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Abstract. Stochastic partial differential equations are introduced for the continuum concen-
tration fields of reaction-diffusion systems. The stochastic partial differential equations account for
fluctuations arising from the finite number of molecules which diffusively migrate and react. Spa-
tially adaptive stochastic numerical methods are developed for approximation of the stochastic partial
differential equations. The methods allow for adaptive meshes with multiple levels of resolution, Neu-
mann and Dirichlet boundary conditions, and domains having geometries with curved boundaries. A
key issue addressed by the methods is the formulation of consistent discretizations for the stochastic
driving fields at coarse-refined interfaces of the mesh and at boundaries. Methods are also introduced
for the efficient generation of the required stochastic driving fields on such meshes. As a demon-
stration of the methods, investigations are made of the role of fluctuations in a biological model for
microorganism direction sensing based on concentration gradients. Also investigated, a mechanism
for spatial pattern formation induced by fluctuations. The discretization approaches introduced for
SPDEs have the potential to be widely applicable in the development of numerical methods for the
study of spatially extended stochastic systems.
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1. Introduction. In many systems a fundamental role is played by the spatial
distribution of molecular species which undergo diffusive migrations while participat-
ing in chemical reactions. Examples include the synthesis and processing of materials,
intracellular signaling in biology, and morphogenic processes in the development of
tissues [59; 73-77; 97; 100]. In many reaction-diffusion systems, the most interest-
ing features are exhibited only in a sub-region of the spatial domain, such as in a
chemically active front or in a layer near boundaries. Also, in many systems, an im-
portant role is played by the conditions at the boundaries or by the geometry of the
boundaries [52; 75; 76]. A commonly used approach to model such reaction-diffusion
systems is to use continuum field descriptions at the mean-field level for the local
concentration of a molecular species. Such models are often expressed in terms of de-
terministic partial differential equations (PDEs). While this approach works well for
many problems, at sufficiently small length-scales fluctuations are expected to arise in
continuum field descriptions as a consequence of the finite number of molecules and
neglected microscopic positional and momenta degrees of freedom.

To account for such fluctuations, we formulate stochastic partial differential equa-
tions (SPDEs) which introduce Gaussian stochastic fields into the PDE description of
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reaction-diffusion systems. We consider contributions from the intrinsic density fluc-
tuations arising primarily from the finite number of molecules undergoing diffusive
migrations, as opposed to fluctuations arising from the chemical reactions. The fluc-
tuations are modeled by the stochastic fields using the fluctuation-dissipation principle
of statistical mechanics.

When numerically approximating SPDEs, a number of issues arise which are
not present in the corresponding deterministic setting. Numerical approximation of
SPDESs requires both discretization of the partial differential equations and discretiza-
tion of the stochastic driving fields. As a consequence of the stochastic driving fields,
solutions of SPDEs are often not as smooth as solutions of the corresponding un-
driven deterministic PDE. Solutions of SPDEs often exist only in a generalized sense
in a space of non-differentiable functions or in a space of linear functionals (distribu-
tions) [68; 71; 72; 78]. Caution must be taken when formulating discretizations for
such solutions. For example, traditional approaches such as finite difference meth-
ods often rely on the Taylor Theorem which requires smoothness to ensure accuracy.
As an alternative, spectral methods can be formulated for SPDEs which rely on less-
stringent results from approximation theory to ensure accuracy [43; 44]. Fourier series
provide one widely used approach for spectral approximation. While such spectral
methods are useful for many SPDEs, they are typically restricted to domains having
periodic boundaries or rather simple geometries and are often not readily amenable to
adaptivity. To cope with this issue, finite element methods have also been introduced
for the approximation of SPDEs [45]. As a consequence of the non-smoothness of solu-
tions the rate of convergence is much slower than in the deterministic setting [45; 46].

We shall introduce an approach for the derivation of discretizations based on finite
difference methods for the approximation of SPDEs. To obtain accurate methods, the
approach approximates solutions of the SPDEs by stochastic field values which corre-
spond to solutions which are spatially averaged on length-scales comparable to the lat-
tice spacing of the discretization mesh. Stochastic numerical methods are formulated
allowing for adaptive multilevel meshes, Neumann and Dirichlet boundary conditions,
and domains having geometries with curved boundaries. A key issue addressed by
the methods is the development of consistent discretizations of the stochastic driving
fields at coarse-refined interfaces of the mesh and at boundaries. As a demonstration
of the issues encountered at coarse-refined interfaces, an empirical study is performed
to show results for different discretization choices at such interfaces. For the derived
discretizations, analysis is carried out which shows convergence of the methods as the
underlying mesh is refined.

As a demonstration of the developed stochastic numerical methods, simulation
studies are carried out for two applications. The first application studies the effect
of fluctuations in microorganism direction sensing based on concentration gradients.
The case investigated concerns a single cell which senses concentration gradients in an
environment exhibiting a shallow gradient obscured by fluctuations. The biological
cell is represented by a region having a disk-like geometry with Neumann bound-
ary conditions. A gradient is induced in the concentration of an external signaling
molecule by specifying at two walls the concentrations through Dirichlet boundary
conditions. The stochastic numerical methods are utilized on a domain having a ge-
ometry defined by the two walls and region exterior to the disk. Results are reported
for the role of fluctuations in a biological model recently proposed for cell gradient
sensing [52].

The second application studies fluctuation-induced pattern formation in spatially
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extended systems. A variant of the Gray-Scott chemical reactions is considered in a
regime where the deterministic reaction-diffusion system only exhibits a localized sta-
tionary pattern. When introducing fluctuations, a rich collection of patterns emerge
over time, in which spotted patterns migrate, combine, and replicate. The adaptive
features of the stochastic numerical methods are used to track at high resolution the
dynamically evolving regions where the reactions are chemically active.

The proposed SPDEs give a model for intrinsic concentration fluctuations in
reaction-diffusion systems. At the level of the continuum concentration fields, the
model captures fluctuations arising from the finite number of molecules undergoing
diffusive migrations. The stochastic numerical methods allow for adaptive approxi-
mation of solutions on domains having rather general geometries and boundary condi-
tions. The approaches introduced for the derivation of discretizations for the SPDEs
and for the development of the numerical methods are expected to be widely appli-
cable in the study of spatially extended stochastic systems.

2. SPDEs Accounting for Fluctuations in Reaction-Diffusion Systems.
Reaction-diffusion systems are often modeled by partial differential equations which
account for the evolution of the continuum concentration fields as the molecular
species diffusively migrate and undergo chemical reactions. At sufficiently small
length-scales, fluctuations arise in continuum field descriptions as a consequence of
the finite number of molecules and as a consequence of neglected microscopic posi-
tional and momenta degrees of freedom. To account for such fluctuations in reaction-
diffusion systems we consider stochastic partial differential equations (SPDEs) of the
form

(2.1) % = Vx - DVxc(x,t) + F [c] + n(x,t)
(2.2) (n(x,t)nT (%', 1)) = A(x,x)d(t —t').

In the notation, c denotes the composite vector of concentration fields for the chemical
species. The term Vx - DVxc accounts for diffusion of the chemical species and is
based on a generalization of Fick’s Law allowing for non-isotropic diffusion. The tensor
D characterizes the rate at which chemical species undergo diffusive migrations and
is assumed to be symmetric and positive definite. Throughout, we assume that the
chemical species diffuse independently, which corresponds to D being a matrix which
is block diagonal. The block matrices D) correspond to the diffusion of the ‘"
chemical species and are of size d x d, where d is the number of spatial dimensions.
The term F accounts for the chemical reactions. In general, F denotes a non-linear
functional of the concentration fields which can be either stochastic or deterministic.
In the present work we consider only the case where F depends deterministically on c.
Throughout, F will be treated generically with only specific forms for the functional
defined in Sections 9.1, 9.2, and 9.3. The term n accounts for fluctuations and is
a Gaussian stochastic field which is §-correlated in time with mean zero and spatial
covariance A. In the notation, (-) denotes expectation with respect to the probability
distribution of a random variable.

To derive a specific form for the Gaussian stochastic field n we make a number of
simplifying assumptions. We consider the physical regime where fluctuations are small
relative to the mean concentration. We also consider the case where fluctuations are
dominated by contributions from the diffusive migrations of the molecular species as
opposed to the chemical reactions. These assumptions correspond to the fluctuations
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of the concentration field at thermodynamic equilibrium having covariance [7; 8; 10—
12]

(2:3) ((e(x) =) (c(x') — €)) = &d(x — ')

where ¢ denotes the mean concentration. To determine the spatial covariance struc-
ture of n we use a variant of the fluctuation-dissipation principle of statistical me-
chanics.

At thermodynamic equilibrium and within the regime of linear responses of the
system, the fluctuation-dissipation principle maintains that relaxation from a per-
turbed state caused by an external field occurs in the same manner as relaxation from
a perturbed state caused by fluctuations [4; 10]. As a consequence, the dissipative
operators of the dynamics and equilibrium covariance can be related to the covariance
structure of the fluctuations driving the system. This can be expressed as, see [4; 10],

(2.4) A=—-AC - C*A*

where A*, C* denote the adjoint of the operators. From equation 2.1 and equation 2.3
we have

(2.5) A =V, DV,
C=c¢ci(x—x).

Since the product of the operators in this case is self-adjoint the covariance structure
of the driving fluctuations can be expressed as

(2.7) Aij(x,%') = —280;;V - DOV, 5(x — x')

where for the i*" molecular species ¢ = (c;) denotes the mean concentration. We
have used that AC = (AC)* = C*A*, A = —2AC. This determines the stochastic
driving field n in equation 2.1 since n is Gaussian. The stochastic partial differential
equations provide a model at the continuum level for the near equilibrium fluctuations
in the concentration fields of reaction-diffusion systems.

3. Discrete Approximation of the SPDEs. For SPDEs, numerical approxi-
mation requires both discretization of the partial differential equations and discretiza-
tion of the stochastic driving fields. When numerically approximating SPDEs of the
form of equation 2.1, issues arise which are not present in the corresponding deter-
ministic PDE setting. As a consequence of the stochastic driving fields, solutions are
not defined pointwise but only in a generalized sense in a space of linear function-
als (distributions) [68; 71; 72; 78]. We formulate discretizations which approximate
numerically the action of these linear functionals.

For discretization in space of equation 2.1 and the stochastic driving field n,
we divide the spatial domain  into a partition of cells {Qm}M_,. The partition
is required to have the property Q@ = UM_,Q,,. The partition is also required to
have intersections which are of measure zero (g N Q) = 0, for £ # m, under the
Lebesgue measure v [63]. To approximate solutions numerically, we use stochastic
field values obtained by averaging solutions over the volume of each partition cell

(3.1) eml(t) = ﬁ/ﬁ c(x, £)dx.
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To approximate the dynamics of ¢y, (), we use a stochastic process satisfying
(32) dCt = LCtdt + fdt + dgt

In the notation, c; denotes the composite vector of concentrations over all chemical
species and all the sets 2y, at time ¢. The term L is a discrete operator which accounts
for diffusion of the molecular species and approximates V - DV in equation 2.1. The
term f accounts for the chemical reactions and approximates F. The term g; is
an Ito stochastic process accounting for fluctuations and approximates n [11; 16].
The equation 3.2 is to be interpreted in the sense of an Ito Stochastic Differential
Equation [11; 16].

