that the
correct equilibrium statistics should be obtained (up to the appropriate definition of
an effective temperature), the discretization of time in the numerical method could in
principle disrupt it, particularly since we are not employing a symplectic method (57;
74).

We now show that the numerical method from Section 3.1 appears to yield results
consistent with the Boltzmann distribution, at least for the statistics of the position of
a single immersed particle. For a more rigorous approach in which the Fokker-Plank
equations associated with the stochastic immersed boundary method are analyzed,
see the related work (3).

To facilitate calculation of the equilibrium statistics, the particles are subject to
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a radially symmetric external force depending on r = |X| with the potential energy

V (r) =







0, r < R1

c · (r − R1), R1 ≤ r ≤ R2

c · (R2 − R1), r > R2.
(5.18)

It is assumed that c > 0 so that this can be thought of physically as the potential
associated with confining particles to a spherical chamber of radius R2. The inner
radius R1 is used to soften the particle-wall interactions to avoid issues of numerical
stiffness and R2 is taken significantly smaller than the spatial period of the lattice L.

For a single immersed particle, the Boltzmann distribution for its radial coordinate
is

Ψ̃(r) =
4πr2

Z̃
exp

(

−V (r)

kBT

)

,(5.19)

where Z̃ is the normalization factor.
In Figure 5.2, the equilibrium statistics of immersed particles simulated with the

numerical method are compared with the Boltzmann distribution 5.19. The simula-
tions were performed with R1 = 125nm, R2 = 250nm and c = 6kBT/(R2 − R1) with
the parameters of the fluid-particle system given in Table 4.2.

5.4. Osmotic Pressure of Confined Non-interacting Particles. Osmosis
is a phenomenon that occurs in many microscale biological systems. When diffusing
particles are confined to a chamber by a boundary which is permeable to fluid but
less permeable to particles, a pressure difference develops between the inside and the
outside of the chamber. This difference is referred to as the “osmotic pressure”.

When the confining boundary is impermeable to particles and the system is in
equilibrium, van’t Hoff’s law (70) relates the osmotic pressure to the concentration of
the confined particles as

posmosis = c̄0kBT,(5.20)

where c̄0 is the number of particles per unit volume in the chamber. More precisely,
when the number of confined particles is small enough that the instantaneous pressure
fluctuates, then van’t Hoff’s law should describe the ensemble or time average of the
pressure difference that arises from confinement.

One should see a signature of van’t Hoff’s law in the fluid pressure when a collec-
tion of M non-interacting particles in a conservative force field with potential V are
simulated by the stochastic immersed boundary method, given that the method was
shown in Subection 5.3 to produce correct Boltzmann equilibrium statistics. Indeed,
taking the expectation of the velocity, force, and pressure with respect to Boltzmann’s
distribution (ensemble average) in the fluid equation 2.1 gives

0 = −∇〈p(x)〉 + 〈fprt(x)〉.(5.21)

This is obtained using that 〈u〉 = 0 and 〈fthm〉 = 0. The notation 〈·〉 denotes
the ensemble average over the thermal fluctuations and 〈p〉 denotes the average of the
fluid pressure field.

The ensemble average of the conservative force field with potential V at location
x is

〈fprt(x)〉 =
−M∇V (x)

Z
e
−

V (x)
kBT .(5.22)
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Fig. 5.3. Time Averaged Radial Pressure. The spherical potential energy has the parameters
R1 = 125, R2 = 250, c = 6kBT/(R2 − R1). The simulation was run with the parameters N = 16,
L = 1000 nm, ∆x = L/N , µ = 6.02 × 105 amu/(nm · ns), ρ = 602 amu/nm3, T = 300 K,
∆t = 1000 ns. 200, 000 time steps were simulated.

The average pressure 〈p(x)〉 can be determined up to an additive constant from
5.21 and 5.22 by taking the line integral in x. From the fundamental theorem of line
integrals with the additive constant set to zero (to give the appropriate decay at large
x) we have

〈p(x)〉 =
M

Z
e
−

V (x)
kBT kBT(5.23)

By the assumption of Boltzmann statistics for the immersed particles the concentra-
tion field is

c0(x) =
M

Z
e
−

V (x)
kBT .(5.24)

Substitution into 5.23 and integrating over the chamber gives van’t Hoff’s law. This
derivation also indicates that the stochastic immersed boundary method has a fluid
pressure field which should respect the local formulation of van’t Hoff’s law:

p0(x) = c0(x)kBT.(5.25)

From a statistical mechanical point of view of this derivation, this fluid pressure
can be thought of as arising from the fluctuations of the system which persistently
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subject a particle to the confining forces in the vicinity of the wall with a frequency
determined by the Boltzmann statistics. The forces are then transferred to the fluid by
the viscous particle-fluid interactions. Similar “mesoscopic” points of view of osmosis
have been used in (4; 21; 61).

