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Abstract. Many processes in cell biology encode and process information and enact responses by modulating the concen-
trations of biological molecules. Such modulations serve functions ranging from encoding and transmitting information about
external stimuli to regulating internal metabolic states. To understand how such processes operate requires gaining insights into
the basic mechanisms by which biochemical species interact and respond to internal and external perturbations. One approach
is to model the biochemical species concentrations through the van Kampen Linear Noise Equations, which account for the
change in biochemical concentrations from reactions and account for fluctuations in concentrations. For many systems, the
Linear Noise Equations exhibit stiffness as a consequence of the chemical reactions occurring at significantly different rates. This
presents challenges in the analysis of the kinetics and in performing efficient numerical simulations. To deal with this source
of stiffness and to obtain reduced models more amenable to analysis, we present a systematic procedure for obtaining effective
stochastic dynamics for the chemical species having relatively slow characteristic time scales while eliminating representations
of the chemical species having relatively fast characteristic time scales. To demonstrate the applicability of this multiscale
technique in the context of Linear Noise Equations, the reduction is applied to models of gene regulatory networks. Results are
presented which compare numerical results for the full system to the reduced descriptions. The presented stochastic reduction
procedure provides a potentially versatile tool for systematically obtaining reduced approximations of Linear Noise Equations.

Key words. Stochastic Mode Reduction, Linear Noise Approximation, Gene Regulation, Concentration Fluctuations,
Singular Perturbation.

1. Introduction. Many processes in cell biology encode and process information and enact responses
by modulating the concentrations of biological molecules. Such modulations serve functions ranging from
encoding and transmitting information about external stimuli to regulating internal metabolic states [4, 1].
To understand how such processes operate requires gaining insights into the basic mechanisms by which
biochemical species interact and respond to internal and external perturbations. Biological systems pose a
number of challenges to modeling since particular species of biological molecules are often present in rather
low concentrations, are distributed in space inhomogeneously, and are subject both to passive diffusion and
to active transport processes [4, 1, 29, 28, 16].

As an initial approach to understanding how cellular processes modulate biochemical concentrations,
many mathematical models have been formulated at a mechanistic level [11, 30, 1, 2]. Models attempt
to account phenomenologically for aggregate biochemical kinetics and interrelationships homogenized over
the spatial distribution of chemical species and transport processes [4, 1, 16]. The low concentrations of
biochemical species also requires accounting for fluctuations, which arise as a consequence of the discrete
interactions between biomolecules [1, 2, 10].

To account phenomenologically for these effects, a widely used approach is to draw on models devel-
oped for reaction chambers and the chemical kinetics of well-mixed homogeneous systems [11, 30, 1, 12].
A prominent description used for this purpose is the Chemical Master Equation [11, 30]. The Chemical
Master Equation keeps track of the number of biomolecules of each chemical species and accounts for the
change in number for each individual biochemical reaction which occurs. We discuss this approach in more
detail in Section 2. While not always quantitatively accurate for biological systems, such approaches have
yielded useful qualitative insights into potential mechanisms underlying biochemical modulation in cellular
processes [1, 2, 22].

In practice, the Chemical Master Equation presents for many systems a rather complicated description
for analysis and a computationally expensive approach for simulation. In part, this arises since the states
of the model depend on the exact number of biochemical molecules of each chemical species and requires
updating the state for each chemical reaction event occurring between species. To obtain a more tractable
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description, the Linear Noise Approximation (van Kampen Approximation) is often invoked to yield a
set of approximating stochastic differential equations which account for the evolution of the biochemical
concentrations [30, 8].

For many systems, the chemical reactions occur at significantly different rates. This results in Linear
Noise Equations exhibiting stiffness, which presents a challenge for efficient simulation. As a motivating
example, consider gene regulation in Escherichia coli where the time scale for mRNA transcription is on the
order of minutes while the time scale for protein degradation/dilution is on the order of an hour [1]. This
suggests that the protein concentrations do not depend strongly on the instantaneous number of mRNAs
but rather on an average over time of the number of mRNA molecules. This further suggests that studies of
protein concentrations may be possible through a reduced description of the model which eliminates explicit
representation of the mRNA concentration from the model, while accounting for such changes in mRNA
concentrations through effective terms in the kinetics of the protein species.

We present a systematic approach to obtain such reduced models. The reduced model is obtained by
explicitly representing the chemical species having dynamics with relatively slow characteristic time scales
while eliminating representations of the chemical species having dynamics with relatively fast characteristic
time scales. This has been explored for Kinetic Monte Carlo simulations [13, 25, 6] and for Chemical Master
Equation finite state approximations [23, 7]. Here we present a systematic approach to obtaining reduced
models of stochastic differential equation descriptions of chemical reactions. Effective stochastic dynamics for
the slow chemical species is obtained through a singular perturbation analysis of the Backward Kolomogorov
PDEs for the Linear Noise Equations [21, 15, 14, 18]. We discuss this approach in detail in Section 4.

To demonstrate the applicability of this multiscale technique in the context of Linear Noise Equations,
the reduction is applied to models of gene regulatory networks. Results are presented which compare nu-
merical results for the full system to the reduced descriptions. These results are presented in Section 7.1.
The stochastic reduction procedure presented here provides a potentially versatile tool for systematically
obtaining reduced approximations of Linear Noise Equations.

2. Modeling of the Chemical Kinetics. To account phenomenologically for the interactions between
biological molecules, a widely used approach is to draw on models developed for reaction chambers and the
chemical kinetics of well-mixed homogeneous systems [1, 12]. In this approach the chemical interactions
should be thought of as homogenized over the spatial distribution and transport processes within the cell.
A prominent description used for this purpose is the Chemical Master Equation [11, 30].

In this approach the biological system is treated as a Markov Chain [27] with states defined by the
numbers of biological molecules of each chemical species. The chemical reactions which occur between these
chemical species are modeled by state transitions in the Markov Chain. The transitions model the change in
the number of each type of biological molecule in accordance to the stoichiometry of the chemical reaction,
see Figure 2.1. The Chemical Master Equation governs the time evolution of the probability for observing
the Markov Chain in a given state at a given time.

The state of the Markov Chain at time t can be expressed as

X(t) = (X1(t), X2(t), X3(t), . . . , XM (t)) (2.1)

where Xi is a non-negative integer value. The transition rates between state X and Y can be expressed as

X→a Y, (2.2)

where a = aX,Y is the transition rate from state X to state Y.
The chemical reactions are denoted by Rk for the kth type. The stoichiometry of the reaction is denoted

by νk = (νk1 , ν
k
2 , ν

k
3 , . . . , ν

k
M ). The transitions for this reaction are then from the state X to the state

Y = X + ν(k).
The Chemical Master Equation is

dp

dt
= Ap. (2.3)
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Fig. 2.1. Markov Chain Model for Chemical Kinetics. The states of the Markov Chain are defined by the numbers of
biological molecules of each chemical species, labeled X1, X2, · · · , XM . Transitions between these states model the individual
chemical reactions which may occur. The transition corresponding to the chemical reaction of type k is labeled by Rk.

The p denotes the composite vector of probabilities for each possible state of the system. The component
corresponding to the state X is given by pX(t) = Pr{X(t) = X}. The A is the matrix of transition intensities
with entries AX,Y = aX,Y.

In general, solving the Chemical Master Equation directly involves computing non-negligible probabilities
distributed over a very large number of states. This presents a very high dimensional problem. In practice,
an ensemble of stochastic trajectories is often generated to estimate statistical quantities using the Monte-
Carlo approach [20]. This requires obtaining realizations of an inhomogeneous Poisson process [27]. This is
potentially computationally expensive since each chemical reaction event must be resolved explicitly in the
stochastic trajectory.

To circumvent this issue, approximations to the Poisson process using Gaussian processes are utilized.
The Linear Noise Approximation provides one such approximation for the concentrations of the chemical
species

C(t) =
X(t)

n
≈ x(t) +

1√
n
V(t). (2.4)

The C denotes the composite vector of concentrations with the ith component the concentration of the ith

chemical species. The n denotes the volume over which the chemical system is homogenized, x(t) denotes
a deterministic function accounting for the mean concentration at time t, and V(t) denotes a Gaussian
stochastic process accounting for concentration fluctuations at time t. This approximation holds in the limit
as n is made large while the concentrations are held fixed [11, 30].

