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Abstract We explore the theoretical foundations for
the inclusion of thermal fluctuations in the immersed
boundary method for simulating microscale fluid systems
with immersed flexible structures, as in cellular and sub-
cellular biology. We investigate in particular the physi-
cal validity of the thermal forcing scheme with respect
to the coupling of fluid and immersed structural degrees
of freedom and non-equilibrium conditions. We discuss
also the shortcomings of a natural alternative scheme
in which the thermal fluctuations are applied directly to
the structural degrees of freedom through Langevin-type
dynamics.
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Stochastic extensions of the Immersed Boundary (IB)
Method of Peskin and McQueen [62] to incorporate ther-
mal fluctuations have been developed in [38; 37; 7; 5],
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with the aim of providing a framework for simulating
microscale biological systems such as the exocytosis of
vesicles from cells, molecular motors, and physical effects
of fluctuations on biomolecules such as DNA. Other sim-
ulation approaches, most notably Stokesian/Brownian
dynamics [16; 68; 10; 20; 66] and Dissipative Particle
Dynamics [9; 21; 23; 32; 52; 59; 29; 18; 55], have also
been designed to simulate microphysical systems. These
methods are built upon equations for the particle dy-
namics, with the effects of the fluid handled in approxi-
mate manner such as through the assumption of a quasi-
steady fluid flow acting on rigid particles in the Stoke-
sian/Brownian dynamics algorithm. On the other hand,
the IB Method is a fluid-centered simulation, with the
heterogenous system being treated to a first approxima-
tion as a single fluid obeying the Navier-Stokes equa-
tions, with the force density representing the particle
forces and elastic properties of the immersed structures.
We shall discuss briefly the nature of the approxima-
tions for the fluid-structure coupling in the IB Method
in Section 1. Beyond the more accurate accounting of the
fluid dynamics, another advantage of a fluid-centered ap-
proach is the more natural management of topology con-
servation of extended objects such as polymers [7]. Other
fluid-centered simulation approaches for microphysical
systems with thermal fluctuations have been developed
for the lattice-Boltzmann method [42; 43], for the lat-
tice gas method [33], and within a finite element frame-
work [67]. A hybrid fluid-particle theory with thermal
fluctuations which is similar to, but has important dis-
tinctions from, the stochastic IB method described here
is reviewed in Öttinger and Rabin [58].

Algorithms for the stochastic IB Method including
thermal fluctuations are presented in [38; 7], and their
results compared theoretically and numerically against
various basic test problems to demonstrate that fun-
damental aspects of nonequilibrium statistical mechan-
ics are faithfully represented in the simulation scheme.
Some movies and results from the numerical simulation
examples can be found at http://www.math.ucsb.edu/
~atzberg/stoch_ib/index.html. Further mathematical
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analyses of the stochastic IB Method are developed in [37;
5] to demonstrate more rigorously that the simulations
should exhibit correctly many statistical long-time prop-
erties accurately. Particular attention is given in [7] to
the design of a scheme which permits long time steps
which can even underresolve some or all of the fluid
degrees of freedom without sacrificing accuracy in the
influence of those fluid modes on the immersed struc-
tural dynamics. A quantitative analysis of the accuracy
of this long-time stepping scheme is presented in [6]. In
the present work, we will examine several fundamental
aspects of the stochastic IB Method which have not been
addressed in detail in these previous works.

The first issue concerns the choice of the random ther-
mal forces to add to the standard IB equations, reviewed
in Section 1, to represent the thermal fluctuations arising
from collision with unresolved fluid molecules at finite
fixed temperature. A summary of the stochastic IB algo-
rithm, including thermal forces, is presented in Section 2.
We remark first that we can retain a continuum-based
description of the fluid and the Navier-Stokes equation as
a description for the deterministic component of the fluid
dynamics, since we are interested in simulating macro-
molecules and structures considerably larger than the
size of a water molecule. The mathematical structure
of the forces was motivated in [7] through a statisti-
cal mechanical consideration (known as the fluctuation-
dissipation theorem [40; 39; 25]) of a fluid undergoing
thermal fluctuations about a rest state. In Section 3, we
extend these considerations, following the method of Fox
and Uhlenbeck [25], of near-equilibrium thermal fluctu-
ations of the coupled system of the fluid and immersed
structures, and show that the thermal forcing structure
deduced in [7] carries over unchanged when the immersed
structural dynamics are coupled to the fluid. This state-
ment is nontrivial and relies on some special properties
for how the fluid and immersed structures are coupled
in the IB Method. The modifications to the approach to
take into account the spatial discretization of the numer-
ical scheme are presented in Section 4. We briefly argue
in Section 5 that the thermal forcing scheme deduced
from a near-equilibrium theory ought also be applica-
ble, without change, to a rather broad range of far-from-
equilibrium conditions. We proceed next in Section 6 to
a brief consideration of some technical considerations re-
garding restrictions on the time step for numerical accu-
racy.

Through the procedure outline above, we will find
that the principles of statistical mechanics provide a rather
specific statistical structure for the thermal forces, so
that no further need for modeling approximations is nec-
essary. This derivation, though, is premised on the asser-
tion that the deterministic structure of the IB equations
should be preserved on the microscale. An approach mo-
tivated by stochastic models for Brownian motion [61;
54; 36; 64] might, by contrast, begin by modifying the
equations for the dynamics of the immersed structures,

which are conservative in the standard IB framework,
through the incorporation of a friction term which allows
the immersed particles to slip relative to the local fluid
velocity [57]. Applying the statistical mechanical proce-
dure to such a system would give rise to direct ther-
mal forcing of the structural degrees of freedom (with
close analogies to Langevin particle dynamics [61; 54;
64]), in contrast to the thermal forcing structure of the
stochastic IB method we are advancing, in which the
fluctuation-dissipation theorem of statistical mechanics
indicates that thermal forcing should be applied only to
the fluid degrees of freedom. While the inclusion of ther-
mal forces directly on the particles may appear more in-
tuitive and more parallel to other developments (such as
Stokesian/Brownian dynamics [15; 16; 20]), we will ex-
plain in Section 7 how this approach is physically prob-
lematic in the context of the IB Method.

1 Deterministic Immersed Boundary Method
Equations

In the standard implementations of the IB method, the
entire fluid-particle system is treated as a constant den-
sity fluid. We moreover assume the fluid volume Ω is a
cube of side length L with periodic boundary conditions,
as is typical for applications of the IB method, because
it permits the use of a Fast Fourier Transform [63; 62].

The evolution of this fluid is usually given by the
incompressible Navier-Stokes equations, but we will ne-
glect the nonlinear advection term in the present work
since thermal fluctuations are usually relevant only for
microscale systems at low Reynolds number:

ρ
∂u(x, t)
∂t

= µ∇2u(x, t)−∇p(x, t) + f(x, t)

∇ · u(x, t) = 0, (1a)

where u(x, t) is the fluid velocity, ρ is the density, µ is
the dynamic viscosity, p is the pressure, and f(x, t) is
a force density. We suppose that the only force acting
on the fluid are those associated with forces acting on
the immersed structures, represented as a collection of
discrete elementary particles with certain force laws be-
tween them. We remark that even extended structures
such as polymers and membranes can be represented
readily within this framework through an appropriate
discretization into elementary particles with appropri-
ate force laws connecting them [7]. Each of these forces
acting on the structures will be spread near the par-
ticle locations {X(j)(t)}N

j=1 via a delta function δa(x)
smoothed over a length scale a and possessing good nu-
merical properties [63]. We therefore write for the force
density induced by the immersed structures:

f(x, t) = −
N∑

j=1

∇jΦ({X(j)(t)}N
j=1)δa(x−X(j)(t)) (1b)
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where Φ({x(j)}N
j=1) is the total potential describing the

forces on all the particles due to interaction and/or exter-
nal influences. The symbol ∇j denotes a gradient with
respect to the coordinate x(j). Note that a acts as an
effective particle size.

Even though the Reynolds number is assumed small,
we do not discard the time derivative in (1a) and thereby
use creeping flow equations because that would require
a further assumption that the fluid density is small com-
pared to the density of the immersed structures [19],
which is not generally a good approximation in phys-
iological systems for which the IB method is designed.
The mathematical origin of this further restriction lies in
the dependence of the force density on the position of the
immersed structures. When the density of the immersed
structures is not much larger than those of the fluid,
then their inertia is comparable to or smaller than that
of the fluid motion, so the quasi-steady flow assumptions
become less secure.

The elementary particle positions are updated by sim-
ple advection by the fluid at a locally interpolated fluid
velocity:

dX(j)(t)
dt

= ua(X(j)(t), t). (1c)

The same smoothed delta function that was used to
spread force is used to interpolate velocity:

ua(x, t) =
∫

Ω

u(x′, t)δa(x− x′) dx′ (1d)

We will take this system of equations as the basis onto
which we wish to add thermal fluctuations in a physically
meaningful way. In fact, as we shall see, the fluctuation
dissipation theorem from statistical mechanics prescribes
how most of the degrees of freedom of the system should
be thermally forced, given the structure of the determin-
istic terms. We will be able to calculate these thermal
forcing terms in an exact fashion, but we pause to men-
tion that the deterministic system (1) on which they are
built is not physically exact because of two simplifica-
tions of fluid-particle coupling in the IB Method:

1. The elementary particle motion is treated by advec-
tion at a local fluid velocity, rather than by dynamical
acceleration taking into account the stress exerted by
the fluid on the particle interface.

2. The influence of the elementary particles on the fluid
is represented through force-spreading rather than
through a detailed condition, such as no-slip, on a
physical particle boundary.

The reason for these simplifications is, of course, to al-
low the method to handle larger systems over longer time
scales than expensive physically precise simulation meth-
ods [28; 60; 34; 69] can. These assumptions have been
demonstrated to work well on the macroscale [62]. Other
methods, such as Stokesian dynamics [16; 68; 10; 20; 66]

and dissipative particle dynamics [9; 21; 23; 32; 52; 59;
29; 18; 55] may handle these aspects of the fluid-particle
coupling more realistically but make other physical ap-
proximations, such as creeping flow, which may not be
fully appropriate for physiological systems with compa-
rable density in the fluid and immersed structures.

