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W
e introduce adversarial learning methods for data-driven generative modeling of
dynamics of nth-order stochastic systems. Our approach builds on Generative
Adversarial Networks (GANs) with generative model classes based on stable

m-step stochastic numerical integrators. From observations of trajectory samples, we
introduce methods for learning long-time predictors and stable representations of the
dynamics. Our approaches use discriminators based on Maximum Mean Discrepancy
(MMD), training protocols using both conditional and marginal distributions, and
methods for learning dynamic responses over different time-scales. We show how our
approaches can be used for modeling physical systems to learn force-laws, damping
coefficients, and noise-related parameters. Our adversarial learning approaches provide
methods for obtaining stable generative models for dynamic tasks including long-time
prediction and developing simulations for stochastic systems.

1. Introduction

Many learning and modeling tasks arising in statistical inference, machine learning, engineering, and
the sciences involve inferring representations for systems exhibiting non-linear stochastic dynamics.
This requires estimating models that not only account for the observed data but also allow for
performing simulations or making predictions of behaviors over longer time-scales. Obtaining stable
long-time simulations and predictions requires data-driven approaches capable of learning structured
dynamical models from observations. Estimating parameters and representations for stochastic
dynamics has a long history in the statistics and engineering community [66, 103, 92]. This includes
methods for inferring models and parameters in robotics, orbital mechanics, geology, political science,
finance, and economics [25, 106, 92]. One of the most prominent strategies for developing estimators
has been to use Maximum Likelihood Estimation (MLE) or Bayesian Inference (BI). For systems
where likelihoods can be specified readily and computed tractably, estimators can be developed
with asymptotically near optimal data efficiency [150]. As we shall discuss, for non-linear stochastic
dynamics this is often challenging in practice and we show how alternatives can be developed based
on adversarial learning approaches.

Early methods include Wiener and Kalman Filtering [151, 72], which was originally designed
to estimate underlying states from knowledge of the underlying linear dynamics and a sequence of
observations from noisy sensor measurements [22, 56]. To further handle non-linear dynamics and
propagation of sufficient statistics for the conditional distributions, extended methods also were
introduced using linearizations or other approximations, such as in Extended Kalman Filters [81,
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24, 149, 161] or use of specialized sampling points as in Unscented Kalman Filters [70, 37, 149]. For
some tasks, these were further applied to model estimation by appending system parameters as
pseudo-state variables to be estimated as part of the state filtering. This included Joint Methods [149,
22] or Dual Methods [65, 149, 148], with the latter using alternating iterations between filtering and
parameter estimation using Expectation-Maximization (EM) procedures [26, 63]. These approaches
attempt to estimate parameters of the stochastic processes using loss functions based on the
probability densities associated with likelihoods in MLE [66] or related Bayesian formulations [66,
150]. In practice, the variants of Kalman Filtering have primarily been designed for estimation
based on L2-errors and propagation of variances which tacitly works best when there is Gaussian
or unimodal statistics. The methods have been most effective when the underlying dynamics is
close to deterministic or there is extensive prior knowledge about system behaviors constraining the
model parameterizations [37, 22, 56, 81].

As an alternative to such approaches and MLE methods, we develop sample-based adversarial
learning methods using discriminators/critics based on a generalization of the method-of-moments
building on [62, 55, 41]. Our sample-based approaches do not require specification of likelihood
functions facilitating use of more general classes of generative models. We also develop methods
for learning dynamic models of nth-order stochastic processes using a class of generative models
based on stable m-step stochastic numerical integrators. For gradient-based learning with loss
functions based on higher-order statistics, and the high dimensional samples arising from trajectory
observations, we develop specialized adjoint methods and custom backpropagation methods. Our
approaches provide Generative Adversarial Networks (GANs) for learning generative models for
the non-linear dynamics of stochastic systems. We refer to the methods as Stochastic Dynamic
Generative Adversarial Neural Networks (SDYN-GANs).

In the literature there have been many system identification approaches and data-driven
methods developed for identifying underlying governing equations [121, 140, 14]. These have
primarily been developed for deterministic dynamical systems. A widely-used strategy is to perform
an L2-error analysis and to handle observational noise by performing variants of least-squares-like
methods to construct models for the underlying deterministic dynamics [121, 140, 82, 79]. Prominent
linear methods include Dynamic Mode Decompositions (DMD) [121, 140], Koopman Methods [82,
79, 97], operator learning approaches [60, 107], and Kalman Filtering with Expectation Maximization
(K-EM) [47, 119]. Further extensions were developed to obtain non-linear models or learn latent
space representations in [73, 46, 43, 123, 93]. This includes SINDy [40], PINNs [20], extended-
DMD [18], and Extended Kalman Filters [65, 81, 149]. In the case of stochastic dynamical systems,
a new set of challenges arises since additional sources of noise drive the underlying dynamics. This
can be especially challenging when systems have significant diffusive contributions. As we shall
discuss, SDYN-GANs provides methods to address these and other aspects of stochastic systems by
using a more general error analysis that makes more direct comparisons between the underlying
probability measures of the learned models and ensembles of observed trajectory data. This allows
for learning generative models for the diverse probabilistic behaviors that can be exhibited by
stochastic systems.

There have also been many neural network methods proposed for learning predictions for
time-series based on linear and non-linear approaches [85, 91, 109, 124]. Early methods have been
based on feedfoward neural networks [154, 163, 31] and discrete and continuous-time recurrent
neural networks (RNNs) [23, 64, 31, 124]. For RNNs backpropagation methods where extended
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over time to compute gradients for training [111, 53]. For trajectories this can lead to well-known
issues with vanishing and exploding gradients [53, 133, 91, 98, 110, 9]. For RNNs this led to the
introduction of Long-Short-Term-Memory (LSTM) [64], Gated Recurrent Units (GRU) units [21,
28], and more recently as alternatives, the Transformer architectures [144, 32]. The early methods
were primarily developed for deterministic systems subjected to noise perturbations [31] and were
aimed at performing forecasting [23, 31, 154]. For long-time prediction or simulation using RNNs,
and other neural network methods, there are persistent issues with instabilities in the generated
dynamics over long-time horizons or within the internal transformations [139, 7, 98, 162, 38, 45,
33, 9]. While some of this can be mitigated by training procedures [98, 114, 87, 110], this often
requires inputs remain close to the training data sequences. This can pose challenges especially for
stochastic systems that involve diffusive contributions covering large parts of the state-space.