Formally, expressions for x(t) and V(t) can be obtained by expressing X in terms of the random time
change equation

X(t) = X(0) +

N∑
k=1

νkYk

(
n

∫ t

0

βk

(
X(s)

n

)
ds

)
(2.5)

where the Yk’s are independent unit rate Poisson processes [9, 27]. The intensities for the transitions in
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terms of species concentration for the kth reaction is given by

βk(x) =
ak(nx)

n
. (2.6)

By dividing both sides by n we obtain

X(t)

n
=

X(0)

n
+

N∑
k=1

νk 1

n
Yk

(
n

∫ t

0

βk

(
X(s)

n

)
ds

)
. (2.7)

A form of the Law of Large Numbers (Theorem 11.2.1 in [9]) states that if

xinit = lim
n→∞

X(0)

n
exists and is finite (2.8)

then

lim
n→∞

sup
0≤t≤T

∣∣∣∣X(t)

n
− x(t)

∣∣∣∣ = 0, P-a.s. (2.9)

for T <∞ and x(t) a deterministic function. This implies that for large n

x(t) ≈ E
[
X(t)

n

]
. (2.10)

A further consequence of this approximation is that

E

[
Yk

(
n

∫ t

0

βk

(
X(s)

n

)
ds

)]
≈ E

[
Yk

(
n

∫ t

0

βk (x(s)) ds

)]
= n

∫ t

0

βk (x(s)) ds. (2.11)

By taking the expectation of both sides of equation 2.7 and using equation 2.10 and 2.11 we have

x(t) = xinit +

∫ t

0

N∑
k=1

νkβk(x(s))ds. (2.12)

The next order in the approximation can be obtained by using a form of the Central Limit Theorem
(Theorem 11.2.3 in [9]). The theorem states that if

lim
n→∞

√
n(X(0)/n− x(0)) = vinit exists and is finite (2.13)

then

√
n(X(t)/n− x(t))⇒ V(t). (2.14)

The V(t) is given by a Gaussian process inhomogeneous in time satisfying

V(t) = vinit +

∫ t

0

DF (x(s))V(s)ds+

N∑
k=1

νk

∫ t

0

√
βk(x(s))dWk(s). (2.15)

The F is defined by

F (x) =

N∑
k=1

νkβk(x). (2.16)
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The ⇒ denotes convergence of the probability distribution of the process.
In the notation, DF denotes the matrix representing the gradient (derivative) of F and W = (W1,W2, . . . ,WN )

is a vector valued Brownian motion in N -dimensions where each vector component Wk is an independent
standard Brownian motion [21, 11]. Formally, the equation 2.15 can be obtained in a manner similar to the
case of equation 2.12 by computing the mean and variance of increments dV(t), see [3, 8].

From equations 2.12 and 2.15, it follows that x(t) and V(t) satisfy the differential equations

ẋ(t) = F (x(t)) (2.17)

x(0) = xinit

dV(t) = DF (x(t))V(t)dt+

N∑
k=1

νk
√
βk(x(t))dWk(t) (2.18)

V(0) = vinit.

The stochastic differential equations are to be interpreted in the sense of Ito Calculus [21, 11]. The determin-
istic and stochastic differential equations 2.17 and 2.18 are referred to as the Linear Noise Equations. They
are also referred to as the van Kampen Equations. They provide an approximation of the chemical kinetics
as modeled by the trajectories of the Markov Chain through equation 2.4. The Linear Noise Equations will
be the object of our subsequent analysis.

3. Chemical Kinetics with Separated Time-Scales. For many systems, the Linear Noise Equations
exhibit stiffness as a consequence of the chemical reactions occurring at significantly different rates. This
poses challenges to analysis of the kinetics and to efficient numerical simulation. This arises from having to
resolve the stochastic dynamics on the fastest characteristic time scales of the system. To obtain reduced
models more amenable to analysis and numerical approximation, we consider the case when a decomposition
of the system can be found into a part depending on the chemical species having dynamics with relatively slow
characteristic time scales and a part depending on chemical species having dynamics with fast characteristic
time scales.

More precisely, in terms of the chemical species, we consider a decomposition of the form

X = (Xs,Xf). (3.1)

The Xs = (X1, . . . , XMs) denotes the “slow” chemical species and Xf = (XMs+1, . . . , XM ) denotes the “fast”
chemical species. To define the slow and fast chemical species, a decomposition is sought which yields
chemical reactions of the form

X→ X + νk (3.2)

where the stoichiometry satisfies

νk =

{
(νk1 , ν

k
2 , . . . , ν

k
Ms
, 0, . . . , 0) if k ∈ Λs

(0, . . . , 0, νkMs+1, ν
k
Ms+2, . . . , ν

k
M ) if k ∈ Λf

. (3.3)

We write

νk = (νk
s ,ν

k
f ). (3.4)

The Λs denotes the set of indices associated with the slow chemical reactions while the Λf denotes the set of
indices associated with the fast chemical reactions.

Throughout, it will be assumed that the time scales associated with the fast chemical reactions are well
separated from the time scales of the slow chemical reactions. More precisely, for the decomposition it is
assumed that the reaction rates can be expressed as

βε
k =

{
λk(x) if k ∈ Λs

1
ελk(x) if k ∈ Λf

(3.5)
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Fig. 3.1. Slow-Fast Partitioning of the Biochemical Kinetics. A decomposition of the chemical kinetics into fast and
slow reactions is sought. The fast reactions correspond to reaction events which are associated with the large transition rates.
The slow reactions correspond to reaction events which are associated with the small transition rates. A decomposition is
sought which partitions the biochemical species into two disjoint subcollections consistent with the classification of reaction
events. While the reaction rates can depend on the number of biological molecules from the full set of biochemical species, the
decomposition sought requires the fast reaction events only change the number of biological molecules of one subcollection and
the slow reaction events change only the number of biological molecules of the other subcollection.

where the λk(x) are order one and ε is small.

This decomposition classifies a chemical species into one of two disjoint subcollections. In the chemical
kinetics the decomposition corresponds to the slow reactions involving changes in the number of molecules
of chemical species only from the first subcollection while the fast reactions involve changes in the numbers
of molecules of chemical species only in the second subcollection. For a schematic of this decomposition, see
Figure 3.1. A similar decomposition was used in [7]. In the Linear Noise Approximation, this decomposition
corresponds to x = (xs,xf) with xs = (x1, . . . , xMs), xf = (xMs+1, . . . , xM ), and the stoichiometries νk of
equation 3.3.

In practice, such a decomposition may be carried out for generalized chemical species concentrations
through use of a change of variable. While this decomposition may seem rather special, we show that such
a decomposition arises rather naturally for biological systems in Section 7.1.

4. Stochastic Reduction of the Chemical Kinetics Description : Summary. The Linear Noise
Equations can be approximated by a reduced set of equations when the time-scale decomposition holds from
Section 3. In this case, the Linear Noise Equations given by equations 2.17 –2.18 can be approximated by
the following set of closed Linear Noise Equations expressed solely in terms of the slow degrees of freedom

ẋ0
s (t) = Fs(x

0
s (t),Z (x0

s (t))) (4.1)

x0
s (0) = xinit

s (4.2)

dV0
s (t) = B(t)V0

s (t)dt+Q(t)dW(t) (4.3)

V0
s (0) = vinit

s . (4.4)
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The operator Z gives a solution of the implicit equation

Ff((x
0
s (t),Z (x0

s (t))) = 0. (4.5)

The drift term in equation 4.3 is given by

B(t) = DsFs −DfFs[DfFf ]
−1DsFf . (4.6)

Here, Fs and Ff represent the “slow” and “fast” parts of F :

F =

(
Fs,

1

ε
Ff

)
. (4.7)

The Ds and Df denote, respectively, the gradients (derivatives) with respect to the variables representing the
slow and fast chemical species. The term for the covariance of the stochastic driving process in equation 4.3
is given by

[Q(t)]i,k = νki
√
βk(x0(t)), 1 ≤ i ≤Ms, 1 ≤ k ≤ N. (4.8)

The notation [·]i denotes the ith vector component and [·]i,j denotes the i, j matrix entry. In the notation,
B = B(t) = B(x0(t)) and D∗F∗ = D∗F∗(x

0(t)) with x0(t) = (x0
s (t),Z (x0

s (t))).

To motivate how the reduced model given by equations 4.1– 4.4 is obtained, we make a few intuitive
remarks. A more rigorous treatment of the derivation is the focus of Section 5. The reduced model is
obtained by considering the limit where the fast degrees of freedom relax to statistical steady-state on the
characteristic time scales of the slow degrees of freedom. For the deterministic part of the equations, this
corresponds to setting

x0
f (t) = Z (x0

s (t)) = lim
r→∞

z(r). (4.9)

The z(r) is the solution of the ODE

ż(r) = Ff(xs(t), z(r)) (4.10)

z(0) = xf(t). (4.11)

In the case there is an attracting equilibrium solution for the initial condition z(0), we have limr→∞ ż(r) = 0.
Taking the limit of both sides of equation 4.10 and using continuity of Ff , we have that Z (x0

s (t)) is a solution
of equation 4.5. In the case there is a global attracting equilibrium, the solution of the implicit equation 4.5
is unique.

The motivation for the exact form obtained in equation 4.3 is a little more subtle given the non-
differentiability of the stochastic process. Equation 4.3 expresses an averaging of the increments of the
full stochastic process consistent with Ito Calculus [21]. The increments are averaged with respect to the
invariant probability measure of the fast degrees of freedom. The invariant measure used for this averaging
is obtained for each instant in time t by holding fixed the slow degrees of freedom xs, Vs and computing
the conditional stationary probability measure by allowing Vf to relax to statistical steady-state. A careful
derivation more rigorously establishing this intuition is the focus of Section 5.