We note the approximations in the standard IB method
because they raise the question of whether an “exact”
thermal forcing scheme for a physical approximation to
reality will give statistical properties which are approx-
imations to real statistical properties of thermally fluc-
tuating fluid-structure systems. The answer is not a pri-
ori clear, but separate analysis and numerical simula-
tions [37; 7; 4] give evidence for a substantially affirma-
tive answer.

2 Summary of Stochastic Immersed Boundary
Method

We will use the standard spatial setup [63] of the IB equa-
tions (1), in which the fluid domain Ω is taken to be a
periodic cube with length L in each coordinate direction.
The velocity field u and the pressure p are discretized on
a periodic grid (∆x)Z3

K , where

Z3
K ≡ [1, 2, . . . ,K]3,

so that K grid points with grid spacing ∆x = L/K span
the period in each coordinate direction. The positions
of the elementary particles {X(j)}N

j=1, however, can take
values anywhere within the continuous fluid domain Ω.
Time is discretized into intervals of uniform size ∆t, and
the discretized variables will be represented with a su-
perscript denoting the time step.

In [7], we develop the following thermal forcing scheme
for the IB method, where the time step ∆t need not nec-
essarily resolve the dynamics of the fluid variables:

un+1 = P

[
eM∆tun + ρ−1

∫ ∆t

0

eM(∆t−t)fn + Ξn
T

]
,

(2a)

fn(x) = −
N∑

j=1

∇jΦ({Xn
j })δa(x−Xn

j ), (2b)

ūn =
1
∆t

∫ ∆t

0

[
eMtun + ρ−1P

∫ t

0

eM(t−t′)fndt′
]

dt

+ PGn (2c)

Xn+1
j = Xn

j +
∑

x∈(∆x)Z3
K

ūn(x)δa(x−Xn
j )(∆x)3∆t.

We have presented the scheme here concisely in terms of
operators: M = νL0

∆x with a standard center difference
approximation for the Laplacian is the viscous dissipa-
tion operator (expressed in terms of the kinematic vis-
cosity ν = µ/ρ), and P is the operator projecting onto
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the space of functions satisfying incompressibility with
respect to the discrete central-difference divergence op-
erator: D0

∆x · u = 0. Part of the procedure for allowing
a time step which underresolves the fluid is the calcula-
tion of the fluid velocity averaged over a time step, ūn.
Its thermal driving Gn is naturally correlated with the
thermal driving Ξn

T which updates the fluid velocity from
the beginning to the end of a time step.

For the usual periodic cubic domain, the above oper-
ators and functions are most conveniently implemented
with respect to a Fourier series expansion for the fluid
velocity

un(x) =
∑

k∈Z3
K

ûn
ke2πik·x

and affiliated physical fields with similar notation. The
operators M and P are block diagonal with respect to
these Fourier expansions:

M̂k,k′ = −αkδk,k′ , P̂k,k′ =
(

I− ĝk ⊗ ĝk

|ĝk|2

)
δk,k′ ,

where

αk =
2µ

ρ(∆x)2

3∑
j=1

(1− cos(2πkj/K)),

ĝk,j =
1
∆x

sin(2πkj/K),

I is the identity matrix, and δk,k′ is the Kronecker delta
function (which equals one when k = k′ and is zero oth-
erwise). The Fourier coefficients of the thermal driving
are computed as follows:

Ξn
T,k = σkZ̃

n

k, Gn
k = c1,kΞn

T,k + c2,kỸ
n

k

where {Z̃n

k, Ỹ
n

k}k∈Z3
K ,n=0,1,2,... are collections of complex

vector-valued Gaussian random variables, all real and
imaginary components of which have mean zero with
variance 1 and are mutually independent from all other
components with the exception of a complex conjugacy
constraint: Z̃

n

−k = Z̃
n

k and Ỹ
n

−k = Ỹ
n

k with −k to be
interpreted as reflection across the origin in the periodic
lattice Z3

K . The thermal noise amplitudes are given by
the formulas:

σ2
k =

AkkBT

2ρL3

[
1− e−2αk∆t

]
c1,k =

1
αk∆t

tanh
(
αk∆t

2

)
,

c2,k =

√(
AkkBT

ρL3α2
k(∆t)2

) (
αk∆t− 2 tanh

(
αk∆t

2

))
.

where

Ak =

{
2, k ∈ K,
1, k 6∈ K,

(3)

K = {k : kj = 0 or kj = N/2, j = 1, 2, 3}. (4)

A detailed algorithmic description for this simulation
scheme is presented in [7].

3 Derivation of Thermal Driving for Immersed
Boundary Equations in Continuum Limit

We now proceed to show how the fluctuation-dissipation
theorem (in the form developed in Fox and Uhlenbeck
[25]) provides an essentially complete and explicit speci-
fication for the appropriate thermal fluctuations for the
coupled equations for the fluid and immersed structures
in the IB Method. The general ingredients are the prod-
uct of the temperature and Boltzmann’s constant kBT ,
the energy as a functional of the physical variables, and
the deterministic structure of the equations of motion.

The application of the fluctuation-dissipation theo-
rem, in the form [25] we will use in the present work,
amounts precisely to the following:

1. Assume the thermal forces are delta-correlated in time,
modeling rapid molecular-scale fluctuations.

2. Linearize the equations of motion about equilibrium,
and expand the energy functional to quadratic order
about equilibrium.

3. Compute the correlation structure between the forces
acting on the various variables which guarantees that
when the system achieves a statistically stationary
state (thermal equilibrium), then the fluctuations of
the system variables obey the Gibbs-Boltzmann dis-
tribution.

As we shall discuss at a little more length in Section 5,
the thermal fluctuation structure prescribed by the fluctuation-
dissipation theorem also applies in non-equilibrium sit-
uations so long as the fluctuations do not produce sig-
nificant spatial variations in the temperature and den-
sity of the fluid [22]. For physiological conditions, it can
be checked that temperature and density fluctuations
are appreciable only on the nanometer scales, which we
would never attempt to resolve with the IB method.

To maintain simplicity with the formal calculations,
we begin with an application of the fluctuation-dissipation
theorem to derive the appropriate thermal driving struc-
ture for the continuum equations of the IB method, sum-
marized in Section 1, on a domain with period L in each
direction. We take the standard equations as provid-
ing the deterministic structure, and add random driv-
ing terms to each equation to account for the effects of
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thermal fluctuations:

dX(j)(t)
dt

= ua(X(j)(t), t) + V(j)
r (t), (5a)

ρ
∂u(x, t)
∂t

= µ∇2u(x, t)−∇p(x, t) + fr(x, t) (5b)

−
N∑

j=1

∇jΦ({X(j)(t)})δa(x−X(j)(t)),

∇ · u(x, t) = 0. (5c)

Note that the first equation is not a dynamical equation;
the random driving V(j)

r (t) amounts to the introduction
of random velocities not random forces. One might ob-
ject that such random driving is non-physical; note how-
ever that such random driving terms appear routinely
in turbulent advection models to represent the effects
of molecular diffusion [50] and does appear in the Cou-
pled Langevin Equations approach [58], which has some
similarities to the stochastic IB method but differs in
some fundamental aspects with regard to the coupling
of the fluid and immersed structures. In any case, we
will find that the fluctuation-dissipation theorem insists
that V(j)

r (t) ≡ 0 for this system.
We now proceed to consider first small fluctuations

about equilibrium, and assume the random drivings are
delta-correlated in time. Then we will use the fluctuation-
dissipation theorem [25] to show that the correct form for
the random driving is:

V(j)
r (t) ≡ 0, (6a)

fr(x, t) =
∑
k∈Z3

fr,k(t)e2πik·x/L, (6b)

fr,k(t) = 2πk

√
µkBT

L5
Z̃k(t), (6c)

where {Z̃k(t)}k∈Z3 are standard complex white noise
processes, the real and imaginary components of which
are each mutually independent standard real white noise
processes, except for a complex conjugacy constraint:

Z̃−k(t) = Z̃k(t). (7)

A standard real vector-valued white noise Z(t) is taken
here to indicate a mean zero, Gaussian random process
with second order correlation function:

〈Z(t)⊗ Z(t′)〉 = Iδ(t− t′),

where I is the identity matrix. Note that the k = 0 mode
must have zero imaginary component due to the complex
conjugacy constraint.

We show now how the thermal forces are derived by
insisting that they fluctuate on a microscopic time-scale
and are consistent with the Gibbs-Boltzmann distribu-
tion for small fluctuations about equilibrium. (These prop-
erties together are equivalent to the application of the
fluctuation-dissipation theorem.) Since microscopic time

scales are taken to zero in a continuum hydrodynamic
limit, the thermal forces on the equations should be delta-
correlated in time. Parameterizing the thermal forcing of
the velocity field by its Fourier coefficients (6c), we there-
fore write

〈fr,k(t)⊗ fr,k′(t′)〉 = F
(ff)
kk′ δ(t− t′), (8a)

〈fr,k(t)⊗V(j)
r (t′)〉 = F

(fp)
kj δ(t− t′), (8b)

〈V(j)
r (t)⊗V(j′)

r (t′)〉 = F
(pp)
jj′ δ(t− t′), (8c)

where the matrices F(ff), F(fp), and F(pp) are to be de-
termined by application of our third criterion that small
thermal fluctuations about equilibrium should obey the
Gibbs-Boltzmann distribution. We define here the ma-
trix F(ff) to be a matrix of block 3 × 3 matrices F

(ff)
kk′ ,

with these blocks indexed by the discrete but infinite
set of wavenumbers {k,k′ ∈ Z3}. F(ff) is then really an
infinite-dimensional matrix, but we work formally with
it just as with finite-dimensional matrices. We will revisit
the calculation we are now performing for the discretized
IB equations in Section 4 where the analogous matrices
are finite. The present calculation should just be viewed
as a formal indication of what to expect in the continuous
limit, though we acknowledge that a rigorous justifica-
tion would require further scrutiny of the contributions
from wavenumbers of large magnitude. Similar remarks
apply to the matrices F(fp) and F(pp).