More recent methods for stochastic systems using GANs-like approaches to model deterministic
and stochastic dynamics, include Neural-ODEs/SDEs [19, 74] and methods motivated by problems
in physics [156, 6, 130, 158, 157, 159, 89]. Recent GANs methods are closely related to prior adjoint
and system identification methods developed in the engineering communities [90, 49, 92, 17] and
finance communities [71, 48]. In these GANs methods, Maximum Likelihood Estimation (MLE) is
replaced with either the original GANs approximations to Jensen-Shannon (JS) metric by using
neural network classifier discriminators [54] or by approximations to the Wasserstein metric [3] based
on neural networks with Gradient Penalties (WGAN-GP) [59]. Recent work also have introduced
other methods, including energy-based methods [164], Wasserstein metric approaches based on
marginal slices [27, 78], and other sample comparison approaches [30, 8, 116, 11, 36]. For time-series
analysis, probabilistic graphical models also have been combined with GANs to enhance training and
characterized by establishing subadditivity bounds in [29, 30]. The use of general neural network
discriminators are known to be challenging to train for GANs. This manifests as oscillations during
training with well-known issues with convergence and stability [77, 136]. While Neural ODEs/SDEs
have been introduced for gradient training [19, 141], they make approximations to simplify the
gradient calculations, but these can result in inconsistencies with the specific discretizations chosen
to represent the stochastic dynamics. These methods also treat dynamics primarily of first-order
systems.

In our SDYN-GANs approach, we formulate training methods by developing a set of adjoint
methods for computing gradients for general nth-order dynamics and classes of m-step methods.
We take into account the roles of the discretization errors, which we find is important for stability
and consistency during training. In our methods, this ensures our training gradients align with our
specified loss functions for our structured m-step generative model classes. While our adversarial
learning framework can be used more generally, we further mitigate oscillations and other issues
in training by focusing on using discriminators/critics D which are analytically tractable. We
develop discriminators/critics D for the dynamic setting using a collection of feature maps which
can be viewed as employing kernel methods to encode and embed probability distributions into a
Reproducing Kernel Hilbert Space (RKHS) [55, 127, 120]. The comparisons between the samples of
the candidate models and the observation data correspond to a set of losses related to Generalized
Moments Methods (GMMs) [62] and Maximum Mean Discrepancy (MMD) [55, 41].

Our methods with this choice for losses is related to GANs-MMD approaches that previously
were applied to problems in image generation [86, 11, 36]. Our work addresses generative models for
nth-order stochastic dynamics posing new challenges arising from the temporal aspects, stochasticity,
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high dimensional trajectory samples, and general order dynamics. Related work using MMD to learn
SDE models was developed in [1]. However, in this work the focus was on scalar-valued first-order
SDEs and learning primarily the deterministic drift terms by using a splitting of the dynamics and
fitting with Gaussian Process Regression (GPR) [153]. The GPR was used as a smoother to develop
estimators for the drift contributions. For their scalar covariance, they learned a proportionality
constant by treating it as part of the hyperparameters for the prior distribution for the GPRs
optimized by MLE [1].

Our SDYN-GANs approach provides alternatives to MLE and a broader class of methods
for treating vector-valued nth-order stochastic dynamics and allowing for learning simultaneously
the contributions of both the drift and diffusion. We introduce structured classes of implicit
generative models by building on m-step stochastic numerical integrators. For training models,
we develop custom adjoint methods to obtain gradients consistent with the specific choices of
the m-step stochastic discretizations. We develop custom backpropagation procedures allowing
for use of second-order statistics in loss functions. We develop different protocols for training by
using variants of statistical criteria of the stochastic dynamics based on the (i) full trajectory, (ii)
conditional distributions, or (iii) marginal distributions. Given the intrinsic high dimensionality of
trajectory data, we also develop training methods for reducing the dimension by using probabilistic
dependencies and facilitating sub-sampling of trajectories over specified time-scales τ . Motivated by
problems in microscale mechanics, we show how our SDYN-GANs methods can be used to learn
generative models of vector-valued second-order inertial stochastic dynamics of physical systems
and unknown force-laws. Our SDYN-GANs methods provide flexible sample-based approaches for
training over general classes of generative models to learn structured representations of the nth-order
dynamics of stochastic systems.

We organize the paper as follows. In Section 2, we discuss adversarial learning approaches
using different formulations of GANs and our approaches for training dynamic models for stochastic
systems. In Section 3, we discuss our SDYN-GANs approaches for learning discrete m-step stochastic
models. This includes discussion of practical training methods for learning models from observations
over ensembles of the stochastic trajectories and methods to handle higher-order statistics. In
Section 4, we present results for learning generative models for the stochastic dynamics of physical
systems. We first discuss training SDYN-GANs for physical modeling of the mechanics in an inertial
stochastic system to learn parameters of both the drift and diffusive contributions in Section 4.1
and 4.2. We then discuss how SDYN-GANs can be used to learn non-linear force laws from an
ensemble of trajectory observations in Section 4.3. The introduced adversarial learning approaches
of SDYN-GANs provide methods for obtaining stable generative models for dynamic tasks including
long-time prediction and developing simulation methods for stochastic systems.

2. Adversarial Learning

We develop sample-based training methods for learning implicit generative models G(Z; θG), where
Z is a random variable for a noise source and θG are the learned parameters. In adversarial training,
a discriminator/critic model D(X; θD) is learned along with G, where X is a sample and θD are the
learned parameters. The discriminator/critic D aims to distinguish a collection of samples generated
by G from samples of the training data. The generator aims to produce samples of such good
quality that any discriminative model D would be unable to distinguish them from the training
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data, see Figure 1. This can be viewed as a two-player non-cooperative game [108]. Depending on
the choices made for the loss functions, and the model classes of the discriminative and generative
models, different types of divergences and metrics can be obtained for comparing the empirical
distributions of the samples [128, 53, 3].

Figure 1: Adversarial Learning. A generative model G(·; θG) and discriminator/critic D(·; θD) are used
to learn models from samples of the trajectory data. The D is used in computing a loss comparing samples

{x̃i}Ñi=1 generated by G with the samples {xi}Ni=1 of the training data.

2.1. Generative Adversarial Networks (GANs)

In Generative Adversarial Networks (GANs), G is a neural network representing an implicit generative
model denoted by G(Z; θG). The θG are the parameters and the samples are generated from a
random source Z as x̃[i] = G(Z[i]; θG). The discriminator/critic D(X; θD) serves to distinguish how

well a set of samples {x̃[i]}Ñi=1 generated by G matches the samples {x[i]}Ni=1 of the training data
set. Let the empirical distributions be denoted for the generator by µ̃G and for the training data by
µ̃D. The choices of the form of D and for the loss functions ℓ determine how the comparisons are
made between the empirical probability distributions of the two sets of samples, µ̃G, µ̃D. There are
many ways to formulate GANs and related statistical estimators [128, 53].

2.1.1. Original Formulation of GANs

In the original formulation of GANs [54, 53], the objective for D can be expressed as

θ∗D = argmin
θD

JD(θG, θD), with JD = E(x,y)∼psynth [− log pD(y|x; θD)] , (1)

psynth(x, y) =
1

2
pdata(x, y) +

1

2
pmodel(x, y; θG).