In Figure 5.3, a comparison is made of the pressure predicted by a local van’t
Hoff’s law taking into account the local solute concentration and the time average of
the pressure field of the fluid obtained in a numerical simulation using the stochastic
immersed boundary method for an immersed particle confined by the spherically
symmetric potential given by equation 5.18.

Another quantification of osmotic pressure is the average force per unit area
exerted on the walls of the chamber which confine the solute. For a spherical chamber
Ω of radius R in which the solute exerts a (generally repulsive) areal force density
Fpw(z) on a portion of the wall boundary ∂Ω at relative location z, this osmotic
pressure is given by:

pwall =
1

4πR2

∫

Ω

∫

∂Ω

Fpw(y − x) · y

|y|c(x) dy dx(5.26)

where c(x) denotes the average concentration of the solute particles. Note that this
formula applies also when the solute particles interact with each other. We will
only be considering isotropic wall-solute interactions (and uniform distribution of wall
molecules) so that we can write the force density in terms of a (typically nonnegative)
scalar function qpw(r): Fpw(z) = qpw(|z|)z/|z| and the concentration density as c(x) =
c(|x|). The expression in equation 5.26 for the osmotic pressure on the chamber wall
can then be simplified by integrating over the angular degrees of freedom:

pwall =
1

R2

∫ R

0

h(r)c(r)r2dr(5.27)

with

h(|x|) =

∫

∂Ω

Fpw(|y − x|) · y

|y|dy

=
π

r

∫ R+r

R−r

qpw(ρ)
(

ρ2 + R2 − r2
)

dρ.(5.28)

The function h(r) can be interpreted as the integrated normal force applied to the
wall by a solute particle located a distance r = |x| from the origin. The change of
variable used to obtain the last integral was ρ = |y − x|.

When the potential confining the solute is “hard-walled,” in the sense that the
solute-wall interactions occur only in a very small boundary layer of the wall, the two
formulas 5.27 and 5.23 give the same values for the osmotic pressure, up to a small
difference which vanishes as the width of the boundary layer is taken to zero. For
potentials which are ”soft-walled” in the sense that solute molecules interact with the
wall on a length scale comparable to the magnitude of the fluctuations of the size of the
solute molecules, as in Subsection 5.5, the average pressure of the fluid and the average
pressure exerted on the wall may in fact differ. In related work, we are investigating
the various pressures associated with osmotic phenomena and exploring the influence
of finite wall and molecule sizes (5). For a discussion of how the osmotic pressure
can be used to drive fluid flow in a mesoscopic pump, see the related work (4). We
now present a few examples to demonstrate how more complex structures immersed
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in the fluid can be simulated with the stochastic immersed boundary method and to
show how the osmotic pressure associated with wall forces can be derived from the
thermal fluctuations of these structures as simulated by the method.

Before proceeding in the following subsections to consider osmotic pressure effects
of more complex structures, we remark that the wall pressure can be computed from
the average of the radial confinement force fconf(x) = −fconf(|x|)x/|x| acting on the
particles and equation 5.26 in the case of a spherical chamber. From Newton’s third
law (principle of equal and opposite forces):

fconf(x) =

∫

∂Ω

−Fpw(y − x) dy,(5.29)

re-expressed using the isotropy of the forces involved, we have:

−fconf(|x|)
x

|x| =

∫

∂Ω

−q(|y − x|) y − x

|y − x|dy.(5.30)

In spherical coordinates, this can be written:

fconf(r) =
πR

r2

∫ R+r

R−r

q(ρ)(r2 − R2 + ρ2)dρ.(5.31)

If the model for the solute-wall interaction force can be assumed to vanish at
separation distances comparable to the chamber radius, then this integral relation
between q and f can be inverted to obtain:

(5.32)

q(ρ) =

(

1

2πRρ2

)

(

ρ(R − ρ)f ′
conf(R − ρ) + (R + ρ)fconf(R − ρ) +

∫ R−ρ

0

fconf(s)ds

)

.

The pressure on the wall can then be computed from the effective bulk confinement
force fconf(r) using 5.27, 5.28, and this inversion formula.