We now proceed to determine the instantaneous cor-
relations between the system variables (fluid and parti-
cle degrees of freedom) in thermal equilibrium induced
by the dynamics linearized about mechanical equilibrium
and driven by some as-yet-unspecified thermal terms with
correlation structure (8). We will thereby obtain equa-
tions for the correlation matrices of the system variables
in terms of the correlation matrices of the driving terms.
The Gibbs-Boltzmann distribution of statistical mechan-
ics prescribes what the correlation matrices of the system
variables should be in terms of the temperature, and in
this way, we obtain equations for the correlation matri-
ces F(ff), F(fp), and F(pp), the solution of which will be
shown to be Eq. (6).

We stress the distinction between the notions of me-
chanical and thermal equilibrium which will be both
used throughout this section. Mechanical equilibrium of
course refers to system configurations which minimize
(or more generally extremize) the energy (Hamiltonian)
function of the system. Thermal equilibrium corresponds
to a statistically stationary state in which the system
variables are fluctuating in time, but their statistics have
achieved steady-state values (the computation of which
is the domain of equilibrium statistical mechanics). Also,
our use of the phrase “correlation” will correspond to
that used in stochastic process and random field litera-
ture [71] rather than in probability theory, where corre-
lations are distinguished from covariances through nor-
malization factors.
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To illustrate the main ideas we first consider the case
of a unique equilibrium for the immersed structures and
then generalize the calculation for the case in which a
unique equilibrium does not exist due to symmetries in
the energy functional. We will use the notational con-
vention that X = {X(j)}N

j=1 represents a grand vector of
all elementary particle positions

3.1 Case of Unique Equilibrium

We begin by supposing that the potential energy Φ(X)
has a unique nondegenerate minimum at X = X0, with
nondegeneracy meaning that its Hessian is positive defi-
nite at this minimum. Then the fluid-particle system has
a unique equilibrium

u(x, t) = 0, X(j) = X(j)
0 for j = 1, . . . , N.

Linearized Dynamics We examine weak thermal fluctua-
tions about equilbrium by linearizing Eq. (6) about equi-
librium

dX(j)(t)
dt

= ua(X(j)
0 , t) + V(j)

r (t), (9a)

ρ
∂u(x, t)
∂t

= µ∇2u(x, t)−∇p(x, t) + fr(x, t) (9b)

−
N∑

j=1

N∑
j′=1

H
(0)
jj′ · (X(j′)(t)−X(j′)

0 )δa(x−X(j)
0 )

∇ · u(x, t) = 0, (9c)
where

H
(0)
j,j′ = ∇j∇j′Φ({x(j)}N

j=1)
∣∣∣
{x(j)=x

(j)
0 }N

j=1

.

Taking now a Fourier transform of these linearized equa-
tions, we obtain

dX(j)(t)
dt

=
∑
k∈Z3

ûa,k(t)e2πik·X(j)
0 /L + V(j)

r (t), (10a)

∂ûk(t)
∂t

= −4π2ν|k|2L−2Pkûk(t) (10b)

−ρ−1Pk

N∑
j=1

N∑
j′=1

H
(0)
jj′ · (X(j′)(t)−X(j′)

0 )

×δ̂a,ke−2πik·X(j)
0 /L

+ρ−1Pkfr,k(t). (10c)
Some new notation has been introduced here:
– the Fourier coefficients of the interpolated velocity

field are obtained from Eq. (1d) and the convolution
theorem for Fourier series:

ûa,k(t) = L3ûk(t)δ̂a,k,

where δ̂a,k is to be understood as the Fourier coeffi-
cient of a periodized extension of the delta function
δa,

– the tensor which enforces incompressibility by pro-
jecting Fourier vector coefficients transversely to the
wavevector :

Pk ≡ I− k⊗ k
|k|2

where I is the identity matrix.

In proceeding, we will find it convenient to define a
single high-dimensional “system vector” which comprises
the deviation of the fluid and particle variables from their
equilibrium values:

a(t) =
[ {ûk(t)}k∈Z3

{X(j)(t)−X(j)
0 }N

j=1

]
. (11)

We note that the fluid mode variables must satisfy the
conjugacy relations:

ûk = û−k. (12)

Then we can write Eq. (10c) as an abstract linear evolu-
tion equation:

da(t)
dt

= Da(t) + g(t), (13)

where the terms on the right hand side are defined as
follows:

– The constant matrix D can be expressed in block form

D =
[
D(ff) D(fp)

D(pf) 0

]
(14a)

with the blocks defined:

D
(ff)
k,k′ = −4π2ν|k|2L−2Pkδk,k′ (14b)

D
(fp)
k,j′ = −ρ−1Pk

N∑
j=1

H
(0)
jj′ δ̂a,ke−2πik·X(j)

0 /L, (14c)

D
(pf)
j,k′ = L3δ̂a,k′e2πik′·X(j)

0 /L. (14d)

– The thermal driving system vector is defined in a
similar manner to the system vector a(t) in Eq. (11):

g(t) =
[
ρ−1{Pkfr,k(t)}k∈Z3

{V(j)
r (t)}N

j=1

]
,

with correlation function

〈g(t)⊗ g(t′)〉 = Gδ(t− t′), (15a)

G =
[
ρ−2PF(ff)P† ρ−1PF(fp)

ρ−1F(pf)P† F(pp)

]
, (15b)

where

(P)k,k′ = Pkδk,k′ .

The blocks in G are the correlation structures of ther-
mal driving on the fluid and particle variables and are
defined through Eq. (8).
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System Variable Correlations in Thermal Equilibrium
Our objective is to derive the form of G which will induce
the correct statistics for the system variables a(t) in ther-
mal equilibrium. We proceed now to describe the mathe-
matical expression for the thermal equilibrium statistics
of a(t). The energy of the IB system is

E(u,X) =
1
2
ρ

∫
Ω

|u|2 + Φ(X) =
1
2
M

∑
k∈Z3

|ûk|2 + Φ(X),

(16)

where M = ρL3 is the total mass of the fluid in the pe-
riodic domain. For small fluctuations about equilibrium
we take a quadratic expansion of the energy about its
minimum:

E(u,X) ≈ Eapp({ûk},X) (17)

=
1
2
M

∑
k∈Z3

|ûk|2 (18)

+
1
2

N∑
j=1

N∑
j′=1

(X(j) −X(j)
0 ) · H(0)

j,j′ · (X(j′) −X(j′)
0 )

(19)

≡ 1
2
a · E · a (20)

where

E =
[
M I 0
0 H(0)

]
.

The Gibbs-Boltzmann distribution describes the fluc-
tuations of the system variables in thermal equilibrium:

Prob ({u,X} ∈ A) =

Z−1

∫
A

exp (−E({u,X})/(kBT ))∏
k′∈Z3

h

(
δ(k′ · ûk′)δ(û−k′ − ûk′

)
d{u,X}

(21)

for any Borel set A in the phase space of the system
variables, where

Z3
h = {k ∈ Z3 : k1 > 0 or (k1 = 0 and k2 > 0)

or (k1 = k2 = 0 and k3 > 0)}

is just “half” the lattice of integers. Z is a normalization
constant to make the total probability equal to unity.
The delta functions apprearing in the integrand express
the constraints on the variables {ûk}k∈Z3 which result
from the fact that they are the Fourier coefficients of a
real-valued, incompressible velocity field.

If we substitute the quadratic approximation for the
energy into Eq. (21), we deduce that small fluctuations
of the system variables a about equilbrium are described

by Gaussian random variables with mean zero and co-
variances:

〈a⊗ a〉 ≡ kBTC, (22a)

C =
[
C(ff) 0

0 C(pp)

]
,

C
(ff)
k,k′ = (kBT )−1〈ûk ⊗ ûk′〉 = M−1Pkδk,k′ , (22b)

C
(pp)
j,j′ = (kBT )−1〈X(j) ⊗X(j′)〉 = ((H(0))−1)j,j′ . (22c)

The Hessian matrix H(0) is invertible due to the as-
sumption of a nondegenerate, unique energy-minimizing
structure configuration. We note that C is essentially the
inverse of the matrix E defining the quadratic energy ap-
proximation in Eq. (20); but there are some technical
differences due to the constraints relating the Fourier
coefficients of the velocity field. In particular, there are
two canceling factors of 2 which enter into C(ff): a factor
of 2 in the numerator due to the fact that the Fourier ve-
locity mode ûk has a real and imaginary component, and
a factor of 2 in the denominator because of the equiva-
lencing of ûk and û−k. These factors of 2 however are
absent in both the numerator and denominator for the
mode k = 0, which must be real-valued due to the reality
condition (12).

The equations (22) express precisely the equipartition
theorem for small thermal fluctuations: each degree of
freedom of the fluid and the particles has energy 1

2kBT
associated to it.

Relation Between Correlation Structure of System Vari-
ables and Driving Terms We proceed finally to express
the correlation matrix for the system variables in ther-
mal equilibrium in terms of the correlation matrix G for
the driving terms, thereby obtaining a matrix equation
for G. From the dynamics (13), we obtain the following
evolution for the correlations of the fluctuations of the
system variables:

d〈a(t)⊗ a(t)〉
dt

= 〈Da(t)⊗ a(t)〉+ 〈a(t)⊗ Da(t)〉+ G,

(23)

= D〈a(t)⊗ a(t)〉+ 〈a(t)⊗ a(t)〉D∗ + G.
(24)

The last term would be unexpected under the usual prod-
uct formula for derivatives and arises because the ran-
dom driving g(t) is a function which is “white noise”
in time, and therefore incurs stochastic calculus correc-
tions [56]. Since the system (13) is linear, there is no
ambiguity in how to interpret the white noise; the result
(24) follows most directly from the Itô interpretation.