The psynth is the probability of a synthetic data distribution obtained by mixing the samples of
the generator x̃ ∼ pmodel ∼ µ̃G with the training data x ∼ pdata ∼ µ̃D, [53]. The µ̃G, µ̃D denote
the empirical measures of the samples. Labels are assigned with y = −1 for the generated data
samples and y = +1 for the training data. For a given θD, we let D(x) = pD(y = +1|x; θD) for
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the probability that the discriminator classifier assigns the sample x to have the label y = +1. We
then have 1−D(x) = pD(y = −1|x; θD). With these choices and notation, the objective now can be
expressed as

JD = −1

2
Ex∼pdata [log(D(x))]− 1

2
Ex∼pmodel(;θG) [log(1−D(x))] . (2)

The aim is for the generator to produce high quality samples so that even the optimal discriminator
θ∗D is confused and gives the value D(x) = pD(·; θ∗D) = 1/2.

The optimal generative model in this case has objective θ∗G = argminθG JG(θG, θ
∗
D(θG)). When

JG = −JD, this can be viewed as a two-player zero-sum game with cost function ℓ = JD with
θ∗D and θ∗G corresponding to the optimal strategies. If the objectives are fully optimized to the
equilibrium, this would give the Jensen-Shannon (JS) Divergence JS(µ̃G(;θG), µ̃D) [88]. For the
empirical distributions of the generator µ̃G and training data µ̃D, we have

JS(µ̃G, µ̃D) =
1

2
DKL

(
µ̃D∥

1

2
(µ̃G + µ̃D)

)
+

1

2
DKL

(
µ̃G∥

1

2
(µ̃G + µ̃D)

)
, (3)

with DKL the Kullback-Leibler Divergence [80, 88]. The optimal generator would be

θ∗G = argmin
θG

JS(µ̃G(·;θG), µ̃D). (4)

In practice, to mitigate issues with gradient-learning, the zero-sum condition can be relaxed by using
different loss functions in the objectives with JG ≠ −JD. For example, JG = −1

2Ex∼pmodel(;θG) [log(D(x))]
has been used for the generator G to improve the gradient [53]. Using this formulation for JG can
result in non-zero sum games with more general solutions characterized as Nash Equilibria or other
stationary states [104, 108, 102, 118].

2.1.2. Alternative Formulations for GANs

To help mitigate some of the issues that can arise with the initial formulation of GANs, we consider
alternative statistical estimators based on Integral Probability Metrics (IPMs) [128, 100]. In this
formulation, we use discriminators/critics with the IPM objective based on

JD(θG, θD) =
∣∣∣Eµ̃G(;θG)

[
F (X ′; θD)

]
− Eµ̃D [F (X; θD)]

∣∣∣ (5)

and JG = −JD with θ∗G = argminθG JG(θG, θ
∗
D(θG)) and θ∗D = argminθD JD(θG, θD). The IPM can

be expressed as

θ∗G = argmin
θG

max
f∈F

(
Eµ̃D [f(X)]− Eµ̃G(;θG)

[
f(X ′)

])
(6)

= argmin
θG

max
f∈F

ℓ(θG; f) = argmin
θG

ℓ∗(θG),

where F = {f | ∃θD s.t. f = F (·; θD)} and ℓ∗(θG) = maxf∈F ℓ(θG; f). Here, we treat X generally,
but intuitively this can be thought of as a random variable representing either the entire dynamical
trajectory sample, or for practical computations, as a fragment of a trajectory sample at discrete
times ti ∈ [0, τ ] over a limited time duration τ . In the case of F = Lip-1, consisting of Lipschitz
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functions with L ≤ 1, this results in ℓ∗(θG) = maxf∈Lip-1 ℓ(θG; f) = W1 (µ̃G, µ̃D). This follows by

Kantorovich-Rubinstein Duality, where W1 is the Wasserstein-1 distance for the empirical measures
µ̃G and µ̃D [146]. While Wasserstein distance provides a widely used norm for analyzing measures,
in practice for training, it can be computationally expensive to approximate and can result in
challenging gradients for learning [95].

As an alternative to these approaches, we use for IPMs a smoother class of discriminators, with
F ⊂ H with H a Reproducing Kernel Hilbert Space (RKHS) [4, 10]. By choice of the kernel k(·, ·)
we also can influence the features of the distributions that are emphasized during comparisons. We
take F = {f ∈ H | ∥f∥H ≤ 1} for the objective,

θ∗G = argmin
θG

max
f∈F

ℓ(θG; f),where ℓ(θG; f) = Eµ̃D [f(X)]− Eµ̃G(;θG)

[
f(X ′)

]
. (7)

The objective can be partially solved analytically to yield ℓ∗(θG) = maxf∈F ℓ(θG; f) = ∥ηµ̃D−ηµ̃G∥H,
where ηµ̃D = EX∼µ̃D

[k(·, X)], ηµ̃G = EX′∼µ̃G
[k(·, X ′)] and ∥·∥H is the norm of the RKHS [127]. Here,

we take µ̃D to be the empirical distribution of the training data and µ̃G the empirical distribution
of the generated samples. Characterizing the differences between the probability distributions in
this way corresponds to the statistical approaches of Generalized Method of Moments (GMM) [62]
and Maximum Mean Discrepancy (MMD) [41, 126].

2.2. SDYN-GANs: Stochastic Dynamic Generative Adversarial Networks

Our objective is to learn generative models for the stochastic dynamics that are capable not only in
reproducing observations but also of making predictions or performing simulations on longer time-
scales. This presents challenges since the learned models need to have stable behaviors with respect
to accumulated errors and grapple with high dimensional trajectory samples. To address these issues,
we develop learning methods providing ways make use of properties of stochastic systems, including
Markovian conditions, probabilistic dependencies, physical principles when available, and other
attributes. While our approaches can be used more broadly, we focus here on learning generative
models related to vector-valued Ito Stochastic Processes [105] which can be expressed as solutions
of Stochastic Differential Equations (SDEs) [105, 44].

In the case of Ito SDEs, the high dimensional probability distributions associated with trajectory
observations can be factored. We make use of the probabilistic graphical modeling perspective
to express statistical dependencies [147, 12, 132, 101], see Figure 2. We will use this approach to
factorize the distributions to leverage the coupling of components over time to reduce the effective
dimensionality of the inference problems and enhance the statistical power of the observation data.
We remark that we also could use this approach to factorize further the probability distributions
for the states of the system at a given time. For obtaining generative models G that are useful
for prediction and long-time simulations, we also develop generative model classes based on stable
m-step stochastic numerical integrators with learnable components [76]. For stochastic systems
arising in physics, we can further refine the class of m-step models to incorporate physical principles,
such as in mechanics using approximate time-reversibility for the conservative contributions to the
dynamics, fluctuation-dissipation balance, or other properties [145, 57, 68, 135, 138, 93].