The stochastic driving field n of the continuum system given in equation 2.2 is a
Gaussian process with mean zero and with d-correlation in time. Since the averaging
procedure of equation 3.1 is linear, we also take g; to be a Gaussian stochastic process
with mean zero and with §-correlation in time. With this assumption the process g;
can be expressed in terms of increments of Brownian motion as

(3.3) dg; = QdB,.

In the notation, dB; are increments of a vector valued Brownian motion with n
independent components and @ is an m X n matrix [16]. A particularly useful property
of expression 3.3 is that @ can be directly related to the spatial covariance I' of the
stochastic process g; by

(34)  (dgidg}) = (QdB.dB},Q") = QIS5(t — t')dtdt' Q" =T5(t — t')dtdt’.
This implies that
(3.5) I =QQ".

We have used the identity of Ito Calculus that (dB:dB7) = I§(t — t')dtdt’, which in
our notation corresponds to Ito’s Isometry [16].

In this approach to approximating SPDEs, the discretization of the partial dif-
ferential equation and the stochastic driving field play an inter-connected role in the
equilibrium fluctuations exhibited by the discretized system. A consistent choice for
these two components of the discretization is required to ensure that the discretized
system accurately approximates the equilibrium fluctuations of the continuum sys-
tem. We let the covariance of the equilibrium fluctuations of the discrete system be
denoted by

(3.6) C={c—3c)(c—a)").

Since the stochastic fields are Gaussian, this requires the covariance matrix C' approx-
imate the covariance operator C of equation 2.6. We study specific forms taken by C
in later sections.

We now derive a variant of the fluctuation-dissipation principle of statistical me-
chanics for the discretized system which establishes a relationship between L, C, and
I". This is carried out in the case when F = 0. For this purpose we consider at time
t the covariance of concentration fluctuations

(3.7) Cy = {(c; — ) (¢, —©)").
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From Ito’s Lemma [16] and equation 3.2 we have

(3.8)
d[(ci — ) (c: — ©)"] = (der) (s — ©)" + (¢ — ©) (der)” + (dey) (dey)”
=L(c,—c)(c; —e) dt+ (c; —€) (¢, — ) LTdt + QQTdt
+ QdB; (¢; — )" + (c; — ) dBTQT.

In our notation, Ito’s Lemma [16] corresponds to dBydB} = Idt, dtdt = 0, and
dB.dt = dtdBI = 0. Taking the expectation in probability of both sides of equa-
tion 3.8 we obtain

(3.9) dCy = (LCy + C,L" +T) dt.

This was obtained by using I' = QQT, (dB;) = 0, and equation 3.7.
As the system approaches the statistical steady-state, corresponding to thermo-
dynamic equilibrium, we have Cy — C and dC; — 0. From equation 3.9 this yields

(3.10) r=—(LC+cCL").
In the case that LC' is symmetric, this expression simplifies to
(3.11) r=-2LC.

This establishes a fluctuation-dissipation principle for the discretized system relating
L,C,and .

To obtain consistent discretizations of both the partial differential equation and
stochastic driving field, we use equation 3.10 to determine a I' so that the error is
controlled in the discrete system when approximating the equilibrium fluctuations
of the continuum system. For this purpose, we require the discrete system have
equilibrium fluctuations with covariance
(3.12) Com = <(Ce —Cy) (Cm — Em)T> = L5¢7m.
|

The C;; = ¢;0;; and ¢; = (¢;). This determines I' from equation 3.10. This choice
for C' corresponds to the equilibrium fluctuations of the continuum system spatially
averaged over each partition cell Qy,. For any choice of partition €y, and consistent
discretization L, equation 3.10 gives a covariance structure I' for the stochastic driving
field which realizes a given choice of C' for the equilibrium fluctuations. Formally, as
the mesh is refined, if we have C — C and L — A = V4 - DVy, then we have
I' = -LC - CLT — —AC — C*A* = A. This suggests that such an approach
provides a means to obtain consistent discretizations of the stochastic driving field n of
equation 2.1, while controlling the errors in the equilibrium fluctuations of the discrete
system. After deriving specific discretizations using this approach and developing
stochastic numerical methods to generate efficiently the required stochastic fields, we
revisit the issue of convergence in Section 8.

4. Transformation of the Operator V- DV to the Laplacian A. A change
of variable can be made which transformations V - DV into a standard Laplacian
A. This will be used to put the differential operator into a more convenient form for

numerical approximation. The change of variable is based on the special properties
of D.
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Since the chemical species are assumed to diffuse independently, the diffusion
tensor D has diagonal blocks of size d x d, where d is the spatial dimension of the
system. This allows for the full differential operator to be decomposed into a sum of
components of the form

(4.1) Vs -DVyx = > Vyx-DWV,.
k

The block matrix D®) corresponds to diffusion of the k** chemical species. Each
matrix D®) is symmetric and can be diagonalized by a unitary matrix

(4.2) D® — (PW)TDK pk)

where D) denotes a diagonal matrix and P*) denotes a unitary matrix. Under the
linear change of variable x = Rx, the gradient and divergence operators become

(4.3) Vx = RVx

(4.4) Vx = Vg - RT.

This gives

(4.5) Vi - DOV, =V; - RTD® RV;.

Since D) is assumed positive definite, we can let R = P (D®))~1/2_ Under this
change of variable the differential operator becomes a standard Laplacian from equa-
tion 4.5,

(4.6) Vx-D®V, = Az

Since the operators Vy - D(k)Vx are decoupled, we introduce for the concentration
field of each chemical species a separate coordinate system X(*) = R®x and let
cr = cx(X®) 1), With the choice R®) = P*) (D®*))~1/2 the full differential operator
becomes a standard Laplacian

(4.7) Vi - DVy = Ag.

To simplify the discussion, we assume throughout that this coordinate transformation
is made to equation 2.1 before numerical approximation.

5. Meshes with Multiple Levels of Resolution. In many reaction-diffusion
systems, interesting features are exhibited only in a sub-region of the spatial domain,
such as in a chemically active front or in a layer near boundaries [52; 75; 76]. For
such systems we introduce discretizations based on meshes which allow for multiple
levels of resolution. Two important issues arise in the context of SPDEs which are
not present in the deterministic PDE setting. The first issue is the need for consistent
discretizations of the stochastic driving field at coarse-refined interfaces of the mesh,
where there are changes in the spatial resolution of the mesh. The second issue is the
need for efficient methods to generate efficiently the required stochastic driving fields
on such meshes. We discuss discretizations for the Laplacian on multilevel meshes
and then introduce stochastic numerical methods addressing these two issues.
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5.1. Discretization of the Laplacian on Multilevel Meshes. To obtain
discretizations on multilevel meshes, we express the Laplacian in terms of the gradient
and divergence operators

(5.1) A =DG Laplacian
D=V .- Divergence
g=V Gradient.

To approximate the operators, we define for any discretization mesh a partition of
the spacial domain {Qp, }m, see Figure 5.1. For a given partition cell £,, we allow
for numerical values to be defined both at the center of the partition cell and at the
center of the faces of the partition cell. We approximate the Divergence Operator D
at the center of a partition cell using

4

(5.4) (Db)m = A—;m > bk Dk

k=1
The term by, x denotes the vector value at the center of the k" face of the partition
cell Q. The b denotes the composite vector of all such values on the partition.
The nm , denotes the outward normal to the k" face of the partition cell. The term
Ay, is the width of the partition cell. The notation (-)m, denotes the component
corresponding to the value at the center of the partition cell with index m. A useful
property of this approximation to the divergence operator is that its evaluation only
requires at the face centers the components in the normal direction, see the dot
product in equation 5.4.

We approximate the Gradient Operator G at the center of the faces of each par-
tition cell. Given the different levels of resolution in the mesh, many cases can arise
in principle. By convention, we restrict our methods to deal with meshes which have
the nested property that neighboring cells differ in resolution by at most one level.
This requires only two cases be considered at each face of a partition cell. The first is
when the neighboring cell is at the same level of spatial resolution. This corresponds
to Axy = Awxg, , where £, denotes the index of the neighbor in the direction of the
kth face of the partition cell. The second is when the neighboring cells differ by one
level of resolution, Axy, = 2Az,, or Azy, = %Auk.

To approximate the gradient operator on a face shared with a neighbor at the
same level of resolution, we use

(55) (Ge)), = sigm(ni)) o=,

In the notation (-)m,x denotes the components corresponding to the vector value at
the center of the k*" face of the partition cell with index m. The notation (-)(*)
denotes the k*" vector component. The discrete gradient operator only defines the
k" vector component at each face since this is all that is required by the discrete
divergence operator D of equation 5.4.

To approximate the gradient operator on faces shared between neighbors differing
by one level of spatial resolution, we must consider a cluster of partition cells. To
simplify the discussion, we consider the case where the partition cell with index m has
neighbors at the k" face which are of a more refined level of resolution, Az, = 2Axy, .
We define the cluster to be the collection of partition cells consisting of the partition
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cell with index m (labeled A) and the four neighboring partition cells in the direction
of the outward normal of the k* face (labeled B,C, D, E), see Figure 5.1. The
components of the gradient operator are approximated by

1 _
(5.6) (Gc)g>:sign(n$?k)2(03: ACC) =
127Tm
1 _
(5.7) (Gc)g“>:sign(n5,’i?k)2(03: ACC) =
12Tm
1
(5.8) (G0 = 5 [(Gof + (G|

To obtain a discretization of the Laplacian A on meshes with multiple levels of
resolution, we use the approximation

(5.9) L =DG.

The discrete gradient operator G and discrete divergence operator D are defined by
equations 5.4-5.8. Similar discretizations have been used in [20; 21; 24].

Using this approach to discretize the Laplacian allows for both Neumann and
Dirichlet boundary conditions to be imposed readily on rectangular domains. For
Neumann conditions the domain is discretized so that faces of the partition cells align
with the domain boundary. To impose the Neumann conditions the values of compo-
nents of the gradient are specified at the center of faces of the partition coinciding with
the boundary. For Dirichlet boundary conditions the domain is discretized so that the
centers of the partition cells align with the domain boundary. To impose the Dirichlet
boundary conditions the values are specified at the center of partition cells coinciding
with the boundary. The Laplacian is then computed using equation 5.9, where the
range of the gradient and divergence operators are restricted to the non-boundary
values of the partition cells.

5.2. Discretization of the Stochastic Driving Field on Multilevel Meshes.
For the development of stochastic numerical methods approximating equation 2.1 the
stochastic driving field n must be discretized both in space and in time. On multi-
level meshes, obtaining useful discretizations for the stochastic driving field encounter
a number of issues. One issue is to obtain spatial discretizations of the stochastic driv-
ing field which handle coarse-refined interfaces of the mesh, where there are changes
in the spatial resolution of the mesh. Another issue is to develop methods which can
generate efficiently the discretized stochastic fields on the multilevel mesh with the
required covariance structure.