5. Derivation of the Stochastic Reduction of the Chemical Kinetics System. A set of reduced
Linear Noise Equations of the form given by equations 4.1–4.4 will be derived to approximate the full Linear
Noise Equations given by equations 2.17–2.18. The reduced model will be derived using the specific form of
the chemical reaction rates given by equation 3.5 and the decomposition discussed in Section 3. This will
be used to determine as ε→ 0 the leading order terms approximating the Linear Noise Equations given by
equations 2.17–2.18.
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5.1. Mean x0
s . We first compute the leading order terms for the mean behavior of the trajectories to

obtain effective equations for xs(t). We use the expansion

xε(t) = x0(t) + εx1(t) + ε2x2(t) + . . . (5.1)

which in terms of components is given by

xεi (t) = x0
i (t) + εx1

i (t) + ε2x2
i (t) + . . . for 1 ≤ i ≤M . (5.2)

Performing a Taylor expansion of the right-hand side of equation 2.17 we have

Fi(x
ε(t)) = Fi(x

0(t)) +

M∑
k=1

∂Fi

∂xk
(x0(t))(xεk(t)− x0

k(t)) +O(ε2)

= Fi(x
0(t)) + ε

M∑
k=1

∂Fi

∂xk
(x0(t))x1

k(t) +O(ε2).

(5.3)

This can be re-expressed in terms of the slow components and fast components using the notation

xε
s (t) = x0

s (t) + εx1
s (t) + . . . (5.4)

xε
f (t) = x0

f (t) + εx1
f (t) + . . . . (5.5)

The F can be expressed in the following form using equation 2.16 and the assumptions about the chemical
reactions expressed by equations 3.3 and 3.5

F =

(
Fs,

1

ε
Ff

)
(5.6)

Fs =
∑
k∈Λs

νk
s β

ε
k(x) =

∑
k∈Λs

νk
s λk(x) (5.7)

Ff = ε
∑
k∈Λf

νk
f β

ε
k(x) =

∑
k∈Λf

νk
f λk(x). (5.8)

This allows for equation 2.17 to be expanded in terms of slow and fast components as

ẋ0
s (t) +O(ε) = Fs(x

0
s (t),x0

f (t)) +O(ε) (5.9)

ẋ0
f (t) +O(ε) =

1

ε
Ff(x

0
s (t),x0

f (t)) +

M∑
k=1

∂Ff

∂xk
(x0

s (t),x0
f (t))x1

k(t) +O(ε). (5.10)

By equating the leading order terms in equation 5.9, which are of order one, we get

ẋ0
s (t) = Fs(x

0
s (t),x0

f (t)). (5.11)

By equating the leading order terms in equation 5.10, which are of order 1/ε, we obtain

Ff(x
0
s (t),x0

f (t)) = 0. (5.12)

Solutions of the implicit equation 5.12 can be expressed as

x0
f (t) = Z (x0

s (t)). (5.13)

The equation for the trajectory mean x0
s (t) given by equation 4.1 is obtained by substituting equation 5.13

for x0
f (t) in equation 5.11. This provides a closed equation for the effective dynamics of the trajectory mean

x0
s (t).
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5.2. Fluctuations V0
s . We now determine the leading order terms for the fluctuations of the trajecto-

ries to obtain effective equations for Vε
s (t). We shall use the Backward Kolomogorov Equation [21, 11]. For

the SDEs given by equation 2.18, the Backward Kolomogorov Equation can be expressed as

∂wε

∂t
(t,v) = (L εwε)(t,v) (5.14)

wε(0,v) = f(v) (5.15)

with

(L εw)(t,v) =

M∑
i=1

[DF (xε(t))v]i
∂w

∂vi
+

1

2

M∑
i,j=1

aεij(t)
∂2w

∂vi∂vj
. (5.16)

For notational convenience we let

σε
ik = νki

√
βε
k (5.17)

aεij =
[
σσT

]
ij

=
∑
k

νki ν
k
j β

ε
k. (5.18)

The Backward Kolomogorov Equation governs statistics of the stochastic process of the form

wε(t,v) = Ev,0 [f(Vε(t))] . (5.19)

The Ev,0 denotes expectation over all realizations of the stochastic process with Vε(0) = v. Thus knowledge
of the differential operator L ε determines the statistics of the stochastic process. The effective stochastic
dynamics for V0

s in the limit as ε → 0 will be obtained by determining the leading order terms in the
differential operator L ε, which are sufficient to determine the statistics of the stochastic process to leading
order.

It is worth remarking that there is a close relationship between the prefactors of the first and second
order parts of the differential operator L ε and the stochastic process Vε(t), see [21, 11]. The prefactor of
the first order part corresponds to the drift of the stochastic process. The prefactor of the second order part
corresponds to the covariance of the stochastic driving field of the process. This relationship can be readily
verified for equation 2.18 and 5.16.

The differential operator can be expressed in terms of fast and slow components by defining differential
operators Fε and Sε as follows

(Fεw)(t,v) =

M∑
i=Ms+1

[DsFf(x
ε(t))vs +DfFf(x

ε(t))vf ]i
∂w

∂vi
+

1

2

M∑
i,j=Ms+1

αε
ij(t)

∂2w

∂vi∂vj
(5.20)

(Sεw)(t,v) =

Ms∑
i=1

[DsFs(x
ε(t))vs +DfFs(x

ε(t))vf ]i
∂w

∂vi
+

1

2

Ms∑
i,j=1

αε
ij(t)

∂2w

∂vi∂vj
. (5.21)

For convenience, we let

αε
ij(t) =

∑
k

νki ν
k
j λk(xε(t)) =


aij(x

ε(t)) if 1 ≤ i, j ≤Ms

εaij(x
ε(t)) if Ms + 1 ≤ i, j ≤M

0 otherwise.

 . (5.22)

The notation [·]i denotes the ith vector component and [·]i,j denotes the i, j matrix entry.
This allows for the differential operator L ε of the Backward Kolomogorov Equation to be expressed as

(L εw)(t,v) =
1

ε
(Fεw)(t,v) + (Sεw)(t,v). (5.23)
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We now perform a singular perturbation analysis of equation 5.14 using this expression for the differential
operator and the expansions

wε(t,v) = w0(t,v) + εw1(t,v) + ε2w2(t,v) + . . . . (5.24)

and

Fε = F0 + εF1 + ε2F2 + . . .

Sε = S0 + εS1 + ε2S2 + . . .
(5.25)

Our objective is to identify as ε→ 0 an effective operator L 0 for a Backward Kolomogorov Equation satisfied
by w0 depending only on the slow components vs. This would yield a closed set of stochastic differential
equations for the effective stochastic dynamics of the fluctuations Vs(t).

For the operator Fε we shall assume throughout our derivation the following.

Assumption 5.1.
1. A positive definite matrix is obtained from the entries αij with indices in the range Ms+1 ≤ i, j ≤M .
2. For DfFf considered as a linear operator acting on vf ∈ RM−Ms , each eigenvalue has a real part

which is strictly negative.

These assumptions can be motivated by the requirement of ergodicity of the stochastic process associated
with relaxation of the fast components. Further discussion of these conditions will be the focus of Section 6.

By expanding in ε the terms appearing in equations 5.20 and 5.21, we have the leading order terms

(F0w)(t,v) =

M∑
i=Ms+1

[
DsFf(x

0(t))vs +DfFf(x
0(t))vf

]
i

∂w

∂vi
+

1

2

M∑
i,j=Ms+1

α0
ij(t)

∂2w

∂vi∂vj
(5.26)

(S0w)(t,v) =

Ms∑
i=1

[
DsFs(x

0(t))vs +DfFs(x
0(t))vf

]
i

∂w

∂vi
+

1

2

Ms∑
i,j=1

α0
ij(t)

∂2w

∂vi∂vj
. (5.27)

This was obtained by expanding xε(t) using equation 5.1, Taylor expanding F , and by expanding

αε
ij = α0

ij + εα1
ij + ε2α2

ij + · · · (5.28)

A similar approach can be used for computing the explicit forms of the higher order differential operators,
Fk, Sk. However, for our purposes the exact form of the higher order differential operators will not be
needed. We shall only use that F1 is a linear operator that involves first and second partial derivatives only
in the components of vf .

The Backward Kolomogorov Equation given in equation 5.14 can be expressed using the expansions for
wε and L ε as

∂w0

∂t
+ ε

∂w1

∂t
+ . . . =

(
1

ε
F0 + F1 + εF2 + . . .

)
(w0 + εw1 + . . . ) (5.29)

+
(
S0 + εS1 + ε2S2 + . . .

)
(w0 + εw1 + . . . ) .

Equating terms with like powers of ε yields for the first two orders

O(1/ε) : F0w0 = 0 (5.30)

O(1) :
∂w0

∂t
= F0w1 + F1w0 + S0w0. (5.31)

The O(1/ε) equation implies that the function w0 is in the null-space N (F0) of the differential operator F0,

w0 ∈ N (F0). (5.32)
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Under Assumption 5.1, the null-space can be shown to consist only of functions w0 which are independent
of vf . This means that the functions in the null-space are of the form w0 = w0(t,vs).