Upon substituting the expression (22a) for the ther-
mal equilibrium covariance structure for the system vari-
ables into Eq. (24), we have

0 = kBTDC + kBTCD∗ + G,
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where D∗ denotes the complex conjugate transpose of D.
We thereby obtain the following abstract formula for the
correlations between the driving of the fluid and particle
variables:

G = −kBT (DC + CD∗) (25)

If we were to formally replace C by the inverse of the Hes-
sian of the energy E−1, this statement would be equiv-
alent to one version of the fluctuation-dissipation rela-
tion [25]. We have opted to derive Eq. (25) in a trans-
parent manner because blind application of the usual
fluctuation-dissipation relation can run into technical con-
fusions due to the degeneracies in our variables arising
from constraints on the Fourier coefficients of the veloc-
ity field.

Evaluating now the correlation structure for the ther-
mal driving from Eq. (15) and Eq. (25) for the concrete
values of the linearized dynamics matrix D (14d) and
system variable covariance matrix C (22) for the IB equa-
tions, we have:

ρ−2PkF
(ff)
k,k′ Pk′ = −kBT (D(ff)C(ff) + C(ff)D(ff)∗)k,k′

= 8π2 kBTν|k|2

ML2
Pkδk,k′ , (26a)

ρ−1PkF
(fp)
k,j′ = −kBT (D(fp)C(pp) + C(ff)D(pf)∗)k,j′

= 0, (26b)

F
(pp)
j,j′ = 0. (26c)

In Eq. (26b), we used the symmetry of H(0) and the re-
lation δ̂a,k = δ̂a,k because δa is a real, even function. We
therefore deduce that there should be no thermal driv-
ing on the particle advection equations (V(j)

r (t) = 0 for
j = 1, . . . , N), and that each Fourier mode of the ve-
locity field is to be independently driven by a complex
white noise process fr,k(t) with the amplitudes specified
in Eq. (6c). We could of course alter fr,k(t) by the addi-
tion or subtraction of any compressible component par-
allel to k because the pressure term in the Navier-Stokes
equation will cancel it. Moreover, some non-Gaussian
(generalized) random processes with delta-correlation in
time could also serve in place of the Gaussian white noise
processes Z̃k(t), so long as this random driving was such
that a central limit theorem could be invoked to prove
that, under the linear evolution (10c), its cumulative ef-
fect would be to induce a Gaussian distribution for the
system variables in the thermal equilibrium state.

3.2 Case of Cyclic Coordinates

We show now how the thermal driving appropriate
for a fluid-particle system with a unique, nondegenerate
equilibrium state applies as well to the important case in
which the system has a family of mechanical equilibria

which are related to each other by some symmetry of the
particle potential Φ. Following the language of mechan-
ics [3], we parametrize these symmetries through cyclic
coordinates Ξc. Examples of cyclic coordinates are the
center of mass and rotational angles of a polymer in the
absence of an external potential. Noncyclic coordinates
would represent the vibrational modes of the polymer.
More precisely, we define a new system of coordinates

Ξc = Ξc(X), Ξnc = Ξnc(X)

where the sum of the dimensions of the vector of cyclic
coordinates Ξc and the vector of noncyclic coordinates
Ξnc are equal to Nd, the potential energy depends only
on the noncyclic coordinates: Φ = Φ(Ξnc), and the po-
tential energy has a unique nondegenerate equilibrium
Ξnc = Ξnc,0 in the reduced space of noncyclic coordi-
nates, in the sense that

H(nc,0) ≡ ∇Ξnc∇ΞncΦ|Ξnc=Ξnc,0

is a strictly positive definite matrix. We moreover assume
that the mapping from Euclidean coordinates {X(j)}N

j=1

to the cyclic/noncyclic coordinate decomposition {Ξnc,Ξc}
is continuously differentiable and locally invertible ev-
erywhere. (One has to be careful with cyclic coordinates
corresponding to rotation; the standard radial and angle
variables have singularities when the radial variable van-
ishes. But multiplying these standard spherical variables
by r2, one obtains cyclic coordinates with the desired
properties.)

In terms of the new particle coordinates, the IB equa-
tions of motion (6) read:

dΞnc(t)
dt

=
N∑

j=1

[
ua(X(j)({Ξnc(t),Ξc(t)})) + V(j)

r (t)
]

·∇jΞnc(t),
dΞc(t)

dt

=
N∑

j=1

[
ua(X(j)({Ξnc(t),Ξc(t)}, t) + V(j)

r (t)
]

·∇jΞc(t),

ρ
∂u(x, t)
∂t

= µ∇2u(x, t)−∇p(x, t)

−
N∑

j=1

∇jΞnc(t) ·∇Ξnc
Φ(Ξnc(t))

×δa(x−X(j)({Ξnc(t),Ξc(t)})) + fr(x, t),
∇ · u(x, t) = 0.

We now take a Fourier transform of the fluid equations
and linearize the fluid velocity and the noncyclic coor-
dinates about their equilibrium values; the cyclic coor-
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dinates of course have no equilibrium and cannot be lin-
earized. We thereby obtain:

dΞnc(t)
dt

=
N∑

j=1

[
ua(X(j)

0 (Ξc(t)), t) + V(j)
r (t)

]
·J(nc,0)

j (Ξc(t)), (28a)

dΞc(t)
dt

=
N∑

j=1

[
ua(X(j)

0 (Ξc(t)), t) + V(j)
r (t)

]
·∇jΞc(t), (28b)

∂ûk(t)
∂t

= −4π2ν|k|2L−2Pkûk(t) (28c)

−ρ−1Pk

N∑
j=1

J
(nc,0)
j (Ξc(t))H(nc,0) · (Ξnc(t)−Ξnc,0)

×δ̂a,ke−2πik·X(j)
0 (Ξc(t))/L

+ρ−1Pkfr,k(t),

where

X(j)
0 (Ξc) ≡ X(j)({Ξnc,0,Ξc}),

J
(nc,0)
j (Ξc) = ∇jΞnc|{X(j)=X

(j)
0 (Ξc)}

,

H(nc,0) ≡ ∇Ξnc
∇Ξnc

Φ(Ξnc)|Ξnc=Ξnc,0

Despite the extra complications incurred by the inability
to linearize the cyclic coordinates, we can formulate the
dynamics in a way which will permit us to generalize
our analysis and conclusions from the case of a unique
equilibrium state with no cyclic coordinates.

We define a system vector a(t) as before, but only
include the degrees of freedom of the fluid and the non-
cyclic coordinates:

a(t) =
[

{ûk(t)}k∈Z3

(Ξnc(t)−Ξnc,0)

]
. (29)

Then we can write the linearized dynamics of this system
vector in a manner similar to Eq. (13):

da(t)
dt

= D(Ξc(t))a(t) + g(t), (30)

where the terms on the right hand side are defined as
follows:

– The linearized dynamics matrix D(Ξc), parametrized
by the values of the cyclic coordinates Ξc, can be
expressed in block form

D =
[

D(ff) D(fp)(Ξc)
D(pf)(Ξc) 0

]
(31a)

with the blocks defined:

D
(ff)
k,k′ = −4π2ν|k|2L−2Pkδk,k′ (31b)

D
(fp)
k,· = −ρ−1Pk

N∑
j=1

J
(nc,0)
j (Ξc)H(nc,0)δ̂a,k

× e−2πik·X(j)
0 (Ξc)/L, (31c)

D
(pf)
·,k′ = L3δ̂a,k′

N∑
j=1

e2πik′·X(j)
0 (Ξc)/LJ

(nc,0)
j (Ξc).

(31d)

A dot in the subscript of a matrix means that the
whole range of that index is being simultaneously de-
fined; for example, D(fp) is defined one full row at a
time.

– The thermal driving system vector is defined:

g(t) =
[

ρ−1{Pkfr,k(t)}k∈Z3∑N
j=1 V(j)

r (t) · J(nc,0)
j (Ξc(t))

]
,

with correlation function

〈g(t)⊗ g(t′)〉 = G(Ξc(t))δ(t− t′).

We will want to find what kind of thermal driving
g(t) induces fluctuations in the fluid and particle vari-
ables which are consistent in thermal equilibrium with
the Gibbs-Boltzmann distribution (21) which, in terms
of the cyclic/noncyclic coordinate system, reads:

Prob ({u,Ξnc,Ξc}} ∈ A) =

Z−1

∫
A

exp (−E(u,Ξnc)/(kBT ))∏
k∈Z3

h

(
δ(k · ûk)δ(û−k − ûk

)
× J−1(Ξnc,Ξc) dudΞnc dΞc

(32)

where Z is a normalization factor and J−1(Ξnc,Ξc) is
the inverse of the full Jacobian of the mapping from the
Euclidean coordinates {X(j)}N

j=1 to the cyclic and non-
cyclic coordinates {Ξnc,Ξc}. Note that this probability
distribution is uniform in the cyclic coordinates Ξc be-
cause the energy does not depend on them. Surely the
random driving should also respect the symmetry of the
potential, and then the dynamics will, under an ergod-
icity condition, clearly lead to a uniform distribution of
the cyclic coordinates, regardless of the detailed nature of
the driving. Consistency with the Gibbs-Boltzmann dis-
tribution therefore will not prescribe how we should drive
the cyclic coordinates. We come back to this point later
and proceed with determining how to drive the fluid and
the noncyclic coordinates in a manner consistent with
the Gibbs-Boltzmann distribution for the thermal equi-
librium state with small fluctuations of these quantities.
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As before, we take a quadratic approximation to the
energy to describe weak thermal fluctuations:

E(u,Ξnc) ≈ Eapp({ûk},Ξnc)

=
1
2
M

∑
k∈Z3

|ûk|2

+
1
2
(Ξnc −Ξnc,0) · H(nc,0) · (Ξnc −Ξnc,0)

≡ 1
2
a · E · a

where

E =
[
M I 0
0 H(nc,0)

]
.