To handle coarse-refined interfaces, we derive spatial discretizations using the
fluctuation-dissipation principle established for the discrete system in equation 2.4 of
Section 2. We obtain a discretization by considering how equilibrium fluctuations of
the discrete system approximate the equilibrium fluctuations of the continuum system.
We require the discrete system have equilibrium fluctuations with covariance C given
by

c
5.10 Cem = —59,
( ) £, m AZL'%n 2, m
where C'ij = ¢;0;; and & = (¢;). This choice of covariance C' corresponds to the equi-
librium fluctuations of the continuum system obtained when solutions are spatially
averaged over each of the partition cells, see equation 3.1.
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Multilevel Mesh Quad-Tree Data Structure

Partition Cell Cluster

GoYm + ® O+ B
(1_?|11)A (Gc)ﬁ,”-B E
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Fic. 5.1. Meshes with Multiple Levels of Resolution. The mesh defines a discretization of
space into a collection of square partition cells Qm index by m, (upper left). For discretizations
approzimating the divergence and gradient differential operators, values are stored at both the center
of each partition cell and at the centers of the faces of each partition cell. The cell center data is
denoted by + and the face centered data is denoted by [J. Discretizations must handle the coarse-
refined interfaces of the mesh where there is a change in spatial resolution. For this purpose, a
partition cell cluster is defined which consists of the coarse partition cell A and its four neighbors in
the direction of the interface BCDE, (lower panel). For the face of A shared with BC, we assume
the face centered value of A is the average of the face centered values of BC. The partition with
different levels of spatial Tesolution is represented using a data structure based on quad-trees (upper
right).

To obtain a spatial discretization of the stochastic driving field, we use this C'
and the fluctuation-dissipation principle established by equation 3.10. This requires
the covariance I" of the stochastic driving field satisfy

(5.11) I = —2LC.

To obtain this expression, we have used that the product LC is symmetric for the spe-
cific choice of covariance C' given in equation 5.10 and discretization of the Laplacian
L given in equation 5.9. This provides one approach for obtaining a spatial discretiza-
tions for the stochastic driving field on multilevel meshes handling the coarse-refined
interfaces. We compare this spatial discretization with other choices in Section 6.
The stochastic driving field must also be discretized in time. The SPDE given in
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equation 2.1 is approximated by the following stochastic process, see Section 3,

(5.12) dcy = Legdt + £dt + QdBy
(5.13) QQT =T.

To obtain a numerical approximation of equation 2.1, the stochastic process of equa-
tion 5.12 must be discretized in time. We use the Euler-Maruyama Method [14] which
gives the discretization

(5.14) "t =c" + Le"At + At + ™.

The c¢™ denotes the composite vector of concentrations of the molecular species over
the mesh at time ¢, = nAt. The time-step is denoted by At. The term 1™ denotes a
vector-valued Gaussian random variate with mean zero and covariance

(5-15) <(77m)(77n)T> = FAt&m,n-

For the precise definition of the covariance I' of n, reference the equations 5.11, 5.10,
and 5.9. The random variates 1 provide the discretization both in space and in time
for the stochastic driving field n of equation 2.1. For numerical methods based on this
approach, an important issue is whether the variates 1 can be generated efficiently
on the multilevel mesh with the required covariance given in equation 5.15.

5.3. Generation of the Discretized Stochastic Driving Fields on Mul-
tilevel Meshes. Efficient generation methods are needed for the random variates of
the discretized stochastic driving field 7 on the multilevel mesh. The variates 1 are
Gaussian with mean zero and have covariance given by equation 5.15. To simplify
the discussion we focus on methods to generate random variates g with covariance
I" given in equation 5.11. The random variates 1 can be generated readily from g,
since the covariances of n and g differ only by a scalar factor. We also consider only
the case of a single chemical species, since the stochastic driving field of each species
is statistically independent. The methods naturally extend to the multiple chemical
species case by generating the stochastic driving field for each species separately.

Our approach is based on splitting g into the sum of two other random variates
g1, g2, with g = g1 + g». For such a splitting, the covariance g can be expressed as

(5.16) F=Tan+Te2 +Taz +Tey
(5.17) Ciiw = (881 )

The I'(; 1) denotes the covariance of g; with gy, for j,k € {1,2}. If the two random
variates g1 and g2 are independent then I'( oy = T'(5,1) = 0. This gives

(5.18) =T, +T.

For notational convenience, we denoted I'y = I'(; 1) and Iy = I'(3 5y. This provides a
useful link between matrix factorization of I' and the splitting of a random variate g
into the sum of two independent random variates. For such a matrix factorization to
be of practical interest, the generation of g; and gs must be easier than the generation
of g. For the factorization to correspond to the splitting of a random variate g, the
factors I'y and I's must be symmetric positive semidefinite in equation 5.18.

To obtain a factorization, we consider modification of the discrete divergence
and gradient operators defined in Section 5.1. In the matrix representation of the
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discrete divergence operator, the matrix entries in each row correspond to weights
for values at the face centers of the partition cells, see equation 5.4 and Figure 5.1.
We define the modified divergence operator D', by setting matrix entries to zero
for weights corresponding to values at the center of faces shared along the coarse-
refined interfaces. In the matrix representation of the discrete gradient operator G’,
the matrix entries correspond to weights for values at the centers of the partition
cells, see equation 5.5, equation 5.6, and Figure 5.1. We define the modified gradient
operator G’, by setting matrix entries to zero for weights corresponding to values at
the center of partition cells bordering immediately the coarse-refined interfaces.
With these modifications the discrete operators satisfy

(5.19) G'=-DT.

A modified Laplacian can be defined by

(5.20) L'=D'G' =-D'DT.
For the factorization of I', we use

(5.21) I, =—2L'C
(5.22) Iy=T-T,.

For this to be useful, we must have that the factors I'y, I'y are symmetric positive
semidefinite and we must have efficient methods to generate g; with covariance I'y
and gy with covariance I's.

To obtain methods to generate g; with covariance I'y, we use properties of the
modified discrete operators. An important property is that the matrices L', I'y, and C
are all block diagonal for the same entries. This follows since the modified Laplacian
corresponds to imposing Neumann boundary conditions at the coarse-refined inter-
faces. The Neumann boundary conditions serve to decouple domains with different
levels of spatial resolution. As a result of decoupling, we obtain a collection of dis-
tinct domains each having a uniform level of spatial resolution. In Figure 5.1 the
mesh shown in the upper left has three such domains. We denote the block matrices
by L'(®), ng), and C®) which each correspond to the domain with uniform spatial
resolution indexed by k.

The block matrices of the covariance C' have entries

(k) ¢
.2 =
(5 3) Cl,m Az

o) (5@7m, ﬁ,m c Ji.
m
The ¢ = (c) denotes the average concentration and in the case of a single species
is a scalar, see equation 3.12. The Jj denotes the set of permitted indices for the
entries of the k" block. Since the mesh resolution is uniform on the spatial domain
corresponding to this block we have

24 ®) — _C_ )
(5.24) ¢ Ax?

The 1™ is an identity matrix for the entries of the k' block, with zero entries
elsewhere. We have used that on the k** spatial domain, Az, = Az, for all indices
m € Jj, where Azy, is the uniform partition size. Results for the single species case
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extend naturally by generating independently the stochastic driving field for each
chemical species.
The block matrices for I'; can be expressed as

(5.25) P = oW = (@) (QiM)T
(k) _ [ V2¢ 1(k)
2 = D .
(5.26) Q3 (ka

This factorization allows for the variates g; to be generated for each block by
(5.27) g = Q™.

The £(k) are standard Gaussian random variates with independent components having
mean zero and variance one. The notation [](*) denotes restriction to the vector
components corresponding to the spatial domain with index k. In assignment of
vector values using this notation, all of the non-indexed components are set to zero.
We generate g1 by sweeping over all of the uniform spatial domains indexed by k to
obtain

(5.28) g=> g
k

This method provides an efficient means by which to generate the random variates
g1-

To evaluate the cost of this procedure, we denote by N the number of compo-
nents of partition cells. The procedure requires generating a total of N independent
standard Gaussian random variates, performing a matrix-vector multiplication, and
sweeping over the uniform spatial domains indexed by k. The generation of the
Gaussian variates can be accomplished with O(N) operations [89]. The matrix rep-
resentation of the discrete divergence operator is sparse with a constant number of
non-zero entries per row. Since ng) has the same sparse structure, the matrix-vector
multiplications can be performed with a total of O(N) operations. Using sparse data
structures, the summation performed when sweeping over the uniform spatial domains
can be performed with a total of O(N) operations. This shows the method generates
the random variate ggk) with an optimal asymptotic cost of only O(N) operations.

To obtain methods to generate go with covariance I's, we consider the remaining
entries of I". By the definition of the modified discrete operators L', it can be shown
that I's is block diagonal. In this case, the blocks correspond to each partition cell face
involved in a coarse-refined interface. Associated with each such face is a cluster of
partition cells consisting of one coarse cell and two refined cells which are immediate
neighbors in the direction of the interface, see Figure 5.1. The blocks are given by

() 8¢
2 ry) =
1 -2 -2
(5.30) M=1| -2 4 4
2 4 4

The faces of the coarse cells shared along the coarse-refined interface are indexed by j,
see Figure 5.1. The Az; denotes the width of the coarse partition cell of the cluster.
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An important technical point concerns partition cells which are involved in more than
one cluster, such as at a corner, see Figure 5.1. In this case, we use the convention
that the repeated entries of the overlapping blocks for such partition cells are added
together. This can be shown to give correctly the full matrix.

For the factorization given by equation 5.18 to be valid, the factor I's is required
to be positive semidefinite. This property can be investigated by considering the
eigenvalues of the matrix M. These are given by

(5.31) A =0, A=0, A3=0.

This shows that I's is indeed positive semidefinite and the factorization is valid.
To generate the random variates go, we use the eigenvectors of M. The orthonor-
mal eigenvectors are given by

G_ L[] o 1 o 1],
532) v =— | 1| W= 4| v =] 2
(>:32) SRRV P R WG B T

The random variate is obtained for the cluster indexed by j by
539 8 = [ (VR + eV VA,
J

The & éj ) denote independent standard Gaussian random variates with mean zero and
variance one. This expression can be simplified since Ay = Ao = 0. This gives

. 2V6C (1 (4
(5.34) gl = Ac, ¢V,

We generate go by sweeping over all of the clusters indexed by j to obtain

(5.35) g=> g
J

This method provides an efficient means by which to generate go.

To evaluate the cost of this procedure, we denote by N the number of partition
cells. The generation procedure requires generating one Gaussian random variates for
each cluster, a scalar-vector multiplication, and a sweep over the clusters index by j.
By counting the number of clusters and using sparse data structures the procedure
can be carried out with at most O(N) computational operations. In practice, the
actual cost is expected to be smaller since clusters only occur for partition cells at
coarse-refined interfaces, which will typically make up only a small subset of the mesh.
This method for generating go has an optimal asymptotic computational cost of O(N)
operations.

To generate the variate g we add the results from the procedure generating g; and
go. Since this addition costs only O(NN) operations, we have shown that this method
generates g with an optimal asymptotic computational cost of O(IN) operations. This
method is significantly more efficient than commonly used approaches for correlated
variates, such as Cholesky factorization [89]. The Cholesky algorithm applied to
" costs O(N?3) operations and generally produces a non-sparse factor [89]. Another
drawback is that this factorization needs to be performed each time the structure of the
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adaptive mesh changes. For the generation of each random variate, a matrix-vector
multiplication must be performed. Since the matrix factor is generally not sparse,
each generation of a random variate costs O(N?) operations. The method using
equation 5.21 performs significantly better than this, having instead a computational
cost of only O(NNV) operations.