Formally, this can be shown from ergodicity of the stochastic processes Zr defined by the Backward
Kolomogorov Equation with the operator F0. This gives the stochastic process associated with relaxation
of the fast components. For expectations g(r,vf) = Evf ,0[f(Zr)], the g∞(vf) = limr→∞ g(r,vf) satisfies
F0g∞ = 0. Any function q in the null-space can be interpreted similarly as a g∞(vf) corresponding to
some function f . This follows since f serves as the initial condition of the Kolomogorov Backward Equation
and we can set g(0,vf) = f(vf) = q(vf) to obtain g∞(vf) = limr→∞ erF0q(vf) = q(vf). By ergodicity,
as r → ∞ the probability distribution of Zr relaxes to a stationary distribution independent of the initial
condition Z0 = vf . This results in the expectation becoming independent of vf . As a consequence, g(r,vf)→
g∞(vf) = g∞,0 = E[f(Z∞)], where g∞,0 is a constant independent of vf . This shows the null-space consists
only of functions of the form w0 = w0(t,vs). A more rigorous discussion of the stochastic process Zr and its
implications for the explicit form taken by the reduced equations is discussed in Section 6.

As a further characterization of how operators act on w0, we consider F1, which is an operator that
involves partial derivatives with respect to only the components of vf . This has the consequence that

F1w0 = 0. (5.33)

Using this result, the O(1) condition given by equation 5.31 can be expressed as

F0w1 =
∂w0

∂t
− (S0w0). (5.34)

For the expansion in wε to be valid to order w1, it is required that the right-hand side be in the range
of the differential operator F0. This gives a solvability condition which must be satisfied by the right-hand
side of equation 5.34. This can be expressed as

∂w0

∂t
− S0w0 ∈ R(F0). (5.35)

The R(F0) denotes the range of the differential operator F0. This can also be expressed by requiring

∂w0

∂t
− S0w0 ∈ N (F∗0 )⊥. (5.36)

This follows since R(F0) = N (F∗0 )⊥, where F∗0 denotes the adjoint of F0, see [26].
Under Assumption 5.1, the N (F∗0 ) is one-dimensional and is spanned by a probability density function

of the form ρ(t,vs,vf). The solvability condition given by equation 5.36 can be expressed more explicitly as
the orthogonality requirement∫

vf∈RM−Ms

(
∂w0

∂t
(t,vs)− (S0w0)(t,vs,vf)

)
ρ(t,vs,vf)dvf = 0. (5.37)

This can be rewritten as

∂w0

∂t
(t,vs) = (S̄0w0)(t,vs) (5.38)

(S̄0w0)(t,vs) =

∫
vf∈RM−Ms

(S0w0)(t,vs,vf)ρ(vf |t,vs)dvf . (5.39)

The conditional probability density is defined by

ρ(vf |t,vs) =
1

Z
ρ(t,vs,vf) (5.40)

Z =

∫
vf∈RM−Ms

ρ(t,vs,vf)dvf . (5.41)
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The effective Backward Kolomogorov Equation for Vs can then be expressed as

∂w0

∂t
= L 0w0. (5.42)

where L 0 = S̄0.
A more explicit form for L 0 can be obtained by performing the averaging of S0 given in equation 5.39.

This yields

L 0w0 =

Ms∑
i=1

[
DsFs(x

0(t))vs +DfFs(x
0(t))µ(t,vs)

]
i

∂w0

∂vi
+

1

2

Ms∑
i,j=1

α0
ij(t)

∂2w0

∂vi∂vj
(t,vs). (5.43)

The µ denotes the mean value of Vf and is defined by

µ(t,vs) = E[Vf |vs] =

∫
vf∈RM−Ms

vfρ(vf |t,vs)dvf . (5.44)

By introducing a little notation, the operator L 0 can be expressed succinctly as

L 0w0 = B(t)vs · ∇vsw0(t,vs) +
1

2
∇vs ·G(t)∇vsw0(t,vs) (5.45)

where

B(t)vs = DsFs(x
0(t))vs +DfFs(x

0(t))µ(t,vs) (5.46)

[G(t)]ij = α0
ij(t), 1 ≤ i, j ≤Ms (5.47)

G = QQT . (5.48)

In the last equation, Q is used to denote any factor of G. The factor Q can always be defined with real-valued
entries as a consequence of Assumption 5.1 condition (1), which ensures that G is positive definite. Any
choice of square factors Q1 and Q2 are related by a unitary matrix such that Q2 = Q1U for some U with
the property UUT = I. As a specific choice for Q, we will use

[Q(t)]i,k = νki
√
βk(x0(t)), 1 ≤ i ≤Ms, 1 ≤ k ≤ N. (5.49)

It can be immediately verified that such a choice yields a Q with the property G = QQT by using the
definition of G given above and α0

ij given in equations 5.22 and 5.28.

The stochastic process corresponding to the Backward Kolomogorov Equation with operator L 0 gives
the effective stochastic dynamics for Vs given in equation 4.3. To obtain the specific form for B given in
equation 4.3 requires determining the stationary distribution ρ(vf |t,vs) and computing explicitly the mean
µ. This is the focus of Section 6.

6. Invariant Measure of the Relaxed Stochastic Dynamics of the Fast Components. We
now discuss in more detail the specific form taken by the stationary probability density ρ = ρ(vf |t,vs) for
the invariant measure of the relaxed stochastic dynamics of the fast components. For this purpose, it is
useful to consider the stochastic process Zr ∈ RM−Ms defined by the Backward Kolomogorov Equation with
operator F0. The probability density of this stochastic process ρ = ρ(r,vf |t,vs) is governed by the Forward
Kolomogorov Equation

∂ρ

∂r
= F∗0 ρ. (6.1)

The adjoint F∗0 is given explicitly from equation 5.26 by

(F∗0 ρ)(r,vf) = −
∑
i

∂

∂vi

([
DsFf(x

0(t))vs +DfFf(x
0(t))vf

]
i
ρ(r,vf)

)
(6.2)

+
1

2

∑
i,j

α0
ij(t)

∂2

∂vi∂vj
ρ(r,vf).
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We suppress explicitly notating the conditioning on t,vs. For notational convenience we rewrite the adjoint
given by equation 6.2 in the form

(F∗0 ρ)(r,vf) = −∇vf
· (gρ(r,vf) +Avfρ(r,vf)) +

1

2
∇vf
· Γ∇vf

ρ(r,vf) (6.3)

where

A = DfFf(x
0(t)) (6.4)

g = DsFf(x
0(t))vs (6.5)

[Γ]ij = α0
(Ms+i)(Ms+j)(t), 1 ≤ i, j ≤M −Ms (6.6)

Γ = RRT . (6.7)

It is important to note that A, g, Γ and R are independent of vf , r and behave with respect to these variables
as constants.

In equation 6.7, R is used to denote a factor of Γ which can always be defined with real-valued entries
as a consequence of Assumption 5.1 condition (1). The reason for ambiguity in the choice of R is that the
Backward Kolomogorov Equation only determines the stochastic process in a weak sense through identifying
the probability distribution of the process. In practice, there are many possible stochastic processes having
this same probability distribution. Any choice of square factors R1 and R2 are related by a unitary matrix
so that R2 = R1U for some U such that UUT = I. From the invariance of the probability distribution of
increments of Brownian motion dW(t) under unitary transformations U , the stochastic process with driving
term R1dW(t) has the same probability distribution as the stochastic process with R2dW(t).

As a specific choice for R, we shall use

[R(t)]i,k = νkMs+i

√
βk(x0(t)), 1 ≤ i ≤M −Ms, 1 ≤ k ≤ N. (6.8)

It can be immediately verified that such a choice yields R with the property Γ = RRT by using the definition
of Γ given in equation 6.6 and α0

ij given in equations 5.22 and 5.28.

We now show formally the ergodicity of the stochastic process corresponding to the Forward Kolomogorov
Equation given by equation 6.1. Throughout, we shall use the conditions of Assumption 5.1. This will imply
the Forward Kolomogorov Equation given by equation 6.1 has a steady-state solution. The solution is unique
when imposing the additional condition that the solution be a probability density.

The Forward Kolomogorov Equation given by equation 6.1 governs the probability distribution ρ(r, z)
of the following stochastic process

dZr = (g +AZr) dr +RdWr. (6.9)

Using the specific form of equation 6.9, the stochastic process can be expressed in terms of Ito Integrals.
This is obtained by using the method of integrating factors in Ito Calculus, which yields

Zr = eArZ0 +

[∫ r

0

eA(r−q)dq

]
g +

∫ r

0

eA(r−q)RdWq (6.10)

= eArZ0 −
[
A−1

(
I − eAr

)]
g −

∫ r

0

eAqRdWr−q. (6.11)

Using properties of the increments of Brownian motion [21, 11], the process Zr is equal in probability
distribution to the process Yr given by

Yr = eArZ0 −
[
A−1

(
I − eAr

)]
g +

∫ r

0

eAqRdWq. (6.12)
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In the limit that r →∞, we have eAr → 0 from the properties of A implied by Assumption 5.1. This yields
in the limit r →∞

Y∞ = −A−1g +

∫ ∞
0

eAqRdWq. (6.13)

Since g and A are independent of r, we have from the properties of Ito Integrals [21, 11] that Y∞ is a
Gaussian random variable.