We further replace J−1(Ξnc,Ξc) in (32) by J−1(Ξnc,0,Ξc),
upon which we find that small fluctuations of the fluid
variables and noncyclic coordinates obey a joint mean
zero Gaussian distribution with covariance

〈a⊗ a〉 ≡ kBTC, (33a)

C =
[
C(ff) 0

0 C(pp)

]
, (33b)

C
(ff)
k,k′ = (kBT )−1〈ûk ⊗ ûk′〉 = M−1Pkδk,k′ , (33c)

C(pp) = (kBT )−1〈(Ξnc −Ξnc,0)⊗ (Ξnc −Ξnc,0)〉
= (H(nc,0))−1. (33d)

We proceed now as in our first derivation of the fluctuation-
dissipation relation (25) for the case of a unique equilib-
rium, but we replace the thermal averages in (24) by
conditional averages on a fixed value of Ξc:

d〈a(t)⊗ a(t)|Ξc(t)〉
dt

= 〈D(Ξc(t))a(t)⊗ a(t)|Ξc(t)〉

+ 〈a(t)⊗ D(Ξc(t))a(t)|Ξc(t)〉
+ G(Ξc(t))

+ lim
t′→t

〈a(t)⊗ a(t)|Ξc(t′)〉 − 〈a(t)⊗ a(t)|Ξc(t)〉
t′ − t

,

= D(Ξc(t))〈a(t)⊗ a(t)|Ξc(t)〉
+ 〈a(t)⊗ a(t)|Ξc(t)〉D∗(Ξc(t))
+ G(Ξc(t))

+ lim
t′→t

〈a(t)⊗ a(t)|Ξc(t′)〉 − 〈a(t)⊗ a(t)|Ξc(t)〉
t′ − t

.

(34)

But according to the Gibbs-Boltzmann distribution (21),
the variables ûk and Ξnc which make up the system vec-
tor a are statistically independent of Ξc when evaluated
simultaneously in a thermal equilibrium state. Conse-
quently, the conditional averages appearing in (34) may
be replaced by full thermal averages, which are given by
(22). (This argument does not quite imply that 〈a(t) ⊗

a(t)|Ξc(t′)〉 can be replaced by its thermal average, be-
cause the variables are evaluated at different times, but
here one can invoke instead symmetry of the statistics of
the noncyclic coordinates with respect to changes in the
values of the cyclic coordinates.) We thereby obtain

G(Ξc(t)) = −kBT (D(Ξc(t))C + CD∗(Ξc(t))). (35)

At this stage, the thermal driving structure matrix G
appears like it could depend on the current value of the
cyclic coordinate. However, the Ξc(t) dependence can-
cels out in the computation:

G =
[
ρ−2PF(ff)P† 0

0 0

]
,

with the nontrivial block involving the structure of the
thermal driving on the fluid having a formula identi-
cal to that obtained for the case of a unique equilib-
rium, Eq. (26a). Consequently, purely driving the fluid
with complex white noise according to the prescription in
Eq. (6c) is consistent with the Gibbs-Boltzmann distri-
bution whether or not there are symmetries in the poten-
tial energy. Note however when cyclic coordinates exist,
it would also be consistent to thermally drive the cyclic
particle coordinates by any white noise with correlation
structure respecting the symmetry of the potential. The
strength of such driving would have to be determined
by finer statistical properties, such as the rate of dif-
fusion of the cyclic coordinates. We adopt the simplest
strategy of not driving the cyclic particle coordinates at
all, which preserves the structure of the IB philosophy
in that the particles continue to be carried by the fluid.
This approach has been shown in [38; 37; 7] to lead to
reasonable statistical properties of the cyclic coordinates,
though one might contemplate improvements using the
freedom to add arbitrary symmetry-preserving driving
to the cyclic coordinates.

Finally, we note that the thermal forcing scheme de-
veloped will also apply for the case of multiple equilibria
(not necessarily related by symmetries). The main reason
is that the thermal driving (6) does not actually depend
on the local structure of the potential; the scheme is the
same regardless of which equilibrium point is used in the
linearization.

4 Thermal Fluctuations for Spatially Discretized
Immersed Boundary Equations

In the numerical implementation of the thermally driven
immersed boundary equations, one might think of sim-
ply discretizing the driving forces in Eq. (6c) by smooth-
ing out the delta-function singularity over a time step
∆t. We endeavor, however, to choose the thermal driving
to give an appropriate statistical mechanics for the dis-
cretrized IB system. After all, the continuum immersed
boundary equations are already an approximation of the
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true physical equations (for ∆x > 0 or ν > 0) so there is
no real difference in philosophy in determining the ther-
mal driving for the discretized immersed boundary equa-
tions which are just a further approximation to the phys-
ical equations of motion. We are in effect taking the dis-
cretized IB equations that are actually being numerically
implemented as the governing equations for some phys-
ical model, and applying to this system a fluctuation-
dissipation argument which will give a precise description
for small thermal fluctuations near equilibrium in this
physical model. We will consider separately the effects
of spatial discretization in this section and the effects of
temporal discretization in Section 6.

We therefore begin with the immersed boundary equa-
tions, with the standard finite-difference spatial discretiza-
tion as given in [62], as our given equations of motion.
The spatial argument will continue to be parameterized
by x, though this variable is restricted to values on the
lattice (∆x)Z3

K , where

Z3
K ≡ [1, 2, . . . ,K]3

and K = L/(∆x). Spatial derivatives are approximated
by finite differences, with the following notations:

(D0
∆x,mφ)(x) =

φ(x + (∆x)êm)− φ(x− (∆x)êm)
2∆x

,

D0
∆x =

3∑
m=1

êmD
0
∆x,m,

L0
∆x =

3∑
m=1

φ(x + (∆x)êm)− 2φ(x) + φ(x− (∆x)êm)
(∆x)2

note that L0
∆x is the usual 7-point central-difference Laplace

operator.
The spatially discretized IB equations with random

thermal driving then read:

dX(j)(t)
dt

=
∑

x∈(∆x)Z3
K

un(x)δa(x−X(j)(t))(∆x)3

+V(j)
r (t),

ρ
∂u(x, t)
∂t

= µL0
∆xu(x, t)−D0

∆xp(x, t)

−
N∑

j=1

∇jΦ({X(j)(t)})δa(x−X(j)(t))

+fr(x, t),
D0

∆x · u(x, t) = 0.

The fluctuation-dissipation argument developed for
the continuum equation in Section 3, when repeated for
this system of equations, yields the following random

driving:

V(j)
r (t) ≡ 0, (37a)

fr(x, t) =
∑

k∈Z3
K

fr,k(t)e2πik·x/L, (37b)

fr,k(t) =

√
−µkBTFk(L0

∆x)
L3

Z̃k(t). (37c)

The change from the continuous-space thermal driving
(6c) is the replacement of the amplitude factor

√
4π2µk2

by
√
−µFk(L0

∆x), where

Fk(L0
∆x) =

L0
∆xe2πik·x/L

e2πik·x/L
= − 2

(∆x)2

3∑
j=1

(
1− cos

2πkj

K

)
(38)

is the spectral representation of the finite-difference ap-
proximation to the Laplacian in the dissipation term. In
view of the fluctuation-dissipation relation which, gener-
ally speaking, implies that the correlation function of the
thermal forcing is proportional to the dissipative terms,
this change reflects the change in the viscous dissipation
operator from µ∇2 to its discretized variant µL0

∆x. Note
from Eq. (38) that the spectrum of these operators are
close to each other for wavenumbers well below the cut-
off, k � K, but that they start to strongly differ for
k ≥ K/2. In particular, the velocity Fourier modes as-
sociated to these high wavenumbers in the discretized
IB equations are damped much less strongly than in the
continuum limit. If we were to blindly adopt the contin-
uum formulation (6c) for the thermal driving and simply
truncate the wavenumbers at the lattice cutoff, the high
wavenumbers would be severly overdriven.

4.1 Derivation of Thermal Driving Terms for Spatially
Discretized Equations

We proceed exactly along the lines described in Sec-
tion 3; the only differences are that the Stokes equation
for the fluid involves finite difference approximations for
the spatial derivatives and the Fourier transformed quan-
tities are replaced by their discrete Fourier transform
analogues. For example, the fluid degrees of freedom are
given by:

ûk(t) =
1
K3

∑
x∈(∆x)Z3

K

u(x, t)e−2πik·x/L

Consequently, in the system of equations (28) allowing
for cyclic and noncyclic coordinates, we need only replace
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(28c) by:

∂ûk(t)
∂t

= −αkûk(t) + ρ−1Pkfr,k(t),

− ρ−1Pk

N∑
j=1

J
(nc,0)
j (Ξc(t))H(nc,0) · (Ξnc(t)−Ξnc,0)

× e−2πik·X(j)
0 (Ξc(t))/Lδ̂

(A)
a,k ,

where the Fourier coefficient of the delta function is now
aliased due to the lattice wavenumber cutoff:

δ̂
(A)
a,k =

∑
q∈Z3

δ̂a,Kq+k,

the projection operator for incompressibility Pk is mod-
ified to reflect the discretized gradient operator

Pk = I− Fk(D0
∆x)⊗Fk(D0

∆x)
|Fk(D0

∆x)|2
,

Fk(D0
∆x) =

D0
∆xe2πik·x/L

e2πik·x/L
=

i
∆x

3∑
j=1

êj sin
2πkj

K

the dissipation factors αk now reflects the discretized
viscosity term:

αk = −νFk(L0
∆x),

and Fk(L0
∆x) is defined in Eq. (38).

Upon making the corresponding modifications in the
linearized dynamics matrix D(Ξc) in (31), the calcula-
tion for the correlations of the thermal driving terms
proceeds from here in the same way as for the contin-
uum case worked out in Section 3.

5 Validity of Simulation Scheme Far From
Equilibrium

The form of the random forces to be introduced in the
IB method to simulate thermal fluctuations was based on
a linearization of the dynamics about mechanical equi-
librium. Many processes in physiology operate far from
equilibrium, so an important question is whether the
thermal fluctuations simulated by (37) will work well
away from equilibrium. This is a rather challenging ques-
tion to address. In the Stokesian/Brownian dynamics
simulation schemes [15; 16; 20] which do not explicitly re-
solve the fluid, the random thermal forces applied to the
particles are computed using a fluctuation-dissipation
theorem which also applies only for small fluctuations
near equilibrium. These same random forces are, how-
ever, used in simulations which are very far from equi-
librium (for example, in [12]). A possible physical justi-
fication for this is that the thermal force just acts addi-
tively to whatever systematic forces may be present, so
that this thermal force really doesn’t depend on the con-
figuration of the system, and the thermal forces applied

should be the same both near and far from equilibrium.
For this to be true, one must implicitly be assuming that
the system is everywhere in local equilibrium, if not in
global equilibrium.