In summary, the presented procedure for computing the random variate g by
splitting it into two random variates g and g provides a potentially versatile tool
for generating random variates with a specified covariance structure. The method
relies on being able to factor the covariance I into I'y and I's with random variates g
and go which are easier to compute than g. In the case of adaptive multilevel meshes
such a factorization is found for the covariance I' required by equation 5.11. In this
case, the procedure is shown to have an optimal asymptotic computational cost of
O(N) operations.

5.4. Neumann and Dirichlet Boundary Conditions. In the case of Neu-
mann and Dirichlet boundary conditions, the discretized stochastic driving fields have
an adjusted covariance structure I'. The covariance is adjusted by modifying the
Laplacian operator L and covariance C' appearing in equation 5.11. In the matrix
representation of L and C the entries correspond to weights at the center of the
partition cells.

For Dirichlet boundary conditions the domain is discretized so that the centers
of the partition cells align with the domain boundary. To account for the Dirichlet
boundary conditions, the covariance matrix C' is modified to obtain C by setting all
entries to zero which correspond to the partition cells comprising the boundary. The
covariance of the stochastic driving field is given by

(5.36) I =-2LC.

The stochastic driving field with covariance I is generated using the methods of
Section 5.3.

For Neumann conditions the domain is discretized so that faces of the partition
cells align with the domain boundary. To handle the Neumann boundary conditions,
the discrete divergence operator D is modified to obtain D by setting all entries to
zero which correspond to faces of the partition cells which comprise the boundary.
A modified Laplacian can be defined by L = DG. The covariance of the stochastic
driving field is given by

(5.37) I =-2LC.

The stochastic driving field with covariance I' is generated using the methods of
Section 5.3.

We remark that the only cases considered were deterministic Neumann and Dirich-
let boundary conditions. However, there may be applications in which stochastic
boundary conditions are of interest. In this case, entries corresponding to the random
fluxes or concentrations could be prescribed on the boundaries. The terms would
contribute in the model through the use of boundary values in the evaluation of the
discrete Laplacian appearing in equation 3.2. Depending on the system modeled, for
such stochastic boundary conditions the stochastic driving field may require additional
modification to yield consistency with statistical mechanics.

6. Equilibrium Fluctuations at Coarse-Refined Interfaces. Studies of the
statistical features of a system often use stochastic numerical methods to generate a
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dynamical trajectory over a long period of time. The statistics are then estimated
from the dynamical trajectory by performing an averaging over time, subject to er-
godicity assumptions [4; 5]. Statistics estimated in this manner include probability
expectations corresponding to thermodynamic equilibrium and correlation functions
in space and time [5]. For long trajectories, discretization errors are expected to ac-
cumulate significantly. The rate and nature of this accumulation is expected to play
an important role in the accuracy of estimated statistics.

We investigate the contributing role of errors introduced by the spatial discretiza-
tion of the stochastic driving field. We focus particularly on errors at the coarse-refined
interfaces of a multilevel mesh. To highlight features of our approach to spatial dis-
cretization, and to highlight issues which can arise at such interfaces, we compare
our approach with an alternative based on the use of random fluxes. For the different
methods, we investigate the role of the accumulation of spatial discretization errors on
the quality of the covariance of the equilibrium fluctuations of the discretized system
at coarse-refined interfaces.

Each spatial discretization of the stochastic driving field which we consider, corre-
sponds to a specific choice for the covariance I'. For a given choice of T", the equilibrium
fluctuations of the spatially discretized system have covariance

(6.1) C = —%L‘ll“.

We have used equation 3.2 and equation 5.11.

As an alternative to the discretized stochastic driving field which we introduced
in Section 5.2, we consider an approach based on random fluxes at the coarse-refined
interface. For uniform meshes the stochastic driving field can be generated by taking
the discrete divergence of independent random fluxes at the center of faces of the
partition cells [8; 10]. A natural extension to multilevel meshes is to introduce at the
coarse-refined interface random fluxes at the face centers of the refined partition cells
BC of each cluster, see Figure 5.1. For the coarse partition cell A of each cluster,
the total flux across the shared face into A is the sum of the fluxes at BC. This is
represented in the area weighted fluxes by setting the face centered flux of the coarse
cell to be the average of the random fluxes at BC.

To investigate the approach based on random fluxes for the discretization of the
stochastic driving field, we construct I' and use equation 6.1. It is found that while
the discretization errors in the driving field are localized at the coarse-refined inter-
face they contribute to the equilibrium fluctuations in a non-local manner. For the
equilibrium fluctuations, this has the effect of introducing spatial correlations which
extend several partition cells into the mesh away from the coarse-refined interface, see
Figures 6.1 and 6.2.

We investigate the propagation of localized errors at the coarse-refined interface.
As a model for the spatial discretization error in the stochastic driving field we use a
“white-noise” stochastic field. Since the equations are linear, the contributions of the
errors in the stochastic driving field to the equilibrium fluctuations can be obtained
from equation 6.1 with the special choice for T’

(6.2) Fem = dem-

In this case, the resulting C' gives the contributions of the errors to the equilibrium
fluctuations. It is found that while the errors are localized and uncorrelated in space,
they propagate over time and introduce long-range correlations in the covariance
structure of the equilibrium fluctuations of the discrete system, see Figures 6.1 and 6.2.
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F1a. 6.1. Spatial Covariance of Equilibrium Fluctuations at a Coarse-Refined Interface. The
top row shows the covariance of the equilibrium fluctuations of the system for each choice of the
stochastic driving field at a cell at the coarse-refined interface on the refined side (see + symbol).
In the second row, the covariance with this cell is plotted as a function of y at cross sections of the
mesh near the interface.

In contrast, our discretization of the stochastic driving field has by design equi-
librium fluctuations with a prescribed covariance structure which is uncorrelated in
space, see equation 5.10, equation 5.11, and Figures 6.1 and 6.2. The discretiza-
tion errors in this approach are constrained by requiring that the discrete system
exhibit exactly the spatially averaged equilibrium fluctuations of the continuum sys-
tem. While there are discretization errors with respect to the continuum stochastic
driving field, the constraints introduce errors which propagate on the mesh in such a
manner that they do not introduce long-range correlations in the equilibrium fluctua-
tions of the system. When compared with the discretization based on random fluxes,
this feature is expected to give more accurate results for the estimation of spatial
correlation functions of the system.

The approach we introduce for controlling the errors contributed by spatial dis-
cretization of the stochastic driving field is potentially useful in developing stochastic
numerical methods for many types of SPDEs. The approach provides a method by
which to spatially discretize the stochastic driving fields by controlling the errors in
the fluctuations of the discretized system at statistical steady-state. We further high-
light features of this approach to spatial discretization in the convergence analysis
developed in Section 8.

7. Meshes with Curved Boundaries. For many applications it is natural
to consider reaction-diffusion systems on spatial domains having a geometry with
curved boundaries. In pattern forming systems the geometry along with boundary
conditions are expected to play an important role. The geometry is expected to
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F1a. 6.2. The top row shows the covariance of the equilibrium fluctuations of the system for
each choice of the stochastic driving field at a cell at the coarse-refined interface on the coarse side
(see + symbol). In the second row, the covariance with this cell is plotted as a function of y at cross
sections of the mesh near the interface.

effect the possible eigenmodes of the system and constrain perturbations which effect
stability [73; 75; 76]. In biological applications, it is expected that the location within
a cell or tissue may dramatically effect the rates of diffusivity and reactivity of the
chemical species. One natural modeling approach is to decompose space into disjoint
but coupled domains on which separate reaction-diffusion equations are parameterized
and solved to account for local effects [76]. For biological systems, the individual
regions are expected to have complicated geometries [1; 100]. The discretizations
introduced previously for the Laplacian on structured multilevel meshes only allow
for rectangular boundaries, see Section 5. We extend the applicability of the presented
methods by developing discretizations for domains with curved boundaries.

7.1. Discrete Approximation of the Laplacian on Meshes with Curved
Boundaries. To obtain accurate results for the Laplacian on domains with non-
rectangular geometries requires the development of appropriate discretizations in the
vicinity of the curved boundaries. To simplify the discussion, we consider geometries
which have only smooth boundaries. We also only consider the case of Neumann
boundary conditions imposed on the curved boundary. Our approach is based on a
finite volume discretization of the Laplacian and is a variant of the methods referred to
as Embedded Boundary Methods, Cartesian Grid Methods, Cut-Cell Methods, see [36—
42].

The boundary is approximated over the regular structured mesh by piecewise lin-
ear segments. The linear segments are defined by connecting the points of intersection
of the boundary with the faces of the partition cells {Q,}, see Figure 7.1. We refer
to any partition cell containing a linear boundary segment as a “cut-cell.” From the
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assumed smoothness of the boundary, it is always possible to refine sufficiently the
mesh so that each partition cell contains at most one linear boundary segment. For
each cut-cell of the boundary 2y,, two sub-regions are defined. The first subregion
corresponds to the part inside the solution domain of the reaction-diffusion system
and is denoted by Q... The second corresponds to the region outside the solution
domain and is denoted by Q. . The full partition cell is always assumed to be the
union of these two parts, Qpy = QL, UQL.

To obtain a discretization of the Laplacian, we use the Gauss Divergence Theorem
on each partition cell [92]

(7.1) / Acdx = / JdAy
QL aQr,
(7.2) J=-Vc-n.

The n denotes the inward normal on the partition boundary 9€Q,. The Q. refers to
the part of the partition cell inside the solution domain. The J denotes the inward
concentration flux across the face per unit length.

A discretization is obtained for the Laplacian by approximating the two sides of
equation 7.1. By treating the Laplacian as constant on each partition cell and the
concentration gradient as constant on each partition face, we obtain the discretization

1
> T, 4.
k

|2

(7.3) L], =

ml
m

The |Q,,| denotes the area of the inside sub-region of the partition cell indexed by
m. The |09, | denotes the length of the k™" face of the inside sub-region of the

partition cell. The Jr[,]f] denotes the concentration flux across the k" face into the
interior sub-region.

The concentration field of the chemical species is represented by values at the
center of each full partition cell, even when the partition cell is cut by a boundary.
This center value is used even when the full partition cell center falls within the
exterior sub-region Q7 . In this latter case, the value at the cell center can be thought
of as representing the extrapolation of a smooth concentration field solution into the
exterior sub-region. This approach of using values at the center of the full partition
cell is based on the work of [42].

For the discretization in equation 7.3 to be useful, accurate estimates are required
for the concentration fluxes Jl[ﬁ]. Estimates are needed only for the faces aligned with
the Cartesian directions. The concentration flux on the curved boundary is specified
since we are only considering the case of Neumann boundary conditions. To estimate
the concentration flux at a given face, a bilinear interpolation is made to define locally
a concentration field

(74)  @dM(x) = afem, + (1 = @)Bem, + a(l = B)em, + (1= a)(1 = B)cm,
a(x) = (x{” —xM)/Ax
Bx) = (x —x@) /A

For the mt" partition cell and kth face we assign m; = m. The other indices indices
my, m3, my are assigned to the nearest neighbors in the direction of the k** face. For
the collection of partition cells for the case of £k = 1 and k = 2, see Figure 7.1. The
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notation (-)) refers to the vector component indexed by £. The notation (-)* refers
to values associated with the face indexed by k. The flux is estimated by

(7.5) JE = ekl (xp,) - nlk],

The xi. denotes the location of the center of the face, where the center location
depends on how the face is cut by the boundary, see Figure 7.1. The nifﬁ denotes the
inward normal of the k' face.