5.5. Application: Simulation of Interacting Immersed Particles and Os-

motic Pressure. We now discuss application of the stochastic immersed boundary
method in determining the osmotic pressure when the confined particles can inter-
act. In particular, we consider the case in which particles interact in distinct pairs
(dimers) through a spring with non-zero rest length and are confined to an approx-
imately 400nm spherical chamber. Note that the solute particles are confined in
a microscopic chamber, in the sense that the chamber diameter is comparable or
smaller than the length-scale associated with the solute particle interactions between
the monomers. This is in contrast to a macroscopic chamber in which solute particles
interact on a length-scale very much smaller than the chamber diameter and where
the van’t Hoff law is well established with the osmotic pressure depending only on the
number of solute particles and not on their physical characteristics. For example, in
microscopic chambers the amplitude of the fluctuations of a solute particle’s diameter
may be comparable to the chamber diameter and play a non-negligible role in the
osmotic pressure associated with confinement.

To investigate these effects, we consider how the osmotic pressure changes as the
binding strength for a collection of dimers is varied. From the classical van’t Hoff’s
law, it would be expected that the osmotic pressure for tightly bound dimers are half
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that of the zero-binding case (free monomers), because a tightly bound dimer behaves
effectively as a single particle. This concept is exploited to suggest the design of an
osmotically driven pumping apparatus in (4). From simulations using the stochas-
tic immersed boundary method, we can investigate how the osmotic pressure varies
between the unbound and tightly bound regimes.

Fig. 5.4. Illustration of five distinct pairs of coupled particles confined in a spherical chamber
with the soft-wall potential given by equation 5.34. Simulations were performed for five pairs of
particles coupled with interaction energy given by equation 5.33.

Fig. 5.5. The geometrically weighted particle concentration c(|x| = r)r2 of the monomers in
the spherical shell of radius r used in equation 5.27. As the coupling is tightened, the particle
concentration has more weight at smaller radii. The concentration is shown only over the boundary
layer over which the confinement force is exerted.

Each pair of particles is coupled by a potential energy corresponding to a standard
spring model with finite rest length ℓ:

Φ2(X1,X2) =
K

2
(|X1 − X2| − ℓ)

2
,(5.33)

where X1 and X2 denote the particle locations and K represents the spring stiffness.
Each monomer at location x is subject to a confinement force given by the radially
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symmetric potential:

Φ1(x) =







0, |x| ≤ R1,
C0

2 (|x| − R1)
2
, R1 ≤ |x| ≤ R2

C0

2 (R2 − R1)
2
, |x| ≥ R2.

(5.34)

This potential can be thought of as arising from the interaction force of the confined
solute monomers with particles distributed uniformly over the walls of a spherical
chamber having radius R = R2. The formula given in equation 5.32 gives the re-
lationship between the monomer-wall interaction force and the radial confinement
force. For the simulations the parameters were chosen as ℓ = 100nm, R1 = 375nm,
R2 = 400nm, C0 = 8kBT/(R2 −R1)

2. The setup is depicted pictorially in Figure 5.4,
and movies of the simulations can be found in the Supplemental Materials.

Fig. 5.6. The osmotic pressure for confined dimers as a function of coupling strength. As the
coupling strength of the dimers increases, the osmotic pressure decreases in a non-linear manner.
The osmotic pressure value for unbound monomers is approximately double that of the the tightly
bound monomers, which is in accordance with what is expected under van’t Hoff’s law. Deviations
from van’t Hoff’s law are apparent for intermediate coupling strengths for which the length scale of
the dimers is comparable to those of the chamber and the wall thickness.

Figure 5.5 displays the results of simulations with the stochastic immersed bound-
ary method that show that as the stiffness is increased, the particle density decreases
for each radius r within the region of the confining potential. The pressure conse-
quently drops with increasing coupling stiffness, as shown in Figure 5.6. We see also
that, in accordance with van’t Hoff’s law, the pressure in the strong coupling limit,
where the particle pairs behave effectively as single entities, is cut to roughtly half
from the no coupling case. We observe deviations from the classical van’t Hoff law
when the length scale of the bound molecules is comparable to that of the wall or the
chamber.

An intuitive statistical explanation for the pressure drop is that a strongly cou-
pled particle is less likely to venture far into the confining potential because roughly



STOCHASTIC IMMERSED BOUNDARY METHOD 39

half the time its partner will encounter the confining potential first, be repelled, and
pull its accompanying particle back away from the confining potential sooner than it
would have on its own. In more physical terms, the entropy of the particle pairs de-
creases and consequently the entropic penalty associated with confinement is reduced
as the coupling strength increases. For coupling values that make the dimer length
scale comparable to the microscopic chamber size, the osmotic pressure assumes an
intermediate value which is not well described by a van’t Hoff’s law.