The conditions appearing in Assumption 5.1 ensure convergence of the Ito Integrals. Independent of the
initial condition Z0, equations 6.10 and 6.12 show as r →∞ that the distribution of Zr approaches a unique
stationary probability distribution equal to the distribution of Y∞. This demonstrates a form of ergodicity
for the stochastic process Zr.

To use the stationary Gaussian distribution in practice requires determining the mean µ and covariance
C. The mean is obtained by averaging both sides of equation 6.13 to obtain

µ = 〈Y∞〉 = −A−1g = −[DfFf ]
−1DsFfvs. (6.14)

This follows since increments of Brownian motion have zero mean 〈dWq〉 = 0.

To compute the covariance, we use the Ito Lemma [21, 11] for the process Kr = YrY
T
r and equation

6.12 which gives the following stochastic differential equation

dKr = (AKr +KrA
T +RRT )dr + S(r)dWr. (6.15)

For the covariance term, we have S(r) = S(r,Yr), whose precise form we will not need. Averaging both
sides of equation 6.15 we obtain

dCr = (ACr + CrA
T +RRT )dr (6.16)

where Cr = 〈Kr〉. This was obtained by using properties of Brownian increments and 〈dWr〉 = 0. In the
limit r →∞ we have dCr → 0 and

AC + CAT = −Γ. (6.17)

The C = limr→∞ Cr is the equilibrium covariance and Γ = RRT is the covariance of the stochastic driving
process. This is often referred to as the fluctuation-dissipation principle, since the expression relates the
dissipative operator A to the covariance C of the equilibrium fluctuations and covariance Γ of the stochastic
driving process. Under Assumption 5.1, the matrix equation 6.17 can be solved to obtain C.

This yields an approach to obtain explicitly the parameters of the Gaussian equilibrium probability
density. This probability density is given by

ρ(vf |t,vs) =
1√

(2π)(M−Ms) det(C)
exp

[
−1

2
(vf − µ)TC−1(vf − µ)

]
(6.18)

where C is obtained from equation 6.17 and µ is obtained from equation 6.14.

The effective stochastic equations for the fluctuations V0
s given in equation 4.3 are obtained by substi-

tuting the mean µ into equation 5.46 to obtain the specific form of B(t) in equation 4.6. For R(t) appearing
in equation 6.7 any factor satisfying Γ = RRT can be used. To represent the stochastic dynamics we used
the specific choice given by equation 5.49. This completes the derivation of the effective stochastic equations
for the fluctuations V0

s given in equation 4.3.

7. Applications.
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Fig. 7.1. Autoregulatory Gene Network. A basic autoregulatory gene network is shown which uses negative feedback to
maintain the concentration of a protein at a constant level. The basic mechanism consists of the following steps: (i) An RNA-
polymerase binds to the DNA promoter site in the cell nucleus and transcribes the genetic code to a messenger RNA molecule
(mRNA). (ii) The mRNA molecule is transported out of the nucleus and translated by a ribosome to produce molecules of
the encoded protein. (iii) Some of the molecules of the encoded protein are transported back into the nucleus and can act to
inhibit the transcription of mRNA by binding to the DNA promoter site. In the autoregulatory mechanism, the strength of
the inhibition effect depends on the number of protein molecules able to seek out and successfully bind the promoter site. The
mRNA and protein are both subject to degradation or dilution over time. When the number of proteins becomes sufficiently
large to achieve significant inhibition of mRNA transcription, the steady-state concentration is achieved.

7.1. Gene-Protein Regulatory Network. As an application of the stochastic reduction technique
we consider the biochemical kinetics of a basic gene regulatory network for the maintenance of a protein
at a constant concentration. A rather simple regulatory network having this feature is a single gene which
produces through the translation of mRNAs a protein which has an inhibitory feedback on the rate of
transcription of the mRNAs for the gene. This is summarized schematically in Figure 7.1.

To model this regulatory network at the level of the Linear Noise Equations the concentration of two
biochemical species are tracked C = (CP , CR). The concentration of the protein species is denoted by CP

and the concentration of the mRNA species is denoted by CR. From the Linear Noise Approximation defined
by equation 2.4, the protein and mRNA concentrations are given by

CP (t) ≈ p+
1√
n
U(t) (7.1)

CR(t) ≈ r +
1√
n
V (t). (7.2)

The p denotes the mean protein concentration and r denotes the mean mRNA concentration. The U
denotes fluctuations about the mean protein concentration and V denotes fluctuations about the mean
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Fig. 7.2. Protein and mRNA Concentrations. The protein and mRNA concentrations over time are shown for the
autoregulatory network modeled by the Linear Noise Equations. The protein and mRNA concentrations exhibit dynamics
characterized by distinctly different time-scales. For the protein concentration, the deviations from the mean concentration can
be seen to decay over a much longer time scale than for the mRNA concentration. This behavior is further highlighted in the
insets.

mRNA concentration. For more precise definitions see Section 2 and equations 2.10 and 2.15.
As discussed in Section 2, for the Linear Noise Approximation the chemical reaction rates ak expressed

in terms of the number of molecules of each species must be related to chemical reaction rates expressed in
terms of concentrations. Chemical reaction rates βk for the species concentrations are related to the reaction
rates ak by

βk(x) =
ak(nx)

n
. (7.3)

Here, x = (p, r) denotes the vector of mean concentrations of the chemical species. It is important that the
correspondence given in equation 7.3 be used to relate any parameters in the model obtained from the Linear
Noise Approximation to the underlying kinetics given in terms of the numbers of biological molecules.

For the chemical kinetics of the regulatory network, we shall model the rates of the reactions in terms
of concentrations by

β1 = kpr, β2 = γpp, β3 = k̃r(p), β4 = γ̃rr. (7.4)

For these reactions, we use the following stoichiometries

ν1 = (1, 0)T , ν2 = (−1, 0)T , ν3 = (0, 1)T , ν4 = (0,−1)T . (7.5)

Each of the reactions will correspond through equation 7.3 to the production or degradation of a protein
molecule or mRNA molecule. From equation 7.3, we see the precise values of the parameters may in fact
have dependence on the volume of the domain considered.
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The dynamics of the concentrations CP (t) and CR(t) are governed by the Linear Noise Equations given
by equation 2.18 in Section 2. For the regulatory network, the Linear Noise Equations take the specific form

ṗ = kpr − γpp (7.6)

ṙ = k̃r(p)− γ̃rr (7.7)

dU(t) = kpV (t)− γpU(t)dt+
√
kpr + γpp dW1(t) (7.8)

dV (t) = k̃′r(p)U(t)− γ̃rV (t)dt+

√
k̃r(p) + γ̃rr dW2(t) (7.9)

p(0) = pinit, r(0) = rinit, U(0) = U init, V (0) = V init. (7.10)

In many bacteria, such as Escherichia coli, the time scale for mRNA transcription is on the order of
minutes while the time scale for protein degradation/dilution is on the order of an hour. This suggests that
the protein concentrations do not depend strongly on the instantaneous number of mRNAs but rather on
an average over time of the number of mRNAs. This further suggests that studies of protein concentrations
may be possible through a reduced description of the model which eliminates explicit representation of the
mRNA concentration from the model, while accounting for such changes in mRNA concentrations through
effective terms in the kinetics of the protein species.

For this purpose, we shall use the stochastic reduction techniques introduced in Section 4. To use these
formulas in practice, a small parameter ε must be identified for the system. To characterize the disparate
time scales of the mRNA and protein response, we use ε = γp/γ̃r. Using the small parameter ε, the kinetic
terms can be expressed in terms of new terms kr(p) and γr defined by

k̃r(p) =
1

ε
kr(p) (7.11)

γ̃r =
1

ε
γr. (7.12)

The ε is used as a prefactor for scaling the parameters of the kinetics of the mRNA to obtain units in which
the parameter values kr, γr are comparable in magnitude to kp, γp.

The leading order behavior of the system in ε is captured by the reduced Linear Noise Equations given
in Section 4 equation 4.1. To use these results for the regulatory network system requires determining the
specific form of the equations for the kinetics given in equation 7.4. From equation 7.4, we have

Fs(p, r) = kpr − γpp (7.13)

Ff(p, r) = kr(p)− γrr. (7.14)

The operator Z (p0) is defined by solving Ff(p
0,Z (p0)) = 0. This gives

r0 = Z (p0) =
kr(p0)

γr
. (7.15)

The gradients are given by

DsFs = −γp, DfFs = kp (7.16)

DsFf = k′r(p0), DfFf = −γr. (7.17)

This gives from equations 4.6 and 7.16

B =
kpk
′
r(p0)

γr
− γp. (7.18)

From equation 6.6 and 5.22 we have

G =
kpkr(p0)

γr
+ γpp

0. (7.19)
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Fig. 7.3. Comparison of the Full Stochastic Dynamics to Reduced Stochastic Dynamics. The full stochastic dynamics are
shown in the case where both the protein and mRNA concentrations are resolved (left panel). The reduced stochastic dynamics
are shown in the case where only the protein concentration is resolved explicitly (right panel). The marginal probability
density at each time of the protein concentration is shown for an ensemble of trajectories with ε = 10−2, all starting with
pinit = 0, rinit = 0, U init = 0, V init = 0, and parameter values given in Table 7.2. The protein concentrations are shown in
pseudo-color to indicate the probability of being realized by a stochastic trajectory of the system. The marginal probability
densities are seen to compare qualitatively well.