Even though only linear interpolation was used, in fact the estimate is second
order accurate for the flux evaluated at the center of faces aligned with the cartesian
directions. We discuss this for the case of estimating r[yll], where the center of the face

2
face is not cut, equation 7.5 yields the usual central difference approximation for the

gradient component in the z-direction

has component xﬁ) =1 xél) + xgl)). In the case of a full partition cell where the

Cmy — C
76 gl — Zm2  mi
(76) W= fme
This shows the estimate is second order accurate in the case of an uncut cell.
In the case of a partition cell in which a face is cut, the estimate corresponds to
a linear interpolation in the y-direction of two central difference approximations for
the gradient component in the z-direction, see equations 7.4 and 7.5,

(1] _ Cmy; — Cmy _ Cmy — Cmg
(7.7) Jh = pimetm (1 g me = Cona,
Since each central difference is second order accurate, the linear interpolation ensures
the estimate at the face center is also second order accurate. Using these estimates in
equation 7.3 yields a first order accurate discretization of the Laplacian. For a more
detailed discussion, see [42].

At curved boundaries we use the discretization for the Laplacian defined by equa-
tions 7.3, 7.4, and 7.5. For the approximation of the SPDEs given in equation 2.1, the
stochastic driving field must be discretized at the curved boundaries. Approximation
at curved boundaries poses a challenge, since the partition cells have non-homogeneous
areas and geometries defined by the boundary. This irregularity must be handled in
the discretization of the stochastic driving field. For a discretization to be useful in
practice, methods are are needed for the efficient generation of random variates with
the required covariance structure representing the discrete stochastic driving field.

7.2. Discretization of the Stochastic Driving Field on Meshes with
Curved Boundaries. To discretize the stochastic driving field on meshes with
curved boundaries, we take an approach similar to the case of multilevel meshes
discussed in Section 5. The approach uses the fluctuation-dissipation principle es-
tablished for the discrete system in equation 3.10. The curved boundary introduces
irregular terms in the discretizations as a result of the non-homogeneous areas and
face lengths of the cut partition cells. To obtain a consistent spatial discretization
of the stochastic driving field, the covariance of the equilibrium fluctuations C' is
specified to be

C
(78) Ce,m = |Q;n|5£,m
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Fia. 7.1. Domain with a Curved Boundary and Cut Partition Cells: On the left is shown the
disk-shaped domain for the reaction-diffusion system. On the right is shown for a cut cell, partition

]

cells of the mesh used for computing the concentration fluz J,[,i . The symbol + denotes the location
of the center of the full partition cells. The symbol O denotes the location of the center of the faces
of the partition cells. For cut faces, the center is located at the mid-point of the face segment inside
the solution domain. The light Tegion denotes for the partition cells the subregions Q2 inside the
solution domain. The dark region denotes for the partition cells the subregions Q. outside the
solution domain. On the right are shown for the interior subregion Q. the inward concentration

my
fluzes labeled by J,[l,i].

The C_’ij = ¢;0;; and ¢; = (¢;) is the average concentration of the it" chemical species.
For each partition cell, the |€2,| is the area of the sub-region within the solution
domain. This choice of covariance C corresponds to the equilibrium fluctuations of
the continuum system obtained when the concentration field is spatially averaged over
the interior subregion of each partition cell, see equation 3.1.

For the choice of equilibrium covariance C' in equation 7.8 and the discrete Lapla-
cian L in equation 7.3, the discretized stochastic driving field has the covariance I'
given by

(7.9) I'=-LC-CL".

The stochastic driving field must also be discretized in time. The SPDE given in
equation 2.1 is approximated by the following stochastic process, see Section 3,

(7.10) dey = Legdt + £dt + QdB,
(7.11) Q0T =T.

To obtain a numerical approximation of equation 2.1, the stochastic process of equa-
tion 7.10 must be discretized in time. We use the Euler-Maruyama Method [14] which
gives the discretization

(7.12) "t =c" 4 LAt + £ At + ™.

The ¢™ denotes the composite vector of concentrations of the molecular species over
the mesh at time ¢, = nAt. The time-step is denoted by At. The term 1™ denotes a
vector-valued Gaussian random variate with mean zero and covariance

(7.13) (™) (n™)T) = TAtS,.
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For the precise definition of the covariance I' of 7, reference the equations 7.9, 7.8,
and 7.3. The random variates ) provide the discretization both in space and in time
for the stochastic driving field n of equation 2.1. For numerical methods based on this
approach, an important issue is whether the variates ) can be generated efficiently on
meshes with curved boundaries having the required covariance given in equation 7.13.

7.3. Generation of the Discretized Stochastic Driving Fields on Meshes
with Curved Boundaries. To obtain efficient generation methods for the variates
of the discretized stochastic driving field 1 on meshes with curved boundaries, we
use a splitting approach similar to the one used in Section 5.3. To simplify the
discussion we focus on methods to generate random variates g with covariance I’
given in equation 7.9. The random variates 1 can be generated readily from g, since
the covariances of  and g differ only by a scalar factor.

To generate the random variate g we shall use the splitting g = g1 + g2 into two
independent random variates g1, g>. The covariance of g, g1, and go then satisfy

(7.14) =T+,

For details of how this is obtained and notational conventions, see Section 5.3.

To obtain I'; we consider a modified Laplacian. The discrete divergence operator
has a matrix representation in which the entries correspond to weights on the faces of
the partition cells. The modified divergence operator D" is obtained by setting to zero
all weights for faces shared with a cut partition cell. For the matrix representation,
all rows are set to zero corresponding to cut partition cells. This defines a divergence
operator D" which is non-zero only on the domain consisting of the uncut partition
cells. We similarly modify the discrete gradient operator to obtain G” by setting
to zero all weights associated with the cut-partition cells and faces shared with cut-
partition cells.

An important property of the modified divergence and gradient is

(7.15) D" =-G".
We define a modified Laplacian by
(7.16) L// _ D//G// _ —DH(D”)T.

The modified Laplacian is non-zero only on the domain of uncut partition cells. For
this domain, the modification corresponds to imposing Neumann conditions on rect-
angular boundaries having a stair-case-like geometry. The factor I'; is defined by

(7.17) I, =—2L"C
(7.18) Iy=T-T,.

From equation 7.16 the factor I'y can be explicitly factored using an approach similar
to the one used in Section 5.3, see equation 5.25. The explicit factorization also allows
for a similar generation method to be used for the random variates, see Section 5.3.
The computational cost of generating the random variates by these methods is O(N)
operations, where NN is the total number of partition cells.

To obtain I's we consider the remaining entries of the covariance. This factor
is more difficult to handle since the entries are irregular. The entries correspond
to weights over the cell centers of cut partition cells which have different areas and
geometries. The covariance matrix I'y can be shown to be block diagonal. Each block
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is denoted by Féq) and corresponds to each disjoint collection of partition cells which

are cut by the boundaries. The blocks Fé‘J) can be shown to be positive semidefinite,
which shows the splitting provides a valid factorization of I' in equation 7.14. The
semidefiniteness poses issues for the use of commonly used generation methods, such as
the Cholesky factorization. The Cholesky factorization requires positive definiteness.

To handle this issue we use that ng) is symmetric, which ensures a complete basis
of orthonormal eigenvectors [86]. We generate the random variate using

My
(719) géQ) — Zgé‘]) /A](J])V](C‘])
k=1

The )\,(Cq) denotes the k" eigenvalue and v,(cq) denotes the k" orthonormal eigenvector.

The & ,iq) denote independent Gaussian random variables with mean zero and variance
one. The notation (-)(@ refers to the vector components associated with the indices
of the matrix block indexed by gq. We denote by M, the number of components of

géq). To obtain the random variate go, a sweep is made over all blocks

(7.20) 2= g
qg=1

We denote by n the total number of blocks.

To evaluate the cost of generating random variates, we consider each step of the
above procedure. The eigenvalue and eigenvectors can be obtained for Féq) with a com-
putational cost of O(M_) operations [86; 94]. Since this must be performed for each
block, the total cost of computing the eigenvectors and eigenvalues is O(ZZ:1 M 5)
While this has an unfavorable M;’ scaling, the number of partition cells M, which
are cut by the curved boundary comprise a lower one dimensional set and will often
be only a small fraction of the partition cells of the mesh. Also, this eigenvector-
eigenvalue procedure is only required when the geometry of the curved boundaries
of the mesh change. For many problems this procedure is only required once at the
beginning of a simulation.

To evaluate the cost of generating the random variate gé‘n, the sum in equa-
tion 7.19 must be considered. In general, the eigenvectors will have almost all non-
zero vector components. As a consequence the generation of each random variate ggq)
from the sum in equation 7.19 has a cost of O(Mq2 ) operations. Using sparse data
structures, the sum in equation 7.20 can be evaluated with a cost of 0(2221 M,)
operations. Once the eigenvalues and eigenvectors are known, this gives for the gen-
eration of each random variate g the cost of O(3-,_, M7) operations.

The introduced methods allow for the generation of each random variate g with
a computational cost of O(N + 2221 M7), where N is the total number of parti-
tion cells in the mesh. Obtaining the required factors for the generation method has
a computational cost of O(N + >/, M7). While the curved boundaries introduce
a non-optimal M7 and M scaling in the methods, the introduced approach is still
expected to be much more efficient than commonly used approaches. For instance,
a direct eigenvector decomposition of I' would cost O(N?) to generate the required
factors and O(N?) to generate each random variate g. The approach we introduce
is significantly more efficient since the number of partition cells M, which are cut by
the curved boundary comprise a lower one dimensional set and will often be only a
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small fraction of N. This substantially reduces the size of the matrices for which the
expensive eigenvector decomposition procedure must be performed and yields a more
efficient generation procedure for g.

8. Convergence of the Stochastic Numerical Methods for the Linearized
Equations. The proposed stochastic numerical methods are shown formally to con-
verge in the case when the system is near steady-state and the fluctuations are small
relative to the mean concentration. As discussed in Section 1, the solutions of equa-
tion 2.1 do not have classical solutions in terms of functions with well-defined point-
wise values. Instead, the solutions are represented by linear functionals (distribu-
tions) [68; 70; 72]. To simplify the discussion and to avoid delving into too many
technical issues, we formally demonstrate a form of weak convergence of the stochas-
tic numerical methods which are semi-discretized in space. We consider bounds only
in terms of the infinity norm, but it is expected that similar bounds can also be
developed for the L%-norm.

The form of weak convergence we consider corresponds to convergence of the
moments of linear functionals A of the form

t
(8.1) a(x,t) = Alc] = // a(x,y, s)c(y, s)dsdy
aJo
when numerically approximated by A of the form
t
(8.2) a(x,t) = Alc] = Z/ (X, Ym, 8)ém(s)dsAxd .
™ 70

The a(x,y, s) is a bounded compactly supported function which is smoothly varying
in space x, y and in time s. The form of weak convergence we consider is defined as
convergence of all moments

— 0, asAz—0.