5.6. Application: Simulation of Polymer Chains and Polymer Knots. A
fundamental feature of the stochastic immersed boundary method is that each struc-
ture evolves according to a local average of a common fluid velocity field. The method
therefore automatically captures the physical phenomenon that the velocities of im-
mersed structures become strongly correlated when they are close together in space.
Mathematically, the solution map of the immersed structures and surrounding fluid
volume, which maps a configuration of the fluid and structures at a reference time
to the solution configuration at a later time t, can be viewed as a homeomorphism.
Consequently, in the continuous-time framework, the method preserves topological
invariants of the immersed structures, such as the knottedness of a continuous closed
curve, as they evolve. This is in contrast to other simulation methods, such as Stoke-
sian Dynamics (15; 75; 77), which would require explicit excluded volume constraints
and/or repulsion forces between monomers to prevent topological changes.

Fig. 5.7. The bar graph shows the average concentration of monomers within the chamber
in the boundary layer in which they interact with the confinement forces (Subsection 5.4). As
the knottedness of the polymer increases, the monomers are more restricted and concentrate on
average toward the chamber center spending less time interacting with the confinement forces. As a
consequence the concentration of monomers in the boundary layer decreases and the overall pressure
drops (Table 5.1). The parameters in the simulations were taken the same as in Subsection 5.4.

To demonstrate this feature of the method in practice (with finite time step) and
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to show how worm-like chain polymers can be simulated, the stochastic immersed
boundary method was applied for a generic polymer chain, a polymer trefoil knot,
and a polymer figure eight knot. From these simulations the osmotic pressure of
confinement was estimated for each of the polymers. The results of the average
concentration of the polymer monomers, which determine the average radial force
density exerted on the confining wall, is given in Figure 5.7.

As the knottedness of the polymer increases, its constituent monomers spend less
time at large radii, and as seen in Table 5.1, the osmotic pressure is significantly re-
duced. An intuitive explanation is that as the knottedness of the polymer increases,
this restricts the intrinsic configurations accessible to the thermally fluctuating poly-
mer. In physical terms, the knottedness reduces the entropic penalty of confining of
the polymer. Movies showing simulations of the thermally fluctuating polymer knots
can be found in the Supplemental Materials.

Table 5.1

Osmotic Pressure of Polymer Knots

Knot Type Osmotic Pressure (amu/nm · ns2)
Unknotted 0.16
Trefoil Knot 0.0439
Figure Eight Knot 0.0392

5.7. Application: Simulation of a Basic Model for a Molecular Motor

Protein Transporting a Membrane-Bound Cargo Vesicle . We now discuss
how more complex systems can be simulated with the immersed boundary method.
On a subcellular level motor proteins interact with cytoskeletal structures, such as
actin and microtubules, to generate force and to transport materials within the cell.
For example, neurotransmitters are produced in the cell body of neurons and trans-
ported by kinesin motor proteins along axons to the vicinity of the synaptic cleft
where they are packaged for future release (8). We demonstrate how the stochastic
immersed boundary method can be applied to simulate a basic model of a molecular
motor protein immersed in a fluid moving along a filament which transports a cargo
vesicle (Figure 5.8).

Fig. 5.8. Illustration of the basic model of a molecular motor protein immersed in a fluid and
towing a cargo vesicle. As the fluid flow strengthens, the hydrodynamic drag on the cargo increases
and a load force is exerted in opposition to the motor transport. For large opposing fluid flows, the
cargo may significantly change shape in response to the flow.
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The motor protein is modeled as a Brownian Ratchet (41; 66) and the cargo vesicle
is modeled by a triangulated mesh which forms a membrane enclosing a spherical
volume. The nodes of the mesh are linked together by springs of the form given in
equation 5.33 with non-zero rest lengths determined by the distance between nodes
in an initial spherical configuration. The cargo is linked at the vesicle surface to the
motor by a spring of the form given by equation 5.33 with a non-zero rest length of
approximately 100 nm. The spherical vesicle has a radius of 125nm and the ratcheting
intervals (light and dark inset of Figure 5.9) are of length 100 nm.