The reduced stochastic dynamics for the protein concentration are obtained by substituting equations 7.13
– 7.19 into equation 4.1.

This gives the reduced Linear Noise Equations for the protein concentration

ṗ0 =
kpkr(p0)

γr
− γpp0 (7.20)

dU0(t) =

(
kpk
′
r(p0)

γr
− γp

)
U0(t)dt+

√
kpkr(p0)

γr
+ γpp0 dW (t). (7.21)

This reduces the four dimensional stochastic dynamical system to only two degrees of freedom. The effective
stochastic dynamics for the concentration of the protein biochemical species accounts for both the feedback
mechanism and the role of fluctuations in the mRNA concentrations occurring on much faster time scales.
An important issue in utilizing the reduction technique is to characterize the accuracy of the approximations
yielding the reduced description for the specific values of ε appearing for the biochemical system. For the
gene regulatory network, we explore this issue numerically in Section 7.1.1.

7.1.1. Numerical Results : Comparison of the Full Stochastic Dynamics to Reduced Stochas-
tic Dynamics. To investigate the accuracy of the reduced stochastic dynamics of the gene regulatory net-
work, we perform numerical studies as ε is varied. To compare the full and reduced stochastic dynamics we
generate an ensemble of stochastic trajectories for the mRNA and protein concentrations. The stochastic
trajectories are generated with the initial conditions rinit = 0, V init = 0, pinit = 0, U init = 0. The kinetics of
the gene regulatory network is parameterized using the values given in Table 7.2.

As a qualitative comparison we consider the marginal probability density of the stochastic trajectories
for the protein concentration for the full and reduced stochastic dynamics. To characterize at each instant
in time the fluctuations of the protein concentrations, we estimated the probability density by computing
a two-dimensional histogram over the ensemble when ε = 10−2, see Figure 7.3. This shows that the mean
behavior and fluctuations appear qualitatively very similar for the full and reduced stochastic dynamics.
This shows that for this choice of parameters the reduction technique provides a reasonable approximation
to the protein concentration fluctuations.
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Fig. 7.4. Relative Error of the Mean and Variance. The relative error as ε is varied is shown for the mean protein
concentration using the reduced stochastic dynamics (left panel). The relative error as ε is varied for the reduced stochastic
dynamics in approximating the mean behavior of the full stochastic dynamics of the protein concentration (left panel). The
relative error as ε is varied for the reduced stochastic dynamics in approximating the variance of the full stochastic dynamics
of the protein concentration (right panel). The sup-norm is used for the measure of errors over time.

As a more quantitative comparison we consider the error in the mean and variance of the reduced
stochastic dynamics in approximating the full stochastic dynamics as ε is varied. Since at each instant
in time t the fluctuations in the concentrations of the protein and mRNAs are Gaussian, this serves as a
measure of the error in the underlying probability distribution of the full and reduced stochastic dynamics.
As a measure of the error between the mean and variance over all time the sup-norm is used. The statistics
are computed from an ensemble of trajectories with the initial conditions rinit = 0, V init = 0, pinit = 0,
U init = 0 and parameters given in Table 7.2. These results are reported in Figure 7.4.

From Figure 7.4, we see that as ε tends to zero the reduced stochastic dynamics have increasing accuracy
in approximating the full stochastic dynamics for the protein concentrations. It is encouraging that even for
relatively modest values of ε, on the order of 10−2, the reduced stochastic dynamics yield for the mean a
relative error on the order of 1%. This shows the asymptotic approximation attains a high level of accuracy
for the mean behavior of the gene regulatory network, if the ratio of the mRNA and protein concentration
response times is on the order 10−2. In the log-log plot, the slope of the error curve is approximately one
indicating the approximation converges for the mean at a rate first order in ε.

For the fluctuations of the system, it is found that a larger separation in the time scales is required
to attain a comparable level of accuracy. From Figure 7.4, to achieve accuracy with a relative error of 1%
requires a time scale separation having a ratio ε = 10−3. In the log-log plot, the slope of the error curve
on the right for the variance is approximately one. This indicates that the approximation converges for the
variance at a rate first order in ε. This indicates that the reduction method is expected to work well even
when the separation in times scale are somewhat modest, on the order of 10−2 − 10−3, depending on the
level of accuracy sought.

7.2. An mRNA Genetic Switch for Controlling the Expression Level of Two Proteins. As
a further application of the stochastic reduction technique, we consider the biochemical kinetics of a genetic
system which operates like a switch to regulate the expression levels of two proteins. Specifically, we consider
a system which maintains exclusively only one of the proteins at a high level of expression while keeping the
other at a low level of expression. The control in this genetic switch is a third protein species whose presence
or absence signals which protein to maintain at a high level.

We consider a realization of such a system with the following components: (i) two genes, (ii) two product
protein species, (iii) one signaling protein species, (iv) an enzyme which cleaves molecules of mRNA, and (v)
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two mRNA fragments which are capable of binding promoter sites. In our notation, we label the two genes
and related products by subscripts A and B.

To obtain exclusively a high level of expression for only one protein at a time, we consider two genes
which are mutually repressive. More precisely, each gene has products which act to inhibit the expression
of the products of the other gene. By this mechanism only one gene will be expressed at a high level while
the other is repressed. To control which of the genes is expressed, the signaling protein acts as an additional
source of repression on one of the genes. This serves to break the symmetry of the system. The presence or
absence of the signaling protein can be used to control which of the two possible gene products are expressed
at a high level.

We now discuss some of the specific features of the kinetics we use to realize this switch mechanism. A key
part of the biochemistry in our hypothesized genetic regulatory system is the cleaving of mRNA molecules
which occurs between the steps of transcription and translation. This results for each mRNA molecule
which is transcribed, in the production of two distinct mRNA fragments. For gene A, the uncleaved mRNA
is labeled by mRNAA. Each mRNAA molecule is cleaved to form two fragments labeled by mRNAA1 and
mRNAA2. The first fragment functions as a typical mRNA molecule to be translated into the protein A.
The second fragment folds into a structure which is capable of binding the promoter site of gene B. This
second fragment functions to inhibit the expression of gene B. In our model, we assume similar roles for the
molecules mRNAB , mRNAB1 and mRNAB2.

To control which of the genes has a high level of expression, the protein C acts to repress expression
of gene A. When protein C is present in sufficient concentration, this results in a high level of expression
for gene B since very little mRNAA2 is produced. When protein C is absent, this results in a high level of
expression for gene A, since the abundant production of mRNAA2 results in strong repression of gene B and
very little mRNAB2 is produced. This biochemical mechanism is summarized schematically in Figure 7.5.

The hypothesized genetic switch, in which mRNAs play a central role in gene regulation, was inspired
by recent work on the development of synthetic nucleic acid molecules referred to as Aptamers. Aptamers
have been shown to be capable of binding a wide variety of target molecules [5, 17]. The possibility that
the genome might encode similar such sequences for mRNAs with the capability to bind promoter sites
and perform regulatory functions has also been discussed in [5, 19, 24]. Since the repression using mRNA
involves genetic products obtained before translation, such a switch is expected to result in a regulatory
system capable of having a much faster response time than a regulatory system based on protein products
which inhibit the genes.

To study this system, we shall use the Linear Noise Equations. We remark some care must be used for
the Linear Noise Equations, since they are only valid away from the critical concentration of C which triggers
switching between the expression levels of A and B. We shall consider here primarily the near-equilibrium
behavior of the system in a regime where the approximations of the Linear Noise Equations are appropriate,
see [30]. We discuss some specific issues for the genetic switch in more detail below.

To study the genetic switch at the level of the Linear Noise Equations, the concentrations of nine
biochemical species are explicitly represented and tracked in the initial model. The nine concentrations
tracked are denoted by

C = (CA, CB, CC , CrA, CrA1, CrA2, CrB, CrB1, CrB2), (7.22)

where C[·] denotes the concentration of each particular molecular species. The concentrations of the pro-
tein species are denoted by CA, CB, CC , and the concentrations of the mRNA molecules and fragments by
CrA, CrA1, CrA2 and CrB, CrB1, CrB2. For notational convenience, we also denote the components by indices
so that C = (C1, . . . , C9), with the natural correspondence with the previous definition of C.