(n) (n)
(83) HMAI,AZ,,,.,ATL — My a4,

The n'” moment is defined by

(84) MX),AQ,---7A71 (XlatlaXQatQa cee 7X’Ilatn) - (a/l(xla tl)@Q(XQ,tQ) tr an(xnatn)>

(85) MY (xatr X ta X t) = (@1 (X1, 01 (X2 t2) - (X ).
This convergence is required for each moment n > 1 and for any choice of functionals
Ay, As, ..., A, of the form of equation 8.1 when approximated by Aj, Ao, ..., A, of
equation 8.2. The formal analysis will use the infinity-norm defined by

(86) ||f(X1,t1,X2,t2,...,Xn,tn)”oo: sup |f|

X1y Xn,t1,...0n

The supremum is taken over the domain {x; € Q, t; € [0,T]}, where both the
spatial and temporal domains are bounded, |Q] < co and T' < co. The definition for
convergence given by equation 8.3 is only one of many different types of convergence
which can be defined for stochastic processes, see [14].

An intuitive motivation for this form of weak convergence is to think of the func-
tionals A as being analogues of physical observations which would be obtained from
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experimental measurements of an underlying fluctuating concentration field. In ex-
periments any measured quantity is averaged to some extent in space and time. Such
averaging is represented in the functional by integrating the concentration field against
the function a. Weak convergence corresponds to the situation where the statistics of
any measurement of the underlying concentration field can be reproduced by simula-
tions up to a specified precision provided one uses a sufficiently refined discretization
mesh.

A number of simplifications can be made by utilizing linearity of the functional
A and properties of ¢. From linearity and the smoothness of @ we have that a(x,t) is
a Gaussian random field with well-defined pointwise values. This has the important
consequence that statistics of the random field are completely determined by the
first two moments. As a result, only the case of n < 2 needs to be considered in
equation 8.3.

For the system close to statistical steady-state and for sufficiently small fluctua-
tions relative to the mean concentration it is sufficient to consider the linearization of
equations 2.1. This corresponds in equation 2.1 to a functional of the form F[c] = Fe
where F denotes a linear functional. To simplify discussion of the formal analysis, for
both the Laplacian and the linearized part of F we account for contributions in one
linear operator £ of the reaction-diffusion system. We denote the discretization of £
by L.

In the linearized regime, taking an average of equation 2.1 and equation 3.2 gives
for the first moment a deterministic reaction-diffusion equation. For the first moments
the convergence follows straightforwardly from the deterministic convergence theory.
We focus on demonstrating convergence of the second moments which arise from the
fluctuations.

When working with the second moments it is helpful to consider the covariance

function R(xy, t1,X2,t2) = ME421),A2 — MSBM%, which can be expressed as

(8.7)
R(xi,t1,%x2,t2) = /dy1dy2/d51d52 a1(x1,y1,51)q(y1, 51, ¥2, 52)a2(X2, y2, 52)
q(y1,51,¥2,52) = ((c(y1,51) — €)(c(y2, 52) — ©)) -

The a7 and a9 correspond to the linear functionals A; and As represented in the form
of equation 8.1. The integrals in y1, y2 and s;, s9 are taken over the bounded domain
{(y1,¥2,81,82) € Q x Q x[0,t1] x [0,¢2]}. Similarly for the semi-discretized system
we have the covariance function ﬁ(xl, t1,Xa,ta) = M%Ql) A MSI)M%QJ, which can be

expressed as

(8.8) R(x1,t1,Xa,t2) = ZZ/dS1d82 01(X1, Ymy, S1) -

mi; mo
~ d d
‘q(Ymy» 51, Ymas 52)02(X2, Yy, $2) Az, Azl

(j(ymlvslaymw 52) = <(Cm1 (51) - 6)(Cm2 (52) - 6)> :

Since c is a solution of equation 2.1, we have formally that c(y, s) = e*~"%¢(y, )
when s > r. The £ denotes the linearized operator which accounts for contributions
from the Laplacian and linearized chemical reaction functional F. The operator L is
assumed to be negative semidefinite. The e** denotes the solution operator over the
time interval [0,¢] from the semi-group associated with equation 2.1, see [70; 78]. By
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the choice of stochastic driving field n in equation 2.2, we have

(8.9) ((c(y1.51) — @) (c(y2, s2) — €)) = el ~*2)EC,
for s1 > so. We define C by
(8.10) C(y1,y2) = &(y1 — y2).

Substituting this into equation 8.7 yields

R(x1,t1,%2,t2) Z/dY1dY2/ dsidsy a1(x1,y1,51)e" DL Can(x2,y2, 52)

S$1>82

+/dy1dy2/ ds1dsy aa(Xa,ya2, 52)e*2 75V Cay (x1,y1, 51).
S2>81

By a similar argument for the semi-discretized equation 3.2 we have c(s) = e~ X¢(r)
for s > r, where L denotes the discretized approximation for £. The L is assumed
to represent a negative semidefinite matrix. The e’ denotes the matrix exponential
providing a solution operator for the spatially discretized equations, see [86; 87]. By
the choice of stochastic driving field g; in equation 3.10, we have

(811) <(C(81) — E)(C(SQ) _ E)T> — G(SI_SZ)LC,
for s1 > s9. We define C' by
(812) [C]ml,mz = Eéml,mZ/AfE;{nl-

The 0m, ,m, denotes a Kronecker d-function. In the notation []m, m, denotes the
(m7, my) matrix entry. Substituting this into equation 8.8 yields

R(x1,t1,%2,t2) = Z / dsidsy (X1, Ym,, $1) -
51>52

mj,ms

'[6(52751)L0]m1 ,mo (2 (X2a Ym,; 52)A$§1n Axd

1 ma>
+ Z / ds1dso a2(x2;ym2a52)'
S2>81

mj,ma2
sy—s1)L d d
~[e(‘52 51) Clmy,m,@1(X1, Ym, , 51)Axg, Axy, .

To show convergence it is useful to let

(8.13) Bi(y,t) = /e(t_”)ﬁc(y,m)az(xg,ya, s2)dyo
(8'14) Bl (Ym; t) = Z[e(tisZ)LC]m,mz (€5 (X27 Yms,, SQ)Axfng
my

with similar definitions for (g, 5’2. From the definitions of the operators e(*=*2)€ and
e(t=52)L we have that (1 and (; solve the following differential equations with specified
initial values

(8 15) 851/815 = Lf, for t > s
' Bi(y,s2) = [Cly,y2)aa(x2,y2,s2)dys fort= s,
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and

(8.16) { dﬁl/dt = LB, for t > s9 }
. 61(Ym7 52) = ZmZ [C]m,mQQQ(XQ;me; SQ)A:CIanv fOI' t= 52 '

The S5 and Bg solve similar differential equations. Using the specific form of C and
C' given in equations 8.10 and equation 8.12 we have that (1(y, s2) = aa(x2,y, s2)
and 31 (¥m, S2) = a2(X2,Ym, s2). From a deterministic convergence theory for the
approximation of £ by the discretized operator L for such differential equations, we
have

(8.17) 31— Bill — 0, as Az — 0.

For 3y and (5 a similar result is obtained from the deterministic convergence theory.
The difference of the covariance functions of the discretized system and continuum
system can be bounded using the triangle inequality by

(8.18) IR-R| <@L+ L+ I3+ L.
where
(8.19)
L = Z/ ds1dse o1(X1,Ym, $1) (31(X17ym751) - 51(X1,ym781)) Azl
m YS1>s2
I, = Z/ ds1dsy a2(X2,ym, 52) (B2(X27Ym752) - 52(X2,Ym752)) Az,
m YS2>s1
I3 = Z/ ds1dsa (X2, Ym, $2)01 (%1, ym, 1) Az,
m YS2>s1
- /dY/ dsidsz as(x2,y,s2)01(x1,y, 81)‘
§2>51
Iy = Z/ dsidsa a1(X1,Ym, $1)02(X2, ym, s2) Az,
m Ys1>s2

— /dY/ dsidsy a1(x1,y,51)32(x2,y, 52)
81>82

Using properties of the norm, the I3 term can be bounded by

I, < Z/ N ds1dss o (X1, Ym, $1)| Az,
81 >82

m

-

An important property of this estimate for I; is that the first term remains bounded
as Ax — 0. This follows since ay is compactly supported. Using this fact, we have
I; — 0 from equation 8.17. By a similar argument, we have Iy — 0.

For I3 we have the first term is the Riemann sum approximation of the second
integral term in y, see equation 8.19. Since «; is compactly supported this implies
I3 — 0. By a similar argument we have Iy — 0.

These arguments establish that Iy, I, I3, Iy — 0 and formally show that

(8.20) IR - R| — 0.
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This along with convergence of the first moments implies

2 2

(8.21) ||M%1)7A2 ~MG 0.

Since the random fields are Gaussian and completely determined by the first two mo-
ments this analysis formally establishes that the stochastic numerical methods weakly
converge. An important feature of this form of weak convergence is that the stochastic
methods produce statistics convergent not only for individual observables represented
by A. The stochastic methods are also convergent for any cross-correlation statistics
for observables represented by A; and A which reference the same underlying con-
centration field. Using the same basic approach, similar results are expected to hold
for other norms, such as the L2-norm.

To obtain convergent stochastic numerical methods, the analysis indicates that it
is not only required that the discretization of the differential operator £ be consistent,
but that the discretized system have equilibrium fluctuations with a covariance struc-
ture C' consistent with C of the continuum system. An important issue in practice is
that the equilibrium covariance structure is not discretized independently but rather
arises from the fluctuations induced by the discretized stochastic driving field, as in
equation 3.2. To control the discretization errors introduced in the fluctuations of
the discretized system as the mesh is refined, we utilized a variant of the fluctuation-
dissipation principle of statistical mechanics, see Section 3. This was used to ensure
that the stochastic numerical methods exhibit equilibrium fluctuations with the speci-
fied covariance C, which was chosen to be consistent with C of the continuum system.
This approach is especially important at coarse-refined interfaces of multilevel meshes
and cut partition cells of the mesh near the domain boundaries to ensure discretiza-
tions for the stochastic driving field yield accurate stochastic numerical methods.

9. Applications. As a demonstration of the developed stochastic numerical
methods, simulation studies are carried out for two applications. The first appli-
cation studies the effect of fluctuations in microorganism direction sensing based on
concentration gradients. The case investigated concerns a single biological cell which
senses concentration gradients in an environment exhibiting a shallow gradient ob-
scured by fluctuations. The second application studies fluctuation-induced pattern
formation in spatially extended systems. A variant of the Gray-Scott chemical re-
actions is considered in a regime where the deterministic reaction-diffusion system
only exhibits a localized stationary pattern. When introducing fluctuations, a rich
collection of patterns emerge over time, in which spotted patterns migrate, combine,
and replicate. In both of the applications, the adaptive features of the stochastic
numerical methods are used to track at high resolution regions where the reactions
are chemically active.

9.1. Modeling the Chemical Reactions. A number of modeling issues arise
for the chemical reactions in the stochastic equations, which are not present in the
deterministic setting. In the deterministic setting, it is usually assumed that the
chemical species are locally well-mixed [103]. This allows at each point in space for
reactions to be modeled at the mean-field level using the same expressions as for a
homogeneous reaction chamber. In the stochastic setting the concentration field is no
longer well-defined pointwise so alternatives must be developed.