If we accept such an intuitively based justification,
we would then be led to ask whether a similar conclu-
sion would apply to random forcing to the fluid. Per-
haps the thermal force shouldn’t depend on the actual
fluid velocity configuration, but rather just adds to any
systematic forces which are present. The intuitive justi-
fication for such a statement might be weaker than for
the case of random forcing of a particle, because a fluid
is a collective medium rather than a primitive physical
object.

Fortunately, a precise result is available for the fluctu-
ations in a pure fluid [22], which indicates that, provided
the fluid motion remains incompressible, the only mod-
ification needed to generalize the thermal forcing law is
to convert Eq. (37) to a physical-space representation
and replace the temperature T by the local temperature
T (x) in the physical-space representation of the thermal
forcing (37). The fluctuations in local temperature is de-
termined by fluctuations in the local internal energy of
the fluid. One would expect that fluctuations in tem-
perature should be negligible compared to its base value
of about 300K in many microphysiological applications,
but we must also note that fluctuations in physical vari-
ables become increasingly pronounced as one examines
smaller scales. In particular, the local density and lo-
cal energy density will exhibit more dramatic variations
than at the macroscale because the law of large numbers
has less power to smooth out deviations in a smaller con-
trol volume.

To check whether a constant density and constant
temperature approximation remains valid on the microscales
of interest, we make some rough quantitative estimates.
We will assume the thermal effects are dominant or at
least codominant; the smooth component of the motion
will be more application dependent and is not expected
under typical circumstances to be the source of break-
down of the approximations under consideration. First,
incompressibility (which would imply that a constant
density approximation should remain good) requires that:
Ma2 � min(Re , 1) [70] and τ � `/V [44], where Ma =
V/c is the Mach number, Re = `V/ν is the Reynolds
number, ` is a system length scale, V is a system veloc-
ity scale, τ is a system time scale, ν is kinematic viscosity,
and c is the sound speed. Note that thermal motion sets
a particle velocity scale of

√
kBT/(ρa3), which increases

with decreasing particle size a! The grid spacing h will
be the smallest length scale resolved in the system, and
taking physiological values c ∼ 105cm/s, T ∼ 300K, ρ ∼
1g/cm3, ν ∼ .01cm2/s along with kB = 1×10−16dyn/K,
we find that the constraints on incompressibility require
h �

(
ν2kBT/(ρc4)

)1/5 ∼ 10−7cm and τ � `/c. The
second criterion will depend on details of the structural
dynamics, but if they are comparable to the time scale
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τ ∼ `2/ν of the fluid dynamics (as might be expected
under density-matched conditions), then it will be satis-
fied on all scales provided it is satisfied on the smallest
scale ` ∼ h, which in turn requires h � ν/c ∼ 10−7cm.
Therefore, incompressibility (and therefore constant den-
sity) should hold to a good approximation provided the
fluid grid spacing is large compared to 10−7cm, which is
required anyway for a continuum representation of the
water to make sense.

To obtain a rough estimate for the size of local tem-
perature fluctuations, we refer to the partial differential
equation for the evolution of temperature fluctuations
in an incompressible fluid [44], which has a forcing term
proportional to ν/cP and the square of velocity gradi-
ents, a stochastic forcing which scales as V

√
νkBT/(ρc2P `2)+√

χkBT 2

ρcP `2 times a white noise process in space and time [22],
and a dissipation term χ∆T where χ is the thermomet-
ric conductivity and cP is the specific heat at constant
pressure. This will induce temperature fluctuations on
the order of

δT ∼
[
νV 2

cP `2

](
`2

χ

)
+

[
V

√
νkBT

ρc2P `
2

+

√
χkBT 2

ρcP `2

]
1
`3/2

(
`2

χ

)1/2

,

where we have scaled the deterministic driving linearly
and the stochastic driving as the square root of the dis-
sipation time scale χ−1`2 and further scaled the white
noise in space forcing by `−3/2, corresponding to the res-
olution length scale ` of the process. Substituting cP =
4×107cm2/(s2K), χ ∼ 10−3cm2/s [11], and other values
as above, we find the constraint that δT � T can be
expressed:

h� max

{(
νkB

ρχcP

)1/3

,

(
kB

ρcP

)1/3
}
∼ 10−7cm,

which is the same restriction as for the incompressibility
approximation.

Consequently, at least from the order-of-magnitude
estimates described above, the thermal forcing scheme
developed for the IB method from a near-equilibrium
theory can also be expected to be adequate for a wide
variety of non-equilibrium simulations under physiologi-
cal conditions.

The hydrodynamic treatment in Español [22] does
not, however, appear to extend readily in a rigorous man-
ner to the coupling with immersed structures. Here the
concern is the general situation in which the thermal fluc-
tuations are strong enough that the nonlinear structure
of the particle-interaction forces comes into play. While
we have no rigorous justification that our thermal forcing
scheme remains precise far from equilibrium in this gen-
erality, two formal considerations and one precise calcu-
lation indicate that the thermal forcing scheme is either

accurate or at least as good as is practically possible in a
simulation. First, the same concern about nonlinear par-
ticle interactions arises in Stokesian/Brownian dynam-
ics, yet the thermal forces which are applied follow from
a near-equilibrium fluctuation-dissipation theorem. Sec-
ondly, we have seen in Section 3 that the thermal forcing
scheme for the pure fluid is also precisely correct, with-
out change, when the immersed structures are coupled
to the fluid. One might therefore hope that the justifi-
cation from Español [22] for the thermal forcing on the
pure fluid, even far from equilibrium under the restric-
tions noted above, might also imply that the thermal
forcing remains appropriate when the immersed struc-
tures are coupled in, even with nonlinear fluctuations.

One concrete verification that the simulation scheme
is well-behaved even far from equilibrium is that the the
probability distribution of the system variables in equil-
brium, as simulated by the stochastic IB Method, can be
shown to be close to the Gibbs-Boltzmann distribution,
without a near-equilbirum assumption. More precisely,
the Gibbs-Boltzmann distribution is the exact station-
ary probabilty distribution for the system variables in the
continuum limit. Under spatial discretization, the Gibbs-
Boltzmann distribution satisfies the Fokker-Planck equa-
tion for the stationary probability distribution up to
a small residual which vanishes with the discretization
length scale. These results do not imply that the full
dynamics of the stochastic IB Method are correct far
from equilibrium, but do provide evidence that at least
one important statistical law is maintained even far from
equilibrium. We next present these calculations.

5.1 Stationary Distribution Far From Equilibrium

The probability density ψ for the fluid and structure vari-
ables in the stochastic IB method is a time-independent
solution of the Fokker-Planck equation associated with
the stochastic dynamics, which we will consider with
spatial discretization. Working with the Fourier repre-
sentation of the fluid velocity modes: ψ = ψ(û,X), the
time-independent Fokker-Planck equation reads

0 = L∗ψ(û,X)

≡ −
N∑

j=1

∇j ·

 ∑
k∈Z3

K

L3e2πik·X(j)/Lûkδ̂
(A)
a,kψ(û,X)


−

∑
k∈Z3

K

∇ûk
· [−αkPkûkψ(û,X)]

−
∑

k∈Z3
K

∇ûk
·

 N∑
j=1

−Pkρ
−1∇jΦ(X)δ̂(A)

a,k e−2πik·X(j)/L

× ψ(û,X)]

+
∑

k∈Z3
K

kBTαk

M
∇ûk

·∇ûk
ψ(û,X),
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where we use the typical convention for the meaning
of differentiation with respect to a complex variable as
in [37]. Applying the Fokker-Planck operator to the Gibbs-
Boltzmann distribution

ψGB(û,X) = exp

− 1
kBT

1
2
M

∑
k∈Z3

K

|ûk|2 + Φ(X)

 ,
we obtain

L∗ψGB(û,X)

=
N∑

j=1

∑
k∈Z3

K

−2πik · ûkL
2e2πik·X(j)/LψGB(û,X).

This expression vanishes at least formally in the con-
tinuum limit (as then k · ûk = 0 for all k ∈ Z3), so
the Gibbs-Boltzmann distribution is not an exact solu-
tion to the Fokker-Planck equation, but has small resid-
ual when the fluid mesh spacing is small. This suggests
that the stationary probability distribution for the fluid
and system variables under the stochastic IB dynamics
is approximately of the Gibbs-Boltzmann form, and nu-
merical simulations in [7] confirm this for simple particle
systems. A more rigorous theoretical formulation of this
argument is being prepared for a separate publication by
the third author.

6 Temporal Discretization of Stochastic
Immersed Boundary Equations

Upon passing to a numerical scheme with finite time step
∆t, we must decide how to represent the thermal driving
which is delta-correlated in time. Straightforward pro-
cedures, such as using the same amplitudes derived in
Eq. (37) for continuous time but representing the delta
correlations through a 1/∆t scaling of the amplitude
would only be reasonable if the time step ∆t is smaller
than the relaxation time of all system variables. A more
detailed analysis presented in [7; 6] provides a numerical
representation of the thermal fluctuations which remains
accurate even when the time step underresolves some or
all of the fluid degrees of freedom. In essence, we exploit
the linearity of the fluid equations to derive a stochastic
exponential time stepping scheme [30; 27; 35]. The result-
ing fully discretized numerical algorithm is presented in
Section 2.

As shown in [6], this numerical method is accurate (in
a stochastically strong sense) provided only that the time
step ∆t is much smaller than the time scale over which
the immersed structures move a distance comparable to
the size a of the elementary particles which are used to
discretize the structures. That is, the time step must
resolve the structural degrees of freedom but need not
resolve all (or even any) of the fluid modes. As a detailed
discussion of temporal discretization is featured in [7; 6],
we will not dwell further on this aspect here.