We develop Stochastic Dynamic Generative Adversarial Networks (SDYN-GANs), for learning
generative models G for sampling discretized trajectories, X[i] = G(Z[i], θG). The Z[i] denotes the
sample of the noise source mapped under G to generate the sample X[i]. The data samples can be
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Figure 2: Probabilistic Dependencies in the Stochastic m-Step Models. We utilize for a trajectory
sample X0, . . . ,XN the probabilistic dependencies in time to help facilitate learning models (left). We develop
different training protocols using (i) conditional statistics and (ii) marginal statistics. We also develop training
methods for different trajectory durations [0, T ] and sub-sampling over time-scales τ (right).

expressed as X[i] =
(
X

[i]
1 , . . . ,X

[i]
N

)
where X

[i]
j = X[i](tj) are the temporal components. We use a

discretization first approach where our model class consists of the discretized representations of the
stochastic system allowing during training for optimization using loss functions that incorporate
the contributions of potential numerical artifacts when learning representations of the underlying
training data. These methods would differ from alternative approaches using discretizations at later
stages, such as first computing variational derivatives for gradients which are then approximated by
discretization. Relative to such approaches, we can avoid potential issues with misalignment between
the model loss and the gradients used in training that can arise from the error from discretization
approximations. In our methods, we instead incorporate discretization artifacts of models more
directly into the loss which are optimized as part of the learning process.

2.2.1. Generators G based on Stochastic m-Step Methods

We learn generators G over a class of models corresponding to m-step stochastic numerical integrators
of the form

Xj = Ψj−1(Xj−1, . . . ,Xj−m,ωj−1;p) (8)

X0 = x0(p), . . . ,Xm−1 = xm−1(p).

The trainable term Ψj−1 approximates the evolution of the dynamics from time-step tj−1 to tj
using information at times tj−1, . . . , tj−m. Since the dynamics is stochastic, the numerical update is
randomized and Ψj(·,ω;p) can be viewed as random variables on a probability space (Ω,B, µ). Here,
for the discretized system we use a collection of standard i.i.d. Gaussian samples ω = {ωj}j ∈ Ω.
The p gives the subset of parameters p ∈ θG used by the m-step model for generating trajectories
and training. We remark that we distinguish p with θG, since θG can include additional parameters
not impacting trajectory generation which are related to the form of the loss function, observation
noise, known terms, or of regularizations. The parameters p may include the time-step ∆t, form of
the update, and other properties of the underlying stochastic system. The p can also be used to
parameterize the initial conditions Xk = xk(p) at times tk with k ∈ [0,m− 1].
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In terms of G(Z; θG), we will consider here primarily the case with Z = {ωj}Nj=1. In the general
case, Z can also include additional sources of noise. The use of m-step stochastic methods for our
generative modeling allows for leveraging probabilistic dependencies to factor high dimensional
trajectory data. Our m-step methods can be viewed as a variant of structural equations for
probabilistic graphical modeling [12, 101, 147, 29], see Figure 2.

We will develop our methods for classes of generative models G based on stochastic numerical
integration methods [76, 68, 5]. Methods used widely for first-order stochastic dynamical systems
include the (m = 1)-step Euler-Maruyuma Methods [96], Milstien Methods [99], and Runge-Kutta
Methods [76]. For higher-order accuracy or for (n > 1)-order dynamics, m-step multistep methods
can be developed. We emphasize that m-steps refers here to the integrator updates and not the
number of steps nt over the duration of sample trajectories. For approximating solutions of stochastic
and ordinary differential equations, it is well-known the updates of numerical methods must be chosen
with care to ensure convergence [76]. A common strategy to obtain convergence of numerical methods
is to impose a combination of local accuracy in the approximation (consistency) along with conditions
more globally on how errors can accumulate (stability) [67, 16, 76]. We develop our generative
model classes to achieve related properties by allowing for learning models Ψ based on stable and
accurate m-step stochastic integrators. This allows for using m-step multistep methods, such as
stochastic variants of Adams-Bashforth and Adams-Moulten [76, 15, 39] or Velocity-Verlet [145].
For physical systems this also allows for developing methods that consider imposing additional
properties such as approximate time-reversibility [145, 57], fluctuation-dissipation balance [5, 135],
geometric and topological conditions [93, 58], or using exponential time-step integration [68, 5]. Our
methods allow for learning over generative model classes which can leverage these considerations of
stability, accuracy, physical principles, and other properties of stochastic systems and numerical
approximations.

2.2.2. Loss Function ℓ∗(θG) for Training

We use adversarial learning to train the generative model G by using discriminators/critics D to

distinguish the samples {x̃i}Ñi=1 generated by G from those of the training data {xi}Ni=1. We obtain
generators by optimizing the loss θ∗G = argminθG ℓ∗(θG), with ℓ∗(θG) = ℓ(θG, θ

∗
D(θG)). This can be

formulated many different ways corresponding to different divergences and metrics of the empirical
distributions. As we discussed in Section 2.1, we will use losses ℓ(·) corresponding to Integral
Probability Metrics (IPMs) of the form

ℓIPM(θG) = ℓIPM(µ̃D, µ̃G) = max
f∈F

(
Eµ̃D [f(X)]− Eµ̃G

[
f(X′)

])
, (9)

where µ̃D, µ̃G denote the measures being compared. We take µ̃D = µ̃D, µ̃G = µ̃G and use
F = {f ∈ H | ∥f∥H ≤ 1}, where H is a Reproducing Kernel Hilbert Space (RKHS) with kernel k(·, ·).
With these choices, we can express the GANs and resulting IPM loss as ℓIPM(θG) = ∥ηµ̃G − ηµ̃D∥H,
where ηµ̃D = Eµ̃D [k(·,X)] and ηµ̃G = Eµ̃G [k(·,X)]. This can be viewed as embedding each of the
measures as functions in the RKHS H [120, 127]. The characterization of their differences can
be expressed as the H-norm of their embedded representations. Since k(·,X) gives a collection
of features, which under expectation generate generalized moments, this approach corresponds to
Generalized Moments Methods (GMMs) [62] and Maximum Mean Discrepancy (MMD) [55, 41,
126].
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In practice, to obtain more amenable losses for optimization and for computing gradients, we
use a reformulation which squares the objective to obtain

ℓ∗(θG) = (ℓIPM(θG))
2 = ∥ηµ̃D − ηµ̃G∥

2
H (10)

= EX,X̃∼µ̃D

[
k(X, X̃)

]
− 2EX∼µ̃D,X′∼µ̃G

[
k(X,X′)

]
+ EX′,X̃′∼µ̃G

[
k(X′, X̃′)

]
.