Fig. 5.9. The mean motor velocity vs the hydrodynamic drag force. The data points joined by
the solid curve shows the mean motor velocity Xτ /τ obtained from simulations over approximately
τ = 3ms. The dashed curve shows the mean velocity for an idealized ratchet having a viscous drag
comparable to the spherical vesicle and subject to a constant load force the same strength as the
hydrodynamic drag force (41; 66).

To examine how the mean velocity of transport by the motor protein behaves un-
der different loading conditions, simulations were performed in which a hydrodynamic
drag force is generated on the vesicle cargo by a bulk flow of the fluid (8; 41). The mean
velocity for different strengths of the countering fluid flow is plotted in Figure 5.9,
where we see that for significantly large opposing flow, the motor can almost be made
to “stall”. The stochastic immersed boundary method allows for hydrodynamic effects
associated with the shape and deformation of cargos to be investigated. These effects,
not typically considered in other numerical simulation approaches for molecular mo-
tors, may have important consequences for motor/polymerization ratchet transport
when more details of the motor are taken into account or with more complex cargos
such as membrane tubes, small cell organelles, or chromosomes (8; 43; 69). More
sophisticated models can also be formulated within the stochastic immersed bound-
ary method framework, such as the case in which multiple motor proteins transport
a common cargo, interact by crosslink cytoskeletal filaments, or include additional
mechanical degrees of freedom of the motor protein itself. Some movies of our motor
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protein model transport simulations can be found in the Supplemental Materials.

6. Conclusion and Discussion. In this work we have discussed how thermal
fluctuations can be incorporated into the immersed boundary method in a manner
consistent with the laws of statistical mechanics. A new stochastic numerical method
was proposed that allows for a range of time steps to be taken in which the fastest
degrees of freedom of the fluid-particle system are either underresolved, partially
resolved, or fully resolved. In addition, the numerical method was designed to take into
account in a systematic way the statistical contributions of the thermal fluctuations
over long time steps with the correct correlations between the particles and fluid.

To investigate the behavior of the immersed boundary framework and the stochas-
tic numerical method with respect to well-known laws in statistical physics a number
of theoretical results were obtained for the method and compared with numerical
simulations. In particular, it was shown that immersed particles simulated with the
numerical method exhibit the correct scaling in the physical parameters for the mean
squared displacement in three dimensions. It was also shown that the stochastic nu-
merical method captured inertial effects of the fluid with a velocity autocorrelation
function for a particle that for long times decays with algebraic order τ−3/2. We
further found that particles appear to have the correct Boltzmann equilibrium sta-
tistics. Moreover, the method was found to produce the van’t Hoff law of osmosis
for a particle confined to a spherical chamber recovering the correct osmotic pressure.
In addition results were presented which showed how the osmotic pressure could be
computed for interacting pairs of particles and worm-like chain polymers, including a
trefoil and figure eight polymer knot. A more complex application of a basic model
of a molecular motor protein immersed in a fluid and towing a vesicle-bound cargo
subject to a hydrodynamic drag force was simulated and the force-velocity statistics
computed.

These basic physical checks indicate that the stochastic immersed boundary method
has the capability to capture many important features of thermally fluctuating sys-
tems involving immersed structures which interact with a fluid. The results presented
suggest the promise of the stochastic immersed boundary method as an effective ap-
proach in modeling and simulating the mechanics of biological systems at the cellular
and intracellular level.
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Appendix A. The Representation Function δa for Immersed Particles.

In the immersed boundary method, it is required that a function δa be specified to
represent the elementary particles. The representation of this function is often derived
from the following function φ which is known to have desirable numerical properties
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(64):

φ(r) =
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√
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√
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√
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(A.1)

For three dimensional systems the function δa representing elementary particles
of size a is

δa(r) =
1

a3
φ

(

r(1)

a

)

φ

(

r(2)

a

)

φ

(

r(3)

a

)

,(A.2)

where the superscript indicates the index of the vector component.
To maintain good numerical properties, the particles are restricted to sizes a =

n∆x, where n is a positive integer. For a derivation and a detailed discussion of the
properties of these functions see (64).

Appendix B. The Fourier Coefficients of the Function δa Used to Rep-

resent an Immersed Particle. Throughout the paper it will be useful to consider
the Fourier coefficients of the function δa(x − X) used to represent an elementary
particle situated at position X. While the function is defined for all x ∈ Λ, it is
often useful to consider the restriction of the function to the discrete lattice points
{xm = m∆x|m ∈ Z

3
N}.

We will use the following notation to denote the discrete Fourier transform of the
delta function restricted to the lattice:

δ̂a,k(X) =
1

N3

∑

m

δa(xm − X) exp (−i2πk · m/N) .(B.1)

The dependence of the Fourier coefficients on the particle position X (relative to the
lattice) is explicitly noted. When the dependence on X is not explicitly noted, then
we will be referring implicitly to the discrete Fourier transform of the delta function
when centered on a lattice point: δ̂a,k := δ̂a,k(0).