7 Obstacles with Langevin Dynamics
Reformulation of the Immersed Boundary
Method

We have used the standard IB equations, in the low
Reynolds number limit, as the deterministic system onto
which we will add random forces to account for the ther-
mal fluctuations. We explain here why another ostensibly
natural approach [57] based on Langevin dynamics is not
adopted.

A standard self-contained Langevin dynamics model
for the position X(t) of a particle undergoing Brownian
motion in a solvent reads

m
d2X(t)

dt2
= −γ dX(t)

dt
+ F(X(t), t) +

√
2γkBTZ(t)

where m is the particle mass, γ is a friction coefficient,
Z represents the white noise thermal forcing, and F(x, t)
describes any forces beyond friction and thermal bom-
bardments with the solvent molecules. This standard
equation incorporates thermal forces into the usual macro-
scopic description by including both a dissipative friction
force and a random thermal driving, and this idea has
been adopted in many stochastic modeling applications,
such as in atmosphere-ocean science [17; 24; 51; 47; 48;
49; 26].

We consider now how our stochastic modeling frame-
work would appear if we adopt a similar approach [57]
for the immersed boundary method. Instead of constrain-
ing the particles to move at the local fluid velocity (1c),
we would then treat each particle as a dynamical entity
satisfying Newton’s law. We must therefore associate a
mass {m(j)}N

j=1 to each particle, which we could relate
to the fluid density multiplied by the effective volume oc-
cupied by the δa function representing the particle-fluid
interaction, if we wish to maintain a constant-density ap-
proximation for the system. Writing out Newton’s law,
we have:

m(j) d
2X(j)(t)

dt2
= γ(j)

(
ua(X(j)(t), t)− dX(j)(t)

dt

)
−∇jΦ({X(j)(t)}) + F(j)

r (t)
(39a)

where we have included a hydrodynamic force (with drag
coefficient γ(j)) in addition to the usual conservative
force and a random thermal force F(j)

r .
Note that in allowing the particle to slip relative to

the fluid, we have partially broken the IB paradigm of
the fluid-particle system as one effective fluid medium.
In particular, it is no longer appropriate to state that the
forcing term in the Navier-Stokes equation is simply the
forces felt by the particles immersed in the fluid. Rather,
since the particles are now being treated dynamically, the
force applied on the fluid by the particles should be com-
puted using Newton’s third law as the force equal and
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opposite to that which the fluid exerts on the particles.
Both the hydrodynamic drag and the random thermal
force are such forces acting between the fluid and the
particle, so the Stokes equation is recast as follows:

ρ
∂u(x, t)
∂t

= µ∇2u(x, t)−∇p(x, t) + fr(x, t) (39b)

−
N∑

j=1

[
γ(j)

(
ua(X(j)(t), t)− dX(j)(t)

dt

)
+ F(j)

r (t)
]

× δa(x−X(j)(t))
∇ · u(x, t) = 0 (39c)

We have also included an additional thermal force den-
sity term fr(x, t) for the fluid momentum, which we will
find to be necessary from statistical mechanical consid-
erations. But first, to make better contact with the usual
form of the Stokes equation 5b in the IB method, we note
that (39b) may be rewritten using (39a) as

ρ
∂u(x, t)
∂t

= µ∇2u(x, t)−∇p(x, t) (40)

−
N∑

j=1

[
∇jΦ({X(j)(t)}) +m(j) d

2X(j)(t)
dt2

]
× δa(x−X(j)(t)) + fr(x, t)

∇ · u(x, t) = 0. (41)

The allowance for the particle to slip by the fluid there-
fore introduces an extra “inertial force” on the fluid aris-
ing from the particle acceleration. We shall refer to the
system (39) as the “Immersed Boundary Langevin Par-
ticle” System (IBLP system).

By using the fluctuation-dissipation theorem as dis-
cussed in Section 3, we find that the appropriate ther-
mal forces on the particles {F(j)

r (t)}N
j=1 and on the fluid

fr(x, t) for the IBLP system are given as follows (in the
continuum limit):

F(j)
r (t) =

√
2γ(j)kBT Z(j)(t) (42)

fr(x, t) =
∑
k∈Z3

fr,k(t)e2πik·x/L, (43)

fr,k(t) = 2πk

√
µkBT

L5
Z̃k(t), (44)

where {Z(j)(t)}N
j=1 are real-valued standard white noises

in R3 and {Z̃k(t)}k∈Z3 are complex-valued standard white
noises in C3, all of which are mutually independent of one
another except for the complex conjugacy relations (7).

Note that it is not physically consistent to omit the
random forcing on the fluid. Even if one is interested
in the random fluctuations of the particles, these are
coupled to the fluid and therefore the fluid must have
appropriate thermal fluctuations to give the right sta-
tistical properties of the fluctuating particles. The Cou-
pled Langevin Equations approach [58], which has some

structural similarities to the stochastic IB method, also
adds thermal driving to both particle and fluid degrees
of freedom.

These random forces derived for the IBLP system
are straightforward and amenable to efficient simulation.
One particularly pleasant feature is that the random
forcing on the particles F(j)

r (t) are independent of one an-
other. In Brownian/Stokesian Dynamics simulation schemes [16;
68; 10; 20; 66] for particles immersed in a fluid, which
remove explicit simulation of the fluid from consider-
ation, the thermal forces on the particles are coupled,
and the coupling matrix is rather expensive to compute
(though significant accelerations have been developed
recently [68; 10]), requiring the evaluation of a matrix
and its square root every time the particle configuration
changes significantly. The fact that the fluid variables
are explicitly retained in the IBLP system allows for the
appropriate thermal forcing of the particles to be inde-
pendent of each other.

Unfortunately, while these simple thermal forces are
the mathematically correct ones for the IBLP system,
this system has some poor physical properties which dis-
commend it as a fundamental model. That is, we have
described a fluid-particle system with thermal fluctua-
tions which is mathematically self-consistent (near equi-
librium, at least), but this system is physically ill-founded
for reasons we now explore.

7.1 Physical Inconsistencies of the IBLP System

Constant Friction Coefficient Inconsistent with Density-
Matched System Each particle is assumed to have a con-
stant friction coefficient γ(j). But even at low Reynolds
number, this latter assumption is strictly appropriate
only when the fluid momentum relaxes rapidly relative to
the particle momentum, which is equivalent to the state-
ment that the fluid density is much less than the particle
density [14; 19; 31; 53; 13]. In fact, even more stringent
conditions are necessary when multiple Brownian parti-
cles are present, because then the fluid momentum over a
length scale comparable to the particle separations must
decay faster than the time scale of the particle dynam-
ics [1].

But the IB method, as commonly implemented with
Fast Fourier Transform, assumes the whole heterogenous
system is at constant density. Even if the particle mass
be large compared to the mass of the fluid molecules,
the correct description of the evolution of the particle
momentum involves the convolution of a hydrodynamic
friction function against the past history of the parti-
cle’s velocity [19]. That is, the particle’s motion is not
Markovian due to memory of the history of the parti-
cle motion impressed upon the fluid flow in which the
particle is moving.

Therefore, we cannot expect that the IBLP system
will produce physically meaningful results at least on
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the short time scales characterizing the relaxation of the
particle momentum. Roux [65], however, has indicated
how the long-term dynamics of a fluid-particle system
may not be much affected by the misspecification of the
frictional effects in a density-matched system by con-
stant coefficients, so long as the system is not interacting
on the particle momentum relaxation time scales with
chemical or external stimuli. The objection to a constant
friction coefficient is therefore not necessarily fatal.

Hydrodynamic Friction Uses Wrong Fluid Velocity A more
serious physical deficiency with the assumed form of the
hydrodynamic drag law in (39a) for its implementation
in the IB method is the use of the locally interpolated
fluid velocity ua(X(j), t) as a reference velocity for com-
puting the drag. That this is incorrect can be brought
out most clearly by focusing attention on a single particle
sinking under gravity in a still fluid, where thermal fluc-
tuations can be ignored. Once the particle has reached
its terminal velocity, the fluid settles down to a steady
state, and the drag force Fd should clearly just be an
effective friction coefficient γ of the particle multiplied
by the difference between the velocity of the fluid unper-
turbed by the particle’s motion (which here is zero) and
the particle’s terminal velocity Uterm.

Fd = −γUterm,

The IBLP formula for the drag 39a, however, would
relate the drag force to the difference between the par-
ticle velocity Uterm and ua(X(t), t), the velocity of the
fluid interpolated over a region of size a. The fluid ve-
locity past a particle falling at terminal velocity decays
inversely with distance from the particle [44], so if the
particle size were much smaller than the interpolation
region length scale, then this would be acceptable. But
in the IB implementation, the region of interpolation is
precisely the effective particle size, since the forces ap-
plied to them are spread to the fluid over a region of this
size. Therefore, the reference fluid velocity ua(X(t), t)
that would be used in the drag formula in 39a would be
on the order of |Uterm| instead of zero and would there-
fore give rise to a grossly underestimated drag force. In
particular, a particle falling under gravity would acceler-
ate to much too large a terminal velocity, since the fluid
velocity accelerates along with it.

The general problem with the drag force model (39)
which causes this bad behavior is as follows. Consider a
collection of structures moving due to some external po-
tential and/or interparticle forces without thermal fluc-
tuations. To keep focus on the defect we wish to empha-
size, let us suppose for the moment that the system is in
a steady flow state, so that the time-independent Stokes
equation can be used to describe the fluid velocity. Then
the correct way to compute the drag force on a parti-
cle is to multiply its constant friction coefficient by the
difference between the particle velocity and the velocity

the fluid would have at the particle’s position if that par-
ticle were not present [8]. This notion is well-defined in
the creeping motion limit because the fluid velocity is in-
stantaneously determined by the particle positions and
velocities. The IBLP system’s computation of the drag
force wrongly subtracts the particle velocity from the
fluid velocity interpolated to the particle’s position which
is of course the fluid velocity which includes the influence
of that particle. This physical miscalculation for steady
flows clearly indicates discrepancies should also emerge
in more time-dependent flow configurations, though the
error is more difficult to quantify precisely.