The X, X̃,X′, X̃′ are taken to be independent random variables for the specified distributions.
This is related to energy statistics [134] and the sample-based estimator developed in [55]. To find
approximate minimizers for training G, we use Stochastic Gradient Descent (SGD) methods

θn+1
G = θnG − ηnq̂ with q̂ ≈ ∇θGℓ

∗(θnG). (11)

The ηn denotes the learning rate and the gradient estimators q̂ are based on mini-batches [117,
13, 12]. We use variants incorporating momentum, such as ADAM and others [75, 137, 94]. To
compute q̂, we use the unbiased estimator of [55] as part of the gradient approximation. We estimate
gradients for the empirical loss using q̂ = ∇θG ℓ̃

∗(θG) where

ℓ̃∗(θG) = (12)

1

N(N − 1)

N∑
i ̸=j

k
(
X[i],X[j]

)
− 2

NM

N∑
i=1

M∑
j=1

k
(
X[i],Y[j]

)
+

1

M(M − 1)

M∑
i ̸=j

k
(
Y[i],Y[j]

)
.

The samples of mini-batches have distributions X[i] ∼ µ̃G and Y[i] ∼ µ̃D.
The trajectory samples X[i] = G(Z[i]; θG) depend on θG, which further requires methods

for computing the contributions of the gradients ∇θGX
[i]. This can pose challenges since these

gradients involve the m−step stochastic integrators when p ⊂ θG. This can become particularly
expensive if using direct backpropagation based on book-keeping for forward evaluations of the
stochastic integrators and the second-order statistics of ℓ̃∗. This would result in prohibitively large
computational call graphs. This arises from the high dimension of the trajectories X and the
multiple dependent time-steps during generation. This is further compounded by the mini-batch
sampling {X[i]}nb

i=1 and second-order statistics. We address these challenges by developing adapted
adjoint methods and custom backpropagation approaches specialized to utilize the structure of the
loss functions. This allows us to compute efficiently the contributions of ∇θGX

[i] to ∇θG ℓ̃
∗ to obtain

the gradient estimates needed for training. We discuss more details of how we address these issues
in Sections 3.1 and 3.2.

2.2.3. Training Protocols using Conditional and Marginal Distributions

We also introduce a few different training protocols for SDYN-GANs. These each treat the trajectory
data in different ways to compare the underlying probability distributions using the samples. This
includes comparisons using (i) distributions over the entire trajectory, (ii) marginal distributions
over trajectory fragments, and (iii) conditional distributions over trajectory fragments, see Figure 2.
In more detail, our training approaches for nth-order stochastic systems are

Full-Trajectory Method (full-traj): Samples full trajectoryR = (X(t0),X(t0+δt), . . . ,X(t0+
(m− 1)δt),X(t1),X(t1 + τ), . . . ,X(t1 + (NT − 1)τ)) corresponding to distribution pθ(R) and
trajectory with NT steps.
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Marginals Method (marginals): Samples marginals over trajectory fragments Rk of the
form Rk = (X(tk),X(tk + δt), . . . ,X(tk + (m− 1)δt),X(sk),X(sk + τ), . . . ,X(sk + (ℓτ − 1)τ)),
k ∈ [1, Nm], with marginal distributions {pθ,k(Rk)}Nm

k=1.

Conditional Method (conditionals): Samples conditionalsRk|Qk over trajectory fragments
Rk conditioned on fragments Qk of the form Rk = (X(sk),X(sk + τ), . . . ,X(sk + (ℓτ − 1)τ))
and Qk = (X(tk),X(tk+ δt), . . . ,X(tk+(m−1)δt), k ∈ [1, Nm], with conditional distributions
{pθ,k(Rk|Qk)}Nm

k=1.

The marginal and conditional training approaches make use of fragments of the trajectories
in different ways. In the conditional case when sampling, the initial starting fragments Qk of the
trajectories always agree between the training and generated samples. Only the response part Rk

of the trajectories can differ during the empirical sampling of the conditional distributions. In the
marginal case there is more flexibility and both the initial and response parts of the trajectories
can differ in the training and generated samples. The training in this case is based on empirical
sampling of trajectories from the marginal distributions.

In each of these approaches we have two adjustable time-scales δt and τ . The τ is associated
with sk and δt is associated with tk. In the notation tk gives times for the initial state sampling
and sk for subsequent sample times. This decoupling allows in our methods for flexibility and
controlling independently the accuracy and stability of the stochastic numerical methods used to
generate trajectories and the time-scales on which we probe the system dynamics when learning
model features. This also allows for sk to be adjusted to help ensure accurate estimation of the
contributions of the initial velocity or other conditions needed by the m-step multistep methods
for generating trajectories of the nth-order dynamical system. The τ is the time-scale on which
the dynamic evolution is sampled. The δt corresponds to the time-scale for sampling the initial
dynamical state information. In general we allow for τ ̸= δt and for m ̸= n. For τ > δt, this would
correspond to using trajectories down-sampled in time useful when making comparisons. We also
mention the methods allow for a distinction during training between the number of numerical time-
steps nt used to generate the trajectories and the number of time-slices Nτ on time-scale τ used in
the loss function. This allows for further control over the time-scales probed and efficiency trade-offs
in the computational methods. In the conditional and marginal cases, the ℓτ = (tN − sk)/τ + 1.

The methods allow for m ̸= n, where n is referring to nth-order dynamical systems and m
the number of steps in the multistep stochastic numerical methods. Choices with m > 1 can arise
and be useful even for n = 1 first-order dynamical systems to obtain enhanced accuracy, stability,
efficiency, or from other considerations [76]. Examples include m > 1 stochastic multistep numerical
method, such as Adams-Bashforth [76, 15, 39]. This provides flexibility for applying our methods in
different settings and application domains. In practice, it is natural to use choices with ∆t = αδt
and τ = a∆t for α, a ∈ N to obtain aligned temporal sampling between the stochastic trajectories of
the generative models and the observation data. While our methods could be used more generally
with interpolation in time, we will take as our default choice tk = k∆t and sk = tk + τ .

We also remark that our sample-based methods result in methods that need only save the
states of the individual trajectories for our forward-pass to compute losses and for our backward-pass
to compute gradients. Concerning potential applications to high dimensional systems, our methods
have a scaling proportional to the number of time-steps and the number of samples saved. This
results in a linear scaling in the number of dimensions. The different protocols and adjustable
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parameters allow for making further trade-offs in the time-scales and duration of the generated
trajectories used in the forward and backward computational steps. We discuss how practical
methods can be developed for computing gradients and learning with these approaches in Section 3.
We show results for SDYN-GANs using these different training protocols (i)–(iii) for learning physical
model parameters and non-linear force-laws in Section 4.