In the Linear Noise Approximation given in equation 2.4, each of the concentrations is approximated by

Ck(t) ≈ xk(t) +
1√
n
Xk(t). (7.23)

The xk denotes the mean concentration of the kth molecular species. The Xk denotes the fluctuations about
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Fig. 7.5. An mRNA genetic switch controlling the expression level of two proteins. To obtain exclusively a high level of
expression for only one protein, two mutually repressive genes are considered. For gene A, molecules of mRNAA are cleaved
within the nucleus by an enzyme to produce the two fragments mRNAA1 and mRNAA2. The first fragment mRNAA1 is
translated to protein A. The second fragment mRNAA2 binds to the promoter site of gene B to repress its transcription. For
gene B, similar roles are played by molecules of mRNAB, mRNAB1, mRNAB2. The protein C acts to repress transcription
of gene A and controls which protein is expressed at a high level. When protein C is absent, protein A is maintained at a
high level of expression. When protein C is present in sufficient concentration, protein B is maintained at a high level of
expression.

the mean concentration of the kth molecular species. For a more precise definition of these terms and a
derivation of this approximation, see Section 2 and the equations 2.10 and 2.15.

We remark that an important consideration when using this approximation is that the concentration of
protein C be sufficiently far from the critical switching threshold where the expression levels of the proteins
A and B reverse roles. This is required since as the concentration of protein C approaches the switching
threshold, the system becomes bistable and depends sensitively on the form of the fluctuations. In particular,
the fluctuations determine which of the two possible expression levels is selected by the system. Each of
these can be regarded as a metastable state. The fluctuations also play an important role in determining
the time scale on which spontaneous switching occurs between these two metastable states.

For the genetic switch considered in such a regime, a more detailed description of the biochemistry is
required than provided by the Linear Noise Equations and perhaps even the Chemical Masters Equations.
In principle, simulation studies could be carried out by combining more detailed descriptions with the
approaches to the Linear Noise Equations which we discuss here. Such hybrid approaches could be used
to achieve a greater level of computational efficiency. In this spirit and to demonstrate the possible uses of
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our stochastic reduction procedure, we consider here only the transient responses of the system after the
switching threshold has been crossed by the concentration of protein C. We leave to other works the pursuit
of such hybrid computational methods which may benefit from the studies presented here.

We now give the precise form of the kinetics used to model the regulatory switch. The kinetics for the
proteins A,B,C are accounted for by the specific Linear Noise Equations

ẋA(t) = κrAxrA(t) + κrA1xrA1(t)− γAxA(t) (7.24)

ẋB(t) = κrBxrB(t) + κrB1xrB1(t)− γBxB(t) (7.25)

ẋC(t) = κC − γCxC(t) (7.26)

dXA(t) = (κAXrA(t)− γAXA(t) + κrA1XrA1(t)) dt (7.27)

+ (κrAxrA(t) + κrA1xrA1(t) + γAxA(t))
1/2

dWA(t)

dXB(t) = (κBXrB1(t)− γBXB(t) + κrB1XrB1(t)) dt (7.28)

+ (κrBxrB(t) + κrB1xrB1(t) + γBxB(t))
1/2

dWB(t)

dXC(t) = −γCXC(t)dt+ (κC + γCxC(t))
1/2

dWC(t). (7.29)

The κk denotes the kinetic rate of translation of the kth mRNA species to protein. The γk denotes the rate
of degradation of molecules of the kth protein species or mRNA species.

To account qualitatively for the relationship between the strength of inhibition and the concentration of
molecules which bind the promoter site, we use the following functional form throughout

h(x,M) =
1

1 + (x/M)N
. (7.30)

This functional form has the property of making a transition from a value which is nearly one, for x smaller
than M , to a value which is nearly zero, for x larger than M . The range of x over which this transition
occurs is controlled by the exponent N . In the limit that N → ∞, the functional form approaches the
characteristic function for x to be less than M .
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The kinetics for mRNAA, mRNAA1, mRNAA2 are accounted for by the Linear Noise Equations

ẋrA(t) =
1

ε

(
kmax

rA h(xC(t),MC)h(xrB2(t),MrB2)− γrAxrA(t)− kclrAxrA(t)
)

(7.31)

ẋrA1(t) =
1

ε

(
kclrAxrA(t)− γrA1xrA1(t)

)
(7.32)

ẋrA2(t) =
1

ε

(
kclrAxrA(t)− γrA2xrA2(t)

)
(7.33)

dXrA(t) =
1

ε

(
kmax

rA

∂h

∂x
(xC(t),MC)h(xrB2(t),MrB2)XC(t) (7.34)

− (γrA + kclrA)XrA(t) + kmax
rA h(xC(t),MC)

∂h

∂x
(xrB2(t),MrB2)XrB2(t)

)
dt

+
1√
ε

(
kmax

rA h(xA(t),MrA)h(xrB2(t),MrB2) + γrAxrA(t) + kclAxrA(t)
)1/2

dWrA(t)

dXrA1(t) =
1

ε

(
kclrAXrA(t)− γrA1XrA1(t)

)
dt (7.35)

+
1√
ε

(
kclrAxrA(t) + γrA1xrA1(t)

)1/2
dWrA1(t)

dXrA2(t) =
1

ε

(
kclrAXrA(t)− γrA2XrA2(t)

)
dt (7.36)

+
1√
ε

(
kclrAxrA(t) + γrA2xrA2(t)

)1/2
dWrA2(t).

The ε is a characteristic time-scale over which reactions occur for the mRNAA molecules. The kmax
rA denotes

the maximum rate of transcription of mRNAA. The kclrA denotes the rate at which molecules of mRNAA

are cleaved to form the two fragments mRNAA1 and mRNAA2. To account for the inhibition arising from
the binding of mRNAB2 and protein C to the promoter site of gene A, we use the functional form defined
in equation 7.30 and the threshold constants MrB2, MC . Degradation of the mRNA molecules is accounted
for by the rate constants γrA, γrA1, and γrA2.
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The kinetics for mRNAB , mRNAB1, mRNAB2 are accounted for by the Linear Noise Equations

ẋrB(t) =
1

ε

(
kmax

rB h(xrA2(t),MrA2)− γrBxrB(t)− kclrBxrB(t)
)

(7.37)

ẋrB1(t) =
1

ε

(
kclrBxrB(t)− γrB1xrB1(t)

)
(7.38)

ẋrB2(t) =
1

ε

(
kclrBxrB(t)− γrB2xrB2(t)

)
(7.39)

dXrB(t) =
1

ε

(
kmax

rB

∂h

∂x
(xrA2(t),MrA2)XrA2(t)− (γrB + kclrB)XrB(t)

)
dt (7.40)

+
1√
ε

(
kmax

rB h(xrA2(t),MrA2) + (γrB + kclrB)xrB(t)
)1/2

dWrB(t) (7.41)

dXrB1(t) =
1

ε

(
kclrBXrB(t)− γrB1XrB1(t)

)
dt (7.42)

+
1√
ε

(
kclrBxrB(t) + γrB1xrB1(t)

)1/2
dWrB1(t) (7.43)

dXrB2(t) =
1

ε

(
kclrBXrB(t)− γrB2XrB2(t)

)
dt (7.44)

+
1√
ε

(
kclrBxrB(t) + γrB2xrB2(t)

)1/2
dWrB2(t). (7.45)

The ε is a characteristic time-scale over which reactions occur for the mRNAB molecules. The kmax
rB denotes

the maximum rate of transcription of mRNAB . The kclrB denotes the rate at which molecules of mRNAB are
cleaved to form the two fragments mRNAB1 and mRNAB2. To account for the inhibition arising from the
binding of mRNAA2 to the promoter site of gene B, we use the functional form defined in equation 7.30 and
the threshold constants MrA2. Degradation of the mRNA molecules is accounted for by the rate constants
γrB, γrB1, and γrB2. A key difference of between the mRNAB kinetics compared to those for mRNAA is the
absence of the inhibition term involving protein C. In the genetic switch considered, the signaling protein
C only influences the transcription rate of mRNAA.

An important feature of the regulatory mechanism of the switch is that the mutual inhibition occurs
through the mRNA molecules before translation. As a consequence, it is expected the part of the biochemical
kinetics responsible for controlling the switch will primarily occur on much faster time scales than the
biochemical kinetics associated with the proteins. To exploit this feature, we shall use the stochastic reduction
technique introduced in Section 4. This will allow for a model to be derived which is formulated completely
in terms of the concentrations of protein A, protein B, and protein C.