A widely used approach is to regularize the concentration fields over the length
scale of the discretization lattice. This is often done by using in the reaction expression
the point-wise value from the discretized concentration field, which corresponds to
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the locally averaged concentration over a partition cell. This has the potential to
cause issues in the convergence of the methods since the rate of reactions may depend
sensitively on the numerical scheme and discretization parameters, such as the discrete
lattice spacing [9; 79; 80; 82—84]. For such methods, spatial discretization parameters
often must be carefully tuned not to be too large or too small relative to the distance
molecules migrate between chemical reactions (reaction mean-free path) to obtain
physically reasonable results [9; 79; 80; 82; 103].

To avoid fine tuning of the discretization, we introduce additional parameters in
our physical models which are independent of the discretization. The parameters are
used in regularization procedures which average the stochastic concentration field to
obtain values for use in reaction expressions. Many regularization procedures can
be considered for the stochastic fields. Ideally, such a procedure would be based on
studies of particle models, dynamic simulations, or analytic reductions of models to
continuum descriptions, such as a Mori-Zwanzig theory [79; 81; 95; 96; 98; 99; 103;
105-107]. Here we take a more phenomenological approach.

To model the chemical reactions we use a functional of the following form

(9.1) Fle|(x, £) = / a(x,y,1(y, )dy
(9.2) n(y.t) = / By, z)c(z, )dz.

The «, B are assumed to be smooth functions which are compactly supported. The
integration used to obtain n has the effect of smoothing the concentration field over a
length scale ¢, corresponding to the support of 8. The term « uses these regularized
concentration values and determines the rate at which the chemical reactions change
the concentration of each molecular species.

The regularization of solutions of equation 2.1 for use in the functional F can be
conceptually motivated by thinking about a collection of individual molecules which
are distributed in space consistently with the continuum concentration field. The
kernels are motivated conceptually by thinking about how the molecules diffusively
migrate and react over time. The change in the spatial distribution of the molecules
and in the type of the molecules ideally would yield the rates used for the change
in the continuum concentration field. From this point of view, the « accounts for
the rate at which molecules of each chemical species are introduced or removed at
location x by the reactions. The 3 term models the fraction of molecules at location
z which migrate to participate in chemical reactions associated with location y. We
discuss specific choices for the kernels in equation 9.1 in the context of applications
in Sections 9.2 and 9.3.

9.2. Microorganism Direction Sensing using Concentration Gradients.
The spatial distribution of chemical species plays a fundamental role in many pro-
cesses in cell biology [1]. The bacterium Escherichia coli detects gradients in the
concentration of important nutrients in the environment. The cell uses this informa-
tion to move toward more nutrient rich regions. Individual Dictyostelium discoideum
bacterium cells respond to spatial and temporal features of concentration fields of
signaling molecules, such as cAMP generated by other cells, to coordinate collective
movements which result in the formation of fruiting bodies and spores [60; 61]. In the
development of multicellular organisms, concentration fields of signaling molecules are
used to determine cell differentiation and organization within tissues [1; 100; 113; 114].
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The study of the basic mechanisms by which cells detect local concentration gradients
and respond is a fundamental part of cell biology.

Features of the external signaling concentration field is detected by cells through
the binding of signaling molecules to receptor proteins which reside in the outer cell
membrane. Upon binding, receptor proteins undergo conformational changes which
trigger local chemical reactions which produce products which diffuse along the cell
membrane or into the cytoplasm [1; 113; 114]. While many proteins and metabolites
involved in these processes are known, there remain many questions about the partic-
ular interactions and mechanisms by which the external concentration field is detected
and generates a cellular response. Currently, this is an active area of experimental
and theoretical research [52; 108; 110-112; 114; 116; 117].

We investigate one mechanism recently proposed for the detection of concentra-
tion gradients [52]. We study the role played by fluctuations in the external concen-
tration field of a signaling chemical species. To appreciate the possible importance of
concentration fluctuations, it is illustrative to characterize the length and time scales
encountered by individual cells. The signaling chemical species in the typical envi-
ronment of a cell can have concentrations ranging from as small as a picomolar (pM)
to as large as molar (M), see [1; 54; 115; 116].

For illustrative purposes, we consider an intermediate concentration of 1mM and
the length scale of a 100nm cubic box. Omne millemolar corresponds to mM =
1073 N /litre = 6.022 x 10?® molecules/m?3, where N4 is Avogadro’s number. On
the length scale of 100nm there is on average only 6.022 x 102 molecules per box.
For a rough estimate of the time scale of the fluctuations we note that typical sig-
naling molecules, such as cAMP, have diffusion coefficients on the order of 10%nm? /s,
see [48]. For a box with edge length ¢ = 100nm the amount of time required for a
particle to diffuse out of the box is of the order 7p = 62/D = 10~%s. This provides
a rough estimate of the time scale on which fluctuations are expected to be corre-
lated. For very shallow concentration gradients, cells are observed to change course
in chemotaxis on the time scale of seconds or faster. This suggests that concentration
fluctuations may play an important role [55]. We show how equations 2.1 — 2.7 and
the proposed numerical methods can be used to investigate the role of fluctuations in
the concentration of the signaling chemical species.

To model how a cell initially processes a signal detected by membrane receptors,
we consider a system of three basic chemical species which originate and diffuse within
the cellular membrane. The chemical species are (i) an activator molecular species
denoted by E, (ii) an inhibitor molecular species denoted by I, and (iii) a reporter
molecular species denoted by ). The reporter species @ is meant to account for
how the receptor binding events result in an internal chemical signal which feeds into
further cellular reactions. The internal chemical signal could take the form of chemical
products within the cell membrane or cytoplasm. The internal chemical could signal
cell motility through local activation of actin polymerization, cell polarization, or
calcium release from local buffers / internal stores [1; 52; 114; 116].

In our model, we consider each of the molecular species as being in one of two
possible forms: active or inactive, which are denoted by P* and P, respectively. Tran-
sitions between inactive and active can occur, for example, through phosphorylation
or methylation of the individual proteins. We generically refer to this as the pro-
duction of the active species or deactivation of the active species. In the model, we
posit that the cell processes the external signal to form the reporter products @ by
two competing processes. The first involves increases in the concentration of species
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Fic. 9.1. Microorganism Direction Sensing based on Concentration Gradients: Basic mecha-
nism by which a single cells senses an environmental concentration gradient through receptor binding
of an external chemical species (top left). Chemical signals generated within the cell from bound re-
ceptors to indicate the direction of the gradient (top right). The adaptive multilevel mesh which
is used to spatially discretize the system on the domain exterior to the cell and between two walls
of apparatus which control the concentration of external signaling molecules (lower left). A more
detailed view of the adaptive multilevel mesh showing the increase of resolution near the surface of
the cell where there are curved boundaries (lower right). Periodic boundary conditions are imposed
on the upper and lower boundaries of the domain. Dirichlet boundary conditions are imposed on the
left and right boundaries of the domain.

E which increases the local production of the active reporter species @* — Q. The
second involves increases in the concentration of species I which increases the local
deactivation of the reporter species Q — @Q*. The external concentration field in-
fluences these processes through the receptor binding events which locally produce
active species of £ and I. More precisely, the model for the chemical species inside
the biological cell is given by the following system of reaction-diffusion equations

FE
(9.3) 68_15 = DEAE — kg2 + KreS
I
(94) % = DiAI — kgil + k55
oQ
(95) —8t = DQAQ —|— quE(QT — Q) — '%quQ-

The total concentration of the reporter species is denoted by Qr = @* + Q. The
S denotes the local concentration of the external signaling chemical species which is
bound to membrane receptors. The biological cell is modeled spatially as a domain
having the geometry of a disk of radius R. The cell membrane corresponds to the circle
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F1a. 9.2. Simulation Results for the Gradient Sensing Model. The mean concentration fields
are plotted by the symbol - along with estimated error bars corresponding to three standard devia-
tions. For clarity, the concentration levels are scaled by the maximum mean concentration value for
each chemical species. The receptor activation level has a shallow concentration gradient obscured
by fluctuations, see upper left. This had maximum mean concentration of 1.5mM. The inhibitor
responds slowly to external signals and acts to filter out fluctuations, see bottom left. This had mazx-
imum mean concentration of 1.5mM. The activator chemical species responds quickly to external
signals and exhibits significant fluctuations, see bottom right. This had maximum mean concentra-
tion of 1.5mM. The concentration profile of the reporter chemical species which diffuses in the cell
membrane yields a robust signal, see top right. The mazimum mean concentration was 9.3mM. The
combination of slow inhibitor and fast activator acts to yield a filtered signal which robustly indicates
the gradient direction.

of radius R, see Figure 9.1. The equations 9.3 - 9.5 should be considered to reside on
this circular membrane with periodic boundary conditions. Three dimensional models
can also be considered using an approach similar to what we present.

The external concentration field ¢(x,t) is obtained as the solution of

(9.6) % = DcAc+n
(9.7) n(x, t)n(x',t")) = —2DcAS(x — x")o(t — t').

For the specific choice of diffusivity tensor D = D¢, this is equation 2.1. The
concentration equation is solved on the domain exterior to the disk of radius R of the
biological cell and between two walls of experimental apparatus which maintain a fixed
level of concentration. To model no-flux of the signaling molecule into the biological
cell, Neumann conditions are imposed on the boundary of the disk. To model the
constant level of concentration maintained at each of the walls, Dirichlet conditions
are imposed. The Dirichlet conditions are used to generate a concentration gradient
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by imposing different concentration levels at each of the walls. For the remaining
top and bottom boundaries of the spatial domain, periodic boundary conditions are
imposed. To capture the geometry of the domain for the solution we use a mesh
which is both adaptive in space and includes cut-cells near the curved surface of the
biological cell, see Figure 9.1. More complex geometries in two and three dimensions
can also be considered with a fairly straight-forward extension of the methodology
proposed here.

An interesting feature of the model is the explicit representation of the external
concentration field and its solution for the given geometry of the cell. In many models
in the literature a linear gradient is imposed for use in the internal chemical kinetics
of the cell. We find by solving the deterministic equations that the concentration
gradient is in fact non-linear when taking into account the no-flux boundary conditions
and cellular geometry. The geometry enhances at the cell surface the largest and
smallest concentrations, which serves to amplify locally the concentration differences
induced by the conditions at the walls. This often overlooked feature could have
important implications for the behaviors of models used for interpreting experimental
data.

The external concentration field influences the production rates of internal chem-
ical species by receptor binding events. The receptor binding events are modeled at a
coarse level by considering the local number of molecules which are in the vicinity of
a receptor cluster. In the model we use a finite number of receptor clusters indexed
by 4 and located at x;. The number of molecules n; in the vicinity of the i** cluster
is obtain from the external concentration field by

(9.8) n; = /A(|x —x4|)e(x, t)dx.

The kernel is defined by A(r) = 1 for r < a and zero otherwise. For the number of
molecules bound to the i*” receptor cluster, we use the number density field

(9.9) Si(x,t) = an;d(x — x;).

The parameter o accounts for the fraction of molecules in the vicinity of the cluster
which are bound to a receptor. For the concentration field of all signaling molecules
bound to the receptors, we use

(9.10) S(x,t) = Si(x,1).

This concentration field S plays an important role in the model by activating the
excitatory chemical species at the rate k..S and activating the inhibitory chemical
species at rate k.5, see equation 9.3.

We investigate the effect of fluctuations on the cells ability to detect an external
concentration gradient. We consider the case where the external concentration gra-
dient is small relative to the magnitude of the relevant fluctuations. To parameterize
appropriately the model for this physical regime, we use kinetic rates and diffusion
coefficients on the same order of magnitude as rates found in the experimental and
theoretical cell biology literature [47-55; 57]. A summary of our specific choice of
parameters can be found in Table 9.2.