3. Methods for Learning Generative Models with SDYN-GANs

Learning models in SDYN-GANs requires being able to compute the gradients of the sample-based
loss functions. This requires methods for computing during training the gradients of the second-
order statistics for the loss in equation 10 with high dimensional trajectory samples X,X′. We
develop practical computational methods leveraging the structure of the loss ℓ̃∗ in equation 12,
the probabilistic dependencies, and by developing specialized adjoint methods. We remark that
while direct backpropagation through the generated time-steps of trajectories is sometimes used,
this can lead to large computational call graphs and other numerical issues resulting in expensive
computational methods in calculations of the gradients needed for training. As we shall discuss, our
methods avoid this by mathematically deriving a set of adjoint equations for gradients of our class of
generative models, which can be reduced to solving a set of recurrence equations. These approaches
provide practical methods for computing the gradients needed for training SDYN-GANs.

3.1. Gradient Methods for m-Step Generative Models

The training of the m-step generative models requires methods for computing the gradients of the
loss ∇θG ℓ̃

∗ of equation 12. This poses challenges given the contributions of ∇θGX
[i](; θG) where

θG = p, as discussed in Section 2.2. Training requires computing contributions of the gradients of
the discretized sample paths {X(t;p)}t∈[0,T ]. For this purpose, we will utilize the Implicit Function
Theorem to develop a set of adjoint methods for our m-step generative models [69, 17, 131, 125].

Consider the implicit formulation in terms of the vector-valued function f = f(X0, . . . ,XN ;p) =
0 with components

[f ]
[i]
(j,d) =

[
X

[i]
j −Ψj−1(X

[i]
j−1, . . . ,X

[i]
j−m,ωj−1;p)

](d)
= 0, (13)

where X
[i]
k = X[i](tk) is the ith sample. The superscript index d denotes the dimension component

for Xk ∈ Rn. To simplify the notation let x = {x[i]}Mi=1 = {(X0, . . . ,XNT )
[i]}Mi=1, where there are M

samples indexed by i. For each realization of ω[i], the trajectory samples are determined implicitly
by f [i](x; p) = 0.

Now consider a function g(x, p) which depends on x and where p denotes the subset of
parameters on which we seek to compute gradients for training. For example, we can set g to be
the loss function g(x, p) = ℓ̃∗ with p = θG or set g to other quantities of interest of the stochastic
trajectories. The total derivative of g is then given by the chain-rule

[∇pg]j =
dg

dpj
=

∂g

∂pj
+
∑
k

∂g

∂xk

∂xk
∂pj

= [gp + gxxp]j . (14)
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We collect derivatives into vectors gx ∈ R1×nx ,gp ∈ R1×np ,xp ∈ Rnx×np , where x ∈ Rnx ,p ∈ Rnp .
The derivatives of the loss g in x and p are typically easier to compute relative to the derivatives in
p for xp = ∇px(p).

We can obtain expressions for the derivatives xp using the Implicit Function Theorem for

f [i](x,p) = 0 with f [i] ∈ Rn
[i]
f and under the assumption f

[i]
x is invertible [69, 125]. This gives

df

dp
= fxxp + fp = 0 ⇒ xp = −f−1

x fp = −J−1fp. (15)

We assume throughout nf = nx, but distinguish these in the notation to make more clear the roles
of the conditions. The Jacobian in x is given by J = fx = ∇xf ∈ Rnf×nx for the map y = f(x;p)
defined by fixed p for mapping x ∈ Rnx to y ∈ Rnf . The xp = ∇px(p) ∈ Rnx×np and fp ∈ Rnf×np .
We can substitute this above to obtain

∇pg = gp + gx(−f−1
x fp) = gp +

(
−f−T

x gT
x

)T
fp = gp −

(
J−TgT

x

)T
fp = gp − rT fp. (16)

We let r = J−TgT
x ∈ Rnf×1. To compute the gradient ∇pg we proceed in the following steps: (i)

compute the derivatives gp,gx, fp, (ii) solve the linear system JT r = gT
x , (iii) evaluate the gradient

using ∇pg = gp − rT fp.
This provides methods for computing the gradients of g using the solutions r ∈ Rnf×1, which

in general for the trajectory samples will be more efficient than solving directly for xp ∈ Rnx×np . We
emphasize that the construction of a dense nx × nx Jacobian and its inversion would be prohibitive,
so instead we will solve the linear equations by approaches that use sparsity and only require
computing the action of the adjoint JT . We show how this can be done for our m-step stochastic
methods below and give more technical details in Appendix A.

Our adjoint approaches are used to compute the gradient of the losses based on expectations
of the following form and their gradients

g∗(X(·), p) = Eω[ϕ(X(ω; p); p)] =

∫
ϕ(X(ω; p); p)dµω,

dg∗

dp
= E[∇pϕ] = E[∇pg̃]. (17)

For generality and to further make clear the parameter dependencies, we will perform our derivations
using the notation above for general expectations for the function ϕ = ϕ(x; p). The ϕ can be any
random variable that depends on the stochastic trajectories. As we shall discuss in more detail,
ϕ will be related to our MMD-loss by setting it to the probing function f(X ′) in equation 7. We
emphasize that g∗ has all of its parameter dependence explicitly on the random variable X(ω, p)
through the random variable g̃ = ϕ. This corresponds to the reference measure µω having no
p-dependence. In practice, the expectations will be approximated statistically by sample averages
ḡ = 1

M

∑M
i=1 g̃

[i], where g̃[i] denotes the ith sample of g̃. In this case our adjoint approaches compute
the gradients using

∇pḡ(x,p) =
1

M

M∑
i=1

∇pg̃
[i], ∇pg̃

[i] = g̃[i]
p − r[i],T f [i]p , r[i] = J [i],−T g̃[i],T

x , (18)

where J [i],T = f
[i],T
x . We provide efficient direct methods for solving these linear systems for r[i] for

the m-step stochastic methods in Appendix A.
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3.2. Gradient Methods for the Second-Order Statistics in the Loss ℓ∗

The loss function ℓ̃∗ in equation 12 involves computing second-order statistics of the samples. This
is used to compare the samples X[i] ∼ µ̃G of the candidate generative model with samples Y[i] ∼ µ̃D
of the training data. In computing gradients, this poses challenges in using directly backpropagation
on the forward computations, which can result in prohibitively large computational call graphs.

We develop alternative methods utilizing special structure of the loss function ℓ̃∗ to obtain
more efficient methods for estimating the needed gradients for training. From equation 12, we see ℓ̃∗

involves kernel calculations involving terms of the form k(W
[i]
1 ,W

[j]
2 ; p), where W1,W2 ∈ {X,Y}.