We use the reduction procedure to obtain effective equations for the proteins both for the mean concen-
trations and for the fluctuations in the concentrations. The following reduced system of differential-algebraic
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equations are obtained for the effective dynamics of the mean concentration of the proteins

ẋ0
A(t) = κAx

0
rA(t) + κrA1x

0
rA1(t)− γAx

0
A(t) (7.46)

ẋ0
B(t) = κBx

0
rB(t) + κrB1x

0
rB1(t)− γBx

0
B(t) (7.47)

ẋ0
C(t) = κC − γCx

0
C(t) (7.48)

x0
rA(t) = Γ(x0

C(t)) (7.49)

x0
rA1(t) =

kclrA
γrA1

Γ(x0
C(t)) (7.50)

x0
rA2(t) =

kclrA
γrA2

Γ(x0
C(t)) (7.51)

x0
rB(t) =

kmax
rB

γrB + kclrB
h

(
kclrA
γrA2

Γ(x0
C(t)),MrA2

)
(7.52)

x0
rB1(t) =

kclrB
γrB1

kmax
rB

(γrB + kclrB)
h

(
kclrA
γrA2

Γ(x0
C(t)),MrA2

)
(7.53)

x0
rB2(t) =

kclrB
γrB2

kmax
rB

(γrB + kclrB)
h

(
kclrA
γrA2

Γ(x0
C(t)),MrA2

)
. (7.54)

The term Γ = Γ(xC) denotes the solution to the following implicit equation

(γrA + kclrA)Γ− kmax
rA h(xC ,MC)h

(
kclrB
γrB2

kmax
rB

(γrB + kclrB)
h

(
kclrA
γrA2

Γ,MrA2

)
,MrB2

)
= 0. (7.55)

The following reduced system of stochastic differential equations are obtained for the effective dynamics
of the fluctuations for the protein concentrations

dZ0(t) = B(t)Z0(t)dt+ σ0(t)dW(t) (7.56)

where Z0(t) = (XA(t), XA(t), XC(t)) and dW denotes increments of Brownian motion in R3. The operator
B obtained in the reduction procedure is given by

B(t) = DsFs(x
0(t))−DfFs(x

0(t))[DfFf(x
0(t))]−1DsFf(x

0(t)). (7.57)
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For the genetic switch, this is given by the following specific terms

DsFs(x) =

−γA 0 0
0 −γB 0
0 0 −γC


DfFs(x) =

κA κrA1 0 0 0 0
0 0 0 κB κrB1 0
0 0 0 0 0 0



DsFf(x) =


0 0 kmax

rA

∂h
∂x (xC ,MC)h(xrB2,MrB2)

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0



DfFf(x) =


−(γrA + kclrA) 0 0 0 0 kmax

rA h(xC ,MC)∂h
∂x (xrB2,MrB2)

kclrA −γrA1 0 0 0 0
kclrA 0 −γrA2 0 0 0
0 0 kmax

rB

∂h
∂x (xrA2,MrA2) −(γrB + kclrB) 0 0

0 0 0 kclrB −γrB1 0
0 0 0 kclrB 0 −γrB2

 .
(7.58)

From equation 7.57 and 7.58, the operator B(t) can be computed readily at each time t. For the genetic
switch, the term σ0(t) for the fluctuations in the reduced equations is given by

σ0 =

σ0
A 0 0
0 σ0

B 0
0 0 σ0

C

 (7.59)

where

σ0
A(t) =

√
κrAx0

rA(t) + κrA1x0
rA1(t) + γAx0

A(t) (7.60)

σ0
B(t) =

√
κrBx0

rB(t) + κrB1x0
rB1(t) + γBx0

B(t) (7.61)

σ0
C(t) =

√
(κC + γC)x0

C(t). (7.62)

This determines for the genetic switch a closed set of equations for the effective stochastic dynamics of
the concentration of the proteins A, B, C. To help characterize the quality of this reduced approximation
of the full system of Linear Noise Equations, we carry-out numerical studies by varying ε to compare the
reduced model to the full model.

7.2.1. Numerical Results: Comparison of the full stochastic dynamics with the reduced
stochastic dynamics. To investigate the accuracy of the reduced stochastic dynamics of the genetic switch,
we perform numerical studies as ε is varied. To compare the full and reduced stochastic dynamics we generate
an ensemble of stochastic trajectories for the full set of concentrations for both the mRNAs and proteins.
The stochastic trajectories are generated with the parameter values given in Table 7.3.

As a qualitative comparison, we consider the marginal probability density of the stochastic trajectories
for the protein concentrations for the full and reduced stochastic dynamics. To characterize at each instant
in time the fluctuations in concentration of each protein species, we estimated the probability density by
computing a two-dimensional histogram over the ensemble when ε = 10−2, see Figures 7.6 and 7.7. The
results for protein C are not reported since its dynamics are retained exactly in the reduction and the error
is always zero. For protein A and protein B, the figures show that the behavior both of the mean and of
the fluctuations are for the reduced stochastic dynamics very similar to the full stochastic dynamics. This
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Fig. 7.6. Comparison of the marginal probability density of the full and reduced stochastic dynamics for the genetic switch.

Fig. 7.7. Comparison of the marginal probability density of the full and reduced stochastic dynamics for the genetic switch.

indicates that for this choice of parameters the reduction technique provides a reasonable approximation for
the trends and fluctuations of the protein concentration.

As a more quantitative comparison, we consider as ε is varied the error in the mean and variance of the
reduced stochastic dynamics in approximating the full stochastic dynamics. Since at each instant in time
the fluctuations in the concentrations of the proteins and mRNAs are Gaussian, this serves as a measure
of the error in the underlying probability distribution of the full and reduced stochastic dynamics. As a
measure of the error between the mean and variance over all time, the sup-norm is used. The statistics are
computed from an ensemble of trajectories generated with the parameters given in Table 7.3. These results
are reported in Figures 7.8. We remark that the results for protein C are not reported since its dynamics
are retained exactly in the reduction and the error is always zero.

From Figure 7.8, we see that as ε tends to zero the reduced stochastic dynamics has increasing accuracy
in approximating the full stochastic dynamics for the protein concentrations. It is encouraging that even for
relatively modest values of ε, on the order of 10−1, the reduced stochastic dynamics yield for the mean a
relative error on the order of 1%. This shows the asymptotic approximation attains a high level of accuracy
for the mean behavior of the genetic switch, even if the ratio of the mRNA and protein concentration
response times is only on the order 10−1. In the log-log plot, the slope of the error curve is approximately
one indicating the approximation converges for the mean at a rate first order in ε.
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Fig. 7.8. Relative error of the mean and variance of the stochastic dynamics of the reduced model when approximating
the full model. The sup-norm is used to measure the error over time.

For the fluctuations of the proteins of the genetic switch, it is found that a larger separation in the
time scales is required to attain a comparable level of accuracy. From Figure 7.8, it is seen that to achieve
accuracy with a relative error of 1% requires a time scale separation having a ratio ε = 10−3. In the log-log
plot, the slope of the error curve on the right for the variance is approximately one. This indicates that the
approximation converges for the variance at a rate first order in ε. This indicates that the reduction method
is expected to work well when the separation in times scale is on the order of 10−3 − 10−4, of course this
depends on the level of accuracy sought.

These results show that for the genetic switch, some of the detailed kinetics responsible for the switching
mechanism can be replaced by appropriate functional forms in the protein equations. The empirical results
reported here give an indication of the actual magnitudes in the separation of time scales which are required
in practice to attain a given level of accuracy in such approximations.

8. Conclusion. A systematic approach was presented for obtaining reduced models to approximate the
full stochastic dynamics of biochemical concentrations described by the Linear Noise Equations. The reduced
model is obtained by explicitly representing only the chemical species having dynamics with relatively slow
characteristic time scales while eliminating representations of the chemical species having dynamics with
relatively fast characteristic time scales. Effective stochastic dynamics for the slow chemical species is
obtained through a singular perturbation analysis of the Backward Kolomogorov PDEs for the Linear Noise
Equations. The multiscale reduction technique is demonstrated in the context of gene regulatory networks.
It is found that even for relatively modest separation in time scales, the reduced model offers a reasonable
approximation of the full stochastic dynamics. The presented stochastic reduction procedure provides a
potentially versatile tool for systematically obtaining reduced approximations of Linear Noise Equations.
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Parameter Description
kp Rate of production of Protein.
γp Rate of degradation of Protein.
ε−1kmax

r Maximum Rate of production of mRNA.
ε−1γr Rate of degradation of mRNA.
ε Scaling parameter.
KD Parameter in Hill coefficient.
N Hill coefficient.
n Reaction volume.

Table 7.1
Description of the parameters and notation.

Parameter Value

kp 10hr−1.

γp 1hr−1.
kmax
r 10.
γr 1.
ε 10−4s− 1s.
KD 60.
N 4.
n 25.

Table 7.2
Values used for the parameters.

Parameter Description Value
κrA Translation rate of protein A from mRNAA. 5
κrA1 Translation rate of protein A from mRNAA1. 10
κrB Translation rate of protein B from mRNAB. 5
κrB1 Translation rate of protein B from mRNAB1. 10
κC Production rate of protein C. 20
kmax

rA Maximum transcription rate of mRNAA. 20
kmax

rB Maximum transcription rate of mRNAB. 20
kclrA Cleaving rate of mRNAA. 2
kclrB Cleaving rate of mRNAB. 2
MrA2 Repression threshold. 6
MrB2 Repression threshold. 6
MC Repression threshold. 10
γk Rate of degradation of the kth molecular species. 1
N Hill coefficient. 2
n Volume. 25
ε Time-scale separation parameter (ratio of time-scales). 10−3 to 1

Table 7.3
Values used for the parameters.