The external signaling molecules are taken to have diffusion coefficients on the

order of 108nm?s~!. This choice was made since the signaling molecule cAMP is
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TABLE 9.1
Cell Gradient Sensing Model: Description of the Parameters

Parameter | Description
R Radius of the disk shaped cell.
D¢ Diffusion coefficient of external signaling chemical species.
a Receptor sensor associated length scale.
Dg Diffusion coefficient of excitatory chemical species.
Kre Rate of receptor initiated activation of excitatory chemical species.
Kde Rate of degradation/deactivation of excitatory chemical species.
Dy Diffusion coefficient of inhibitory chemical species.
Kori Rate of receptor initiated activation of inhibitory chemical species.
Kdi Rate of degradation/deactivation of inhibitory chemical species.
Qr Total concentration of reporter chemical species.
Dq Diffusion coefficient of reporter chemical species.
Kqe Rate of production of active reporter aided
by the excitatory chemical species.
Kgi Rate of degradation/deactivation of active reporter
aided by the inhibitory chemical species.

TABLE 9.2
Cell Gradient Sensing Model: Values of the Parameters

Parameter | Description

R 2 x 10* nm.
D¢ 10® nm2s~1.

a 100 nm.

Dg 106 nm?s—1.
e 10% s~

Kde 10% s~

Dy 5 x 10"nm2s~ 1.
Koyi 1s™ L

Kdi 1s™ L

Qr 100 mM.

Dq 10% nm?s~1.
Kqge 107! mM—1s7 1,
Kqi 1 mM~ts1.

reported to have a diffusion coefficient of 2.7 4 0.2 108 nm?2s~!, see [48]. We use
diffusion coefficients for molecules diffusing inside of the cell in the reported range
10° nm2s~! — 107 nm2s~!, see [49; 50]. Concerning the overall time scales associated
with cell gradient sensing, it is observed that cells are able to respond to changes in
the external concentration field on the order of seconds [52; 60]. The rates of the
first order rates in the biochemical chemical reactions are taken to range from 1s=! —
10*s~1. The rates of the second order rates in the biochemical chemical reactions are
taken to range from
107 mM~1s7! — 1 mM~ts7L

Simulations of the cell gradient sensing mechanism were carried out by using the
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introduced stochastic numerical methods. A time step of 2.5 x 10™%s was used and the
model was simulated for 1.6 x 10° time steps corresponding to a physical time scale of
40s. For the proposed gradient sensing mechanism, it was found that directions can
be reliably detected even when subject to significant concentration fluctuations in the
external signaling chemical species. The robustness of the basic mechanism hinges on
the reporter chemical species reaching a steady-state concentration on times scales
long relative to the correlation time scale of the fluctuations. The slow response of
the inhibitor and reporter act to filter out many of the fluctuations of the external
concentration field. This has the effect of yielding a mean signal which reliably indi-
cates the direction of the gradient. The simulation results for the fluctuations of the
signaling and intracellular chemical species are reported in Figure 9.2.

9.3. Fluctuation Induced Pattern Formation in Spatially Extended Sys-
tems. Spatial patterns emerge in many deterministic reaction-diffusion systems. A
widely studied mechanism is the Turing instability. In the Turing instability, the dif-
fusion of the chemical species act in concert with the chemical reactions to destabilize
the spatially homogeneous steady-state [73]. In the deterministic case of only two
chemical species, the Turing instability requires the reactions to include both posi-
tive and negative feedback in the rates of production of the chemical species [75; 76].
We consider a related mechanism by which patterns can be induced in spatially ex-
tended systems. Instead of the mean diffusive concentration flux acting alone with
the reactions to induce the formation of patterns, we discuss a parameter regime in
which the fluctuations serve to destabilize a linearly stable steady-state. We consider
parameters for which the deterministic system settles into a stable steady-state while
the stochastic system exhibits a rich collection of spatial patterns which continually
grows over time.

We consider a reaction-diffusion system with chemical reactions which are a vari-
ant of the Gray-Scott reactions [90; 91]. Using equation 2.1, the reaction-diffusion
equations can be expressed as

0

(9.11) 6—1: = D1 Au+ flu,v] +m
0

(9.12) a_::) = DyAv + glu, v] 4 12

where 71, 12 account for the concentration fluctuations and are Gaussian random
fields with mean zero and covariance

(9.13) (m(x, ) (X, ) = —2aDy Axd(x — x')5(t — )
(9.14) (na(x, )2 (X, #)) = —20D3Axd(x — x')S(t — t')
(9.15) (m(x,t)n2(x', ') = 0.

This corresponds to the choice of the diffusion tensor with block diagonal matrices
D11 and D>l in equation 2.1. The I denotes the identity matrix. The Dy, Do
denote the scalar isotropic diffusion coefficients of the chemical species. The chemical
reactions of the molecular species are accounted for by the functionals f, g. In the
reaction-diffusion system the concentrations of the chemical species are chosen to be
nearly homogeneous with only small variations in space. For this purpose, we use a
variant of the Gray-Scott reactions which we express as cubics of the form

(9.16)  flu,v)(x,t) = agnyn? + asn? + ayn? + azngn, + asng + aing +
(917) g[uv ’U] (Xa t) = ﬂGnun?} + 55713 + 64”12; + 53nunv + ﬂ?nu + 61”71 + 50-
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F1a. 9.3. Phase Portrait of the Local Dynamics Associated with the Chemical Reactions. There
is one stable steady-state at uw = 1.0,v = 1.1. Shown in the inset is the region of phase space where
the nullclines pass in close proximity, 1.03 < u < 1.07.

TABLE 9.3
Reaction-Diffusion System: Values of the Parameters

Parameter Description
(g, a1, o, a3, g, a5, ag] | [1.100605, —2.2, —1.10055,2.2,1.1,0.0, —1.1] x 10°.
[Bo, B1, B2, B3, B4, B, B6] [—0.998845,1.998845,1.0, —2.0, —1.0, 0.0, 1.0] x 10°.

D, 5.5 x 103.
D, 5.0 x 103.
L 5.632 x 102
a 1.1.

] 1.0.

To determine the local number of molecules which participate in reactions, we use a
regularization of the form discussed in Section 9.1

(9.18) ny(x,t) = /A(y —x)u(y, t)dy
(9.19) ny(X,t) = /A(y —x)v(y, t)dy.

The kernel is A(z) = (1/270?) exp (—|2|?/20?). This provides a regularization of the
concentration field over the length scale o for use in the reactions expressions. To
obtain a discrete approximation on the multilevel mesh to the integrals in equations
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F1c. 9.4. Reaction-Diffusion System in the Deterministic Case

9.18 — 9.19, we use

(920) ﬁu,m = Z Am,ncmAym

~ 1
(9.21) Am,n = Z_A(Xm - Xn)Axi
(9.22) Zm =Y Axm — xn)Azi.

We use a similar definition for 7y, m. The Zp, normalizes the discretized kernel so the
sum of the kernel over the mesh evaluates to one. As the mesh is refined Az — 0,
it follows that Zm — 1, fy,m — Ny, and Ay m — n,. This ensures as the mesh is
refined a well-defined limit is obtained for the reaction expressions.

To study the model in a regime in which the concentrations of the chemical
species are nearly homogeneous and exhibit interesting dynamics we use the parameter
values in Table 9.3. For the chemical reactions there is an associated non-spatial two
dimensional dynamical system defined by f, g. The phase portrait of this dynamical
system is given in Figure 9.3. For the choice of parameters, the system has dynamics
in which there is only one stable steady-state at n,, = 1.1,n, = 1.0.

To study a possible mechanism by which fluctuations can induce patterns, we
choose parameters so that the phase space exhibits some special features. In the
phase space there is a region in which two nullclines pass in close proximity. This
indicates the chosen parameters are close to a bifurcation [118]. Given this proximity
of the nullclines, even relatively small perturbations to the dynamical system can
cause a crossing of the nullclines. Such back and fourth switching has the potential
to destabilize the steady-state, which is the mechanism we consider, see Figure 9.3.

In the reaction-diffusion system, the dynamical system associated with the chem-
ical reactions can be associated with the local dynamics of the system. The diffusion
of chemical species acts to couple laterally these local dynamical systems. Perturba-
tions are introduced in the local dynamics through the concentration fluctuations. To
investigate the behavior of the reaction-diffusion system when subject to fluctuations,
we use the developed stochastic numerical methods to approximate equation 9.11. To
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F1a. 9.5. Reaction-Diffusion System with Concentration Fluctuations. The fluctuations induce
a rich spatial pattern of spots which replicate, migrate, and merge. Shown is the concentration field
of u for the time steps 103, 10%, 4 x 10%, 7 x 10%, where At = 0.1. It is found that the spatial
patterns grow to fill the entire domain. Periodic boundary conditions are imposed at the domain
boundaries. For refinement, a threshold is set for the concentration of v in a localize region. The
refinement is triggered when v is found above the threshold.

track regions in which the chemical reactions are most active, an adaptive mesh is
introduced which refines the mesh for any concentration of v above a critical threshold.

In the simulations an initial perturbation is introduced into the system in which
a small square region centered at the origin of edge length 17.6 is set to u = 1.07,v =
1.03. The concentrations are set elsewhere to be v = 1.1,v = 1.0. This initial
perturbation is introduced to avoid having to simulate fluctuations over a potentially
long period of time to observe a “nucleating event”, which breaks sufficiently the
translational symmetry of the homogeneous state. While spontaneous realization
of configurations similar to the initial perturbation are likely rare, they do have a
non-zero probability of occurring in the fluctuating stochastic system. To ensure the
initial perturbation alone is not responsible for the observed results, simulations were
performed in the absence of fluctuations. For the deterministic system, it was found
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that a simple symmetric pattern of only four spots is obtained and appears to be
stable, see Figure 9.4.

To investigate the reaction-diffusion system with fluctuations, simulations were
performed using the developed stochastic numerical methods. Using the same initial
conditions as in the deterministic case, it is found that a rich collection of patterns
emerge. The pattern takes the form of spots which continually grow, migrate and
replicate, see Figure 9.5. Movies of the full evolution process of the emerging pattern
can be found on-line [109]. The simulation results show that fluctuations have the
potential to induce the formation of interesting patterns in spatially extended systems.
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10. Conclusions. Stochastic Partial Differential Equations (SPDEs) were in-
troduced for modeling concentration fluctuations in reaction diffusion-systems. The
SPDESs account for fluctuations arising primarily from the finite number of molecules
which undergo diffusive migrations as opposed to arising from the chemical reac-
tions. For numerical approximation of the non-classical solutions of the SPDEs a
discretization approach was introduced. The discretizations for the stochastic driv-
ing fields were derived by controlling errors in how the equilibrium fluctuations of
the discrete system approximate those of the continuum system. For the discretized
stochastic driving fields, algorithms were developed for the efficient generation of ran-
dom variates with the required covariance structure. Stochastic numerical methods
were developed and demonstrated for discretizations on meshes with multiple levels
of resolution and on domains having curved boundaries. The approaches introduced
for the derivation of discretizations for the SPDEs and for the development of the
stochastic numerical methods are expected to be widely applicable in the study of
spatially extended stochastic systems.
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