We remark the notation allows for expressing succinctly the three cases for sample comparisons that
arise, and for decoupling the inputs for differentiation. We utilize this to obtain the gradients ∇pℓ̃

∗.
This requires us to compute the contributions of three terms, each of which have the general form

d

dp
k(W

[i]
1 ,W

[j]
2 ; p) = ∂1k ·W[i]

1,p + ∂2k ·W[i]
2,p + ∂3k. (19)

The ∂qk denote taking the partials in the qth input to k(·, ·; p). The most challenging terms to
compute are the partials in the trajectory samples Wa,p = ∂Wa/∂p when Wa = X. In this case,
we have Wa,p = Xp. For Y, we have Yp = 0, since the training data does not depend on p. We use
that the gradients ultimately contract against the vector-valued terms ∂1k, ∂2k in equation 19.

As a consequence, we can leverage our adjoint methods by computing the terms using h(X[i]) =

c ·X[i]. We treat c as a fixed constant to obtain ∇ph(X
[i]) = c ·X[i]

p . After differentiation, we use
for the numerical values c = ∂1k or c = ∂2k for the final evaluation. This is done since there are
efficiencies in computing the derivatives of the scalar quantity h, which avoids the need to construct
and store the full gradient which would later be contracted anyway. We can then compute efficiently
the derivatives ∇ph(X

[i]) by leveraging our adjoint methods in Section 3.1. To compute the third
term in equation 19 involving partial ∂3k = ∂k/∂p, we use backpropagation while by holding the
other inputs fixed.

To compute the contributions to the gradient ℓ̃∗, we consider the first term k(X[i],X[j]; p) in
equation 12 and treat the sums over the samples using

d

dp

∑
i ̸=j

k(X[i],X[j]; p) =
∑
i0

c1(i0)
TX[i0]

p +
∑
j0

c2(j0)
TX[j0]

p + c3, (20)

where

c1(i0) =
∑
j ̸=i0

∂1k(X
[i0],X[j]; p), c2(j0) =

∑
i ̸=j0

∂2k(X
[i],X[j0]; p), c3 =

∑
i ̸=j

∂3k(X
[i],X[j]; p). (21)

To compute the contributions of the terms X
[i0]
p = d

dpX
[i0] and X

[j0]
p = d

dpX
[j0], we use the adjoint

methods discussed in Section 3.1 and Appendix A. For the second term contributing to ℓ̃∗ in
equation 12, we use

d

dp

∑
i,j

k(X[i],Y[j]; p) =
∑
i0

c̃1(i0)
TX[i0]

p + c̃3, (22)
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c̃1(i0) =
∑
j

∂1k(X
[i0],Y[j]; p), c̃3 =

∑
i,j

∂3k(X
[i],X[j]; p). (23)

For the third term in equation 12, the only dependence on p is through the direct contributions to
the kernel, since Y[i] does not depend on p. We compute the gradient using

d

dp

∑
i ̸=j

k(Y[i],Y[j]; p) = ĉ3, ĉ3 =
∑
i ̸=j

∂3k(Y
[i],Y[j]; p). (24)

For each term, the ∂jk = ∂jk(w1, w2; p) can be computed using evaluations of k and local back-
propagation methods. We use this to compute cj , c̃j , ĉj . While the full gradient sums over all the
samples, in practice we use stochastic gradient descent. This allows for using smaller mini-batches of
samples to further speed up calculations. For SDYN-GANs, we use these approaches to implement
custom backpropagation methods for gradient-based training of our m-step generative models. We
also provide further details in Appendix A.

4. Results

We present results for SDYN-GANs in learning generative models for second-order stochastic
dynamics. This is motivated by the physics of microscale mechanical systems and their inertial
stochastic dynamics. We develop methods for learning force-laws, damping coefficients, and noise-
related parameters. We present results for learning physical models for a micro-mechanical system
corresponding to an Inertial Ornstein-Uhlenbeck (I-OU) Process in Section 4.2. We then consider
learning non-linear force-laws for a particle system having inertial Langevin Dynamics in Section 4.3.
We investigate in these studies the role of the time-scale τ for the trajectory sampling and the
different training protocols based on sampling from the distributions of the (i) full-trajectory, (ii)
conditionals, and (iii) marginals. The results show a few strategies for training SDYN-GANs to
obtain generative models for stochastic systems.

4.1. Discretization of Inertial Second-order Stochastic Dynamics

We consider throughout second-order inertial stochastic dynamics of the form

mdV(t) = −γV(t)dt+ F(X(t))dt+ σdW(t), dX(t) = V(t)dt. (25)

For SDYN-GANs, our generative models use the following (m = 2)-step stochastic numerical
integrator [57]. The integrator can be expressed as a Velocity-Verlet-like scheme [145] of the form

Xn+1 = Xn + b∆tVn +
b∆t2

2m
Fn +

b∆t

2m
ηn+1, a =

(
1− γ∆t

2m

)(
1 +

γ∆t

2m

)−1

,

Vn+1 = aVn +
∆t

2m
(aFn + Fn+1) +

b

m
ηn+1, b =

(
1 +

γ∆t

2m

)−1

. (26)

We discretize with Xn = X(tn),Vn = V(tn), Fn = F(X(tn)). We refer to this discretization of
the stochastic dynamics as the Farago Method, which has been shown to have good stability and
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statistical properties in [57]. The thermal forcing is approximated by Gaussian noise ηn with mean
zero and variance ⟨ηnη

T
ℓ ⟩ = σ2Iδn,ℓ∆t for time-step ∆t. This can be expressed as the 2-stage multi-

step method as Xn+1 = Ψn(Xn,Xn−1,ωn;p) withΨn = 2bXn−aXn−1+
b∆t2

m Fn+
b∆t
2m

(
ηn+1 + ηn

)
.

The constants also satisfy the identity 1+a = 2b. For our generative models, we use throughout this
stochastic numerical discretization for approximating the inertial second-order stochastic dynamics
of equation 25.

Parameter Value Parameter Value Parameter Value

∆t 10−3 δt 10−3 tN 1.8× 10−2

nt 18 τ 10−3 Nτ 20

ℓτ 3 m 2 n 2

Table 1: Parameters. The default values used in training.

4.2. Learning Physical Models by Generative Modeling: Inertial Ornstein-Uhlenbeck
Processes

Consider the Ornstein-Uhlenbeck (I-OU) process [142] which have the stochastic dynamics

mdV(t) = −γV(t)dt−K0Xdt+ F0dt+ σdW(t), dX(t) = V(t)dt. (27)

The X,V ∈ Rn. Related dynamics arise when studying molecular systems [142, 113, 42, 160],
microscopic devices [52, 51, 34], problems in finance and economics [129, 143, 122, 2], and many
other applications [83, 152, 115, 50].