Appendix C. Autocorrelation Function for the Velocity Field of the

Fluid. In this section the autocorrelation function is computed for the velocity field
of the fluid in the absence of force fprt = 0. This is done by representing the velocity
field in Fourier space and computing the autocorrelation function of each mode k.
From equation 3.56 and standard stochastic calculus the steady-state autocorrelation
function of the kth mode when s > r is

E
(

ûk(s) · ûk(r)
)

(C.1)

= 2DkE

(

∫ s

−∞

e−αk(r−w)℘⊥
k

dB̃k(w) ·
∫ r

−∞

e−αk(s−q)℘⊥
k dB̃k(q)

)

,(C.2)
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where the notation ℘⊥
k

denotes projection orthogonal to ĝk as defined in Subsection
3.3.2.

By applying Ito’s Isometry to C.2, and observing the symmetry under the inter-
change s ↔ r, the autocorrelation function is given by

E
(

ûk(s) · ûk(r)
)

=

{

3Dk

αk

e−αk|s−r| if k ∈ K
4Dk

αk

e−αk|s−r| if k 6∈ K(C.3)

= Υk

kBT

ρL3
e−αk|s−r|,

where

Υk =

{

3, k ∈ K
2, k 6∈ K,

(C.4)

and the index set K is defined in 3.29.
The factor Υk arises from the incompressibility constraint 3.22, the real-valuedness

constraint 3.25, and the dimensionality of the space orthogonal to ĝk. See Subsection
3.3.3 for a discussion of how the constraints affect Dk.

The spatio-temporal correlation function of the velocity field u is then given by

E (um(s) · un(r)) =
∑

k

∑

k′

E
(

ûk(s) · uk′(r)
)

exp (i2π(n · k′ − m · k)/N)

=
∑

k

E
(

ûk(s) · ûk(r)
)

exp (i2π(n − m) · k/N)(C.5)

=
kBT

ρL3

∑

k

Υke−ak|s−r| exp (i2π(n − m) · k/N) .

To obtain the second equality, we used the statistical independence of the Fourier
modes of the velocity field when the indices k and k′ are distinct and do not correspond
to conjugate modes (see 3.25). When the indices k and k′ do refer to conjugate but
distinct modes, then the average vanishes because a mean zero random variable Z
with independent and identically distributed real and imaginary components satisfies
〈Z2〉 = 0. The last equality follows by substitution from equation C.3.

Appendix D. Constants: Accuracy and Error Estimates. The non-
dimensional factors Q appearing in the error estimates in Section 4 are approximately
independent of the physical parameters. For comparison of the theoretical error es-
timates with numerical simulations, it is useful to compute the factors for specific
physical parameters to obtain estimated values. Evaluation of the expressions for the
Q constants for the system with parameters given in Table 4.2 gives the following
values:

Q1 = 0.563(D.1)

Q2 = 7.87.(D.2)
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Tables.
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Table 4.1

Parameters of the Method

Parameter Description
kB Boltzmann’s constant
T Temperature
L Period Length of Fluid Domain
µ Fluid Dynamic Viscosity
ρ Fluid Density
N Number of Grid Points in each Dimension
∆t Time Step
∆x Space Between Grid Points
a Effective Elementary Particle Size (approximate radius)

Table 4.2

Values used in Numerical Simulations

Parameter Description
T 300 K
L 1000 nm
µ 6.02 × 105 amu/(nm · ns)
ρ 602 amu/nm3

N 32
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Table 4.3

Notation Conventions

Parameter Description
δa Representation function of an immersed elementary particle of size a
δa,k The kth Fourier coefficient of the particle representation function
αk Damping of the kth Fourier mode
Dk Strength of the thermal forcing of the kth Fourier mode
um Fluid velocity at the mth grid point
ûk The kth Fourier mode of the fluid velocity field
U Smoothed fluid velocity field for immersed elementary particles
xm Position vector of the mth Eulerian grid point
X[j] Position vector of the jth immersed elementary particle
fprt Force density arising from the immersed structures
fthm Force density arising from the thermal forcing

f̂k The kth Fourier mode of the structural force density field