We note that the objections noted here do not apply
to the common practice adopted in Stokesian dynamics,
in which the drag force for a particle is represented as a
friction coefficient multiplied by the difference between
the particle velocity and an externally prescribed flow.
When the reference velocity field used to calculate the
particle drag is not influenced by the particle’s motion,
then our concern does not apply. Because the IB method
intrinsically has the fluid accelerate in response to the
forces applied by the immersed structures, however, us-
ing a locally interpolated fluid velocity as a reference
velocity field for the drag force calculation is problem-
atic.

7.2 Some Possible Attempts at Resolution

One attempt at improving the physical fidelity of the
IBLP system would be to try and rectify the misspec-
ification of the drag force in Eq. (39a) at least in the
creeping motion (quasi-steady) limit, in which the drag
force on a particle can be computed using a constant drag
coefficient [14; 19; 31; 53; 13]. The general idea would be
to try to calculate somehow what the fluid velocity at
a particle’s location would be if that particle were not
present, and use that as the reference velocity in the
drag law in Eq. (39a) rather than the locally interpo-
lated fluid velocity. Ahlrichs and Dünweg [2] propose a
renormalization of the friction coefficient to accomplish
this in a similar context in a lattice-Boltzmann simula-
tion. A related approach would be to try and interpolate
the fluid velocity over a larger region in order to miti-
gate the influence of the particle for which the drag force
is being computed. The interpolation length scale would
have to be both large enough to neglect the influence of
the particle in question but not so large as to also wash
out the influence of nearby particles. These ideas might
work for dilute systems, but do not seem to generalize
nicely when the particles are close enough to be friction-
ally coupled.

For flows which do not satisfy the creeping motion
assumptions, the situation is even more complicated be-
cause the notion of a constant friction coefficient isn’t
even correct as discussed in Paragraph 7.1.
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7.3 Brownian Dynamics Approach to Immersed
Boundary Method

Another possible resolution is to abandon the Langevin
particle dynamics in favor of Brownian particle dynam-
ics. Indeed Kupferman [41] derived a Brownian parti-
cle dynamics scheme through an asymptotic limit of the
IBLP equations, and it was this Brownian dynamics which
was actually simulated. This would be in close accord
with what is done in practice with particle based meth-
ods such as Brownian dynamics and Stokesian dynam-
ics [16; 68; 10; 20; 66]. We have discussed some deficien-
cies in the IBLP method, and some of these do persist
after the reduction to Brownian dynamics in [41]. In par-
ticular, one emerges with a random white noise added to
the advection equation (1c), some correction terms to
the Navier-Stokes equations (1a), and a spurious addi-
tional correction term in the advection formula (1c) aris-
ing from the improper hydrodynamic drag formula used
in the IBLP scheme.

But perhaps one might try to start afresh with a
Brownian dynamics formulation, that is, by adding a
random white noise to the particle advection equation
(1c) and appropriate terms to the Navier-Stokes equation
(1a). Indeed, in the particle-based simulation schemes [15;
16; 20], the particle position is generally updated by a
Brownian dynamics algorithm, and one could imagine
simply using the same thermal forces from those particle-
based simulations in the IB equations.

There are, however, a number of questions which
would need to be addressed:

– It is not clear that the same thermal particle forces
should be used in the IB equations, where the fluid
motion is explicitly resolved, as in the schemes where
the fluid’s effects are replaced by a hydrodynamic
friction term.

– It is not clear what terms to add to the Navier-
Stokes equations. In particular, should the fluid also
be randomly forced? Would this over-diffuse the par-
ticles? Without starting from an exact albeit sim-
plified physical model (like both the IB and IBLP
systems do), a rational formulation for Brownian dy-
namics seems a bit elusive.

– The computation of the appropriate random forces on
the particles is quite expensive, requiring the evalua-
tion of a 3N×3N matrix and its square root each time
the particle configuration changes significantly. This
computational challenge arises in conventional Brow-
nian and Stokesian dynamics simulations, though the
methods in [68; 10] can significantly accelerate these
computations.

8 Conclusions and Future Work

We have presented here some further theoretical moti-
vation for the structure of the thermal driving in the

stochastic immersed boundary schemes developed in [38;
37; 7], with particular attention to the inclusion of the
fluid-structure coupling in the statistical mechanics. Our
analysis indicates that the thermal driving scheme corre-
sponds to the theoretically appropriate one prescribed by
statistical mechanics, except that the driving of cyclic de-
grees of freedom (those not constrained by an energetic
restoring force) is not actually prescribed by the near-
equilbrium analysis. Rather than fluctuating about some
mean state, the fluctuations of these modes will grow
continuously but unboundedly in time with the charac-
ter of “Brownian motion” [64; 36]. Theoretical consid-
erations [38; 37; 7] and numerical experiments [7] indi-
cate that at least the translational Brownian motion of
elementary particles is simulated by the stochastic IB
method presented in Section 2 in a physically faithful
manner. Moreover, the relative Brownian motion of pairs
of elementary particles were shown in [37] to have many
key features accurately represented in the stochastic IB
method. According to the statistical mechanical analysis
described in the previous sections, it may be appropriate
in principle to add additional thermal driving directly
on the cyclic degrees of freedom in order to give them
the correct diffusivity rates. This would, however, greatly
complicated the numerical scheme, requiring in particu-
lar a tracking of cyclic and non-cyclic degrees of freedom,
as opposed to the present scheme where everything is
conducted in standard Euclidean spatial coordinates. We
plan to investigate the behavior of more complex cyclic
degrees of freedom, such as rotational Brownian motion,
under the current scheme and assess whether its statisti-
cal properties also remain largely faithful to the laws of
statistical physics. As mentioned above, the relative dif-
fusion of particles was shown in [37] possibly to lose accu-
racy at close distances, at least in the sense that the sta-
tistical correlations between the particle motion do not
quite obey the physical relationships between rigid par-
ticles. Other simulation methods [16; 68; 10; 20; 66] gen-
erally require special consideration of lubrication forces
for particles when they approach each other at close dis-
tances, and one avenue for further exploration is the
determination of the extent to which these lubrication
forces are appropriate in a simulation of flexible struc-
tures, and if so, how to incorporate lubrication forces
into the Immersed Boundary simulation scheme.

A variety of model systems ranging from polymer
knots to a simple molecular motor model have been simu-
lated with quantitative results presented in [7] and movies
available at http://www.math.ucsb.edu/~atzberg/stoch_
ib/index.html. Improved representations of membranes
and more sophisticated molecular motor models are planned
for future work. Another direction for methodological de-
velopment is the incorporation of the stochastic thermal
forcing strategy into other variations of the immersed
boundary method, such as the immersed interface method [45]
and the immersed finite element method [72; 46].



18

References

1. (1983) Concentrated Colloidal Dispersions, Faraday Dis-
cussions of the Chemical Society, vol 76, The Faraday
Division of the Royal Society of Chemistry, London, p
234

2. Ahlrichs P, Dünweg B (1999) Simulation of a single poly-
mer chain in solution by combining lattice Boltzmann
and molecular dynamics. J Chem Phys 111(17):8225–
8239

3. Arnold VI (1989) Mathematical methods of classical me-
chanics, 2nd edn, Springer-Verlag, New York, sections
13,15. No. 60 in Graduate Texts in Mathematics

4. Atzberger PJ (2006) Velocity correlations of a thermally
fluctuating Brownian particle: A novel model of the hy-
drodynamic coupling. Phys Lett A 351(4–5):225–230

5. Atzberger PJ (2007) A note on the correspondence of an
immersed boundary method incorporating thermal fluc-
tuations with Stokesian-Brownian dynamics. Physica D
226(2):144–150, doi:10.1016/j.physd.2006.11.013

6. Atzberger PJ, Kramer PR (2006) Error analysis of
a stochastic immersed boundary method incorporat-
ing thermal fluctuations, submitted to Mathematics and
Computers in Simulation

7. Atzberger PJ, Kramer PR, Peskin CS (2007) A stochas-
tic immersed boundary method for biological fluid dy-
namics at microscopic length scales, J. Comp. Phys. DOI
10.1016/j.jcp.2006.11.015

8. Auer PL (ed) (1967) Macromolecules. John Gamble Kirk-
wood Collected Works, Gordon and Breach Science Pub-
lishers, New York

9. Avalos JB, Mackie AD (1997) Dissipative particle
dynamics with energy conservation. Europhys Lett
40(2):141–146

10. Banchio AJ, Brady JF (2003) Accelerated stokesian dy-
namics: Brownian motion. J Chem Phys 118(22):10,323–
10,332

11. Batchelor GK (1967) An introduction to fluid dynam-
ics, Cambridge University Press, Cambridge, U.K., ap-
pendix 1

12. Beard DA, Schlick T (2001) Computational modeling
predicts the structure and dynamics of chromatin fiber.
Structure 9(2):105–114

13. Bocquet L (1998) From a stochastic to a microscopic ap-
proach to Brownian motion. Acta Physica Polonica B
29(6):1551–1564

14. Bocquet L, Piasecki J (1997) Microscopic derivation of
non-Markovian thermalization of a Brownian particle. J
Statist Phys 87(5-6):1005–1035

15. Brady JF (1993) Brownian motion, hydrodynamics, and
the osmotic pressure. J Chem Phys 98(4):3335–3341

16. Brady JF, Bossis G (1988) Stokesian dynamics. In: An-
nual review of fluid mechanics, Annu. Rev. Fluid Mech.,
vol 20, Annual Reviews, Palo Alto, CA, pp 111–157

17. DelSole T (2001) A theory for the forcing and dissipation
in stochastic turbulence models. J Atmos Sci 58:3762–
3775

18. Den Otter WK, Clarke JHR (2001) A new algorithm for
dissipative particle dynamics. Europhys Lett 53(4):426–
431

19. Deutch JM, Oppenheim I (1987) The concept of Brow-
nian motion in modern statistical mechanics. In: Brow-
nian Motion, The Faraday Division of the Royal Society
of Chemistry, The Royal Society of Chemistry, London,
Faraday Discuss. Chem. Soc., vol 83, pp 1–20

20. Ermak DL, McCammon JA (1978) Brownian dynam-
ics with hydrodynamic interactions. J Chem Phys
69(4):1352–1360
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