From the perspective of mechanics, these dynamics can be thought of as modeling a microscopic
bead-spring system within a viscous solvent fluid. In this case, X is the position and V is
the velocity with X,V ∈ R3. The m is the bead’s mass, γ is the level of viscous damping,
σ =

√
2kBTγ gives the strength of the fluctuations for temperature T , with kB denoting the

Boltzmann factor [113]. The conservative forces include a harmonic spring with stiffness K0 and
a constant force F0 = −mgez, such as gravity with coefficient g and ez = (0, 0, 1). This gives the
potential energy U(X) = 1

2K0X
2−F0 ·X yielding the conservative forces as F(X) = −∇XU . We use

for our generative models the dynamics of equation 27 approximated by the (m = 2)-step stochastic
numerical discretization discussed in Section 4.1. We use the default values in training given in
Table 1. We denote by θ the collection of physical parameters to be adjusted as θ = (K0, γ, kBT ).

The data-driven task is to learn a generative stochastic model G(·; θG) from observations of
trajectories of the system configurations X[0,T ] = {X(t)}t∈[0,T ], so that G(Z; θG) ∼ X[0,T ]. The Z is
the noise source, here taken to be a high dimensional vector-valued Gaussian with i.i.d components.
The V(t) is not observed directly. To help illustrate more directly the behaviors of the methods,
we have not included here the observation noise. This also could be included in the generative
model with additional parameters optimized using the adversarial training. We show samples of
the training data in Figure 4. Training uses discretized trajectories and trajectory fragments of
the form (X(t1), . . . ,X(tk)). Without using further structure of the data, this task can become
challenging given the high dimensional distribution of trajectories X(t).

The SDYN-GANs uses the probabilistic dependence within the trajectories and the adversarial
learning approaches discussed in Section 2.2. This provides flexible methods for learning general
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Figure 3: Bead-Spring Mechanics: Inertial Ornstein-Uhlenbeck Process. We consider the stochastic
dynamics of the three dimensional I-OU process under different physical conditions including when (i) stiffness
decreases (left), (ii) temperature increases (middle), or (iii) damping decreases (right).

Figure 4: Trajectory Training Data: Inertial Ornstein-Uhlenbeck Process. We show samples of
the trajectory data used for training models. The z-component of the trajectory data is shown on the (left).
The bead-spring system and traces of the trajectory in three-dimensional space is shown in the (middle). The
fragments of the trajectory used during the different training protocols discussed in Section 2.2, on the (right).

models for a wide variety of tasks, even when the generative models may not have readily expressible
probability distributions. By using MMD within our SDYN-GANs methods allows for further
inductive biases to be introduced based on the type of kernel employed. This can be used to
emphasize key features of the empirical distributions being compared. For the OU process studies,

we use a RKHS with Rational-Quadratic Kernel (RQK) [112, 35] given by k(x, y) =
(
1 + ∥x−y∥2

2αℓ2

)−α
.

The α determines the rate of decay and ℓ provides a characteristic scale for comparisons. The RQK
is a characteristic kernel allowing for general comparison of probability distributions [127]. It has
the advantage for gradient-based learning of not having an exponentially decaying tail yielding
better behaviors in high dimensions [112, 35]. For the training data, we generate continuously
throughout learning new sample trajectories from the SDEs of the underlying target system when
data is requested. For the conditional training case, empirical training samples and generated
samples are compared that have the same initial trajectory fragment Qk. For the conditional part,
20 fragments Rk are then sampled for each of the initial fragments Qk.

We show a typical training behavior for learning simultaneously parameters θ = (K0, γ, kBT )
in Figure 5. We find that during learning the training initially proceeds by increasing kBT which
broadens the generative model distribution to overlap the training data samples to reduce the loss.
However, we see that once the stiffness K0 and damping γ parameters approach reasonable values,
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around the epoch ∼ 750, the temperature kBT rapidly decreases to yield models that can more
accurately capture the remaining features of the observation data. We see for this training trial
that all parameters are close to the correct values around epoch ∼ 1, 200, see Figure 5.

Figure 5: Inertial Ornstein-Uhlenbeck Process: Learning the Stochastic Dynamics. We use
SDYN-GANs to learn generative models for the observed trajectories of the stochastic dynamics. We learn
simultaneously the drift and diffusive contributions to the dynamics. The target values for this trial were
K0 = 1.5, γ = 3.2 and kBT = 0.1. We see early in training the stochastic parameters become large to
minimize the loss by enhancing the overlap of the samples of the candidate generative model with the observed
samples. As the stiffness and damping parameters become more accurate during training, the stochastic
parameters decrease toward the target values.

4.2.1. Comparison to Maximum Likelihood Estimation (MLE) of Linear Dynamical Systems

Many estimators for stationary linear dynamical systems have been developed for dynamics of the
general form

Zn = AZn−1 +Qξn−1, ξn−1 ∼ η(0, I), QQT = Γ. (28)

This includes Kalman filters/smoothers Gaussian process approaches, and other likelihood estima-
tors [151, 72, 149, 22, 65, 148]. The Gaussian assumptions in such dynamics gives the log-likelihood
for a single trajectory

log (Pr {Z1, . . . ,ZN}) = −N − 1

2
log((det (Γ)) (29)

− 1

2

N∑
k=2

(Zk −AZk−1)
T Γ−1 (Zk −AZk−1) + log((Pr {Z1}) .
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This can be averaged further over a sample of trajectories. By maximizing the log-likelihood by
computing the gradients and setting them to zero, we obtain the estimators

Ã =

(
N∑

n=2

E
[
ZnZ

T
n−1

])( N∑
n=2

E
[
Zn−1Z

T
n−1

])−1

(30)

Γ̃ =
1

N − 1

N∑
n=2

[
E
[
ZnZ

T
n

]
− ÃE

[
Zn−1Z

T
n

]
(31)

−E
[
ZnZ

T
n−1

] (
Ã
)T

+ ÃE
[
Zn−1Z

T
n−1

] (
Ã
)T]

.

In these expressions, the Ã is evaluated then used in estimating the Γ̃.
These expressions yield results similar to Kalman filtering/smoothing when aiming to learn the

linear terms in the dynamics using Expectation-Maximization (EM) [47, 119]. We can use likelihoods
to further obtain estimators for parameters θ, ϕ for the drift contributions when A = A(θ) = R+ θS
and for the stochastic contributions when Γ = Γ(ϕ) where ϕ = aTΓb for some vectors a,b. Both
of these cases include when a parameter contributes linearly to entries of A or Γ. Using a similar
approach as in the above expressions, we obtain the estimators

θ̃ =

∑N
n=2 E

[
ZnZ

T
n−1

]
: E −R

∑N
n=2 E

[
Zn−1Z

T
n−1

]
: E

S
∑N

n=2 E
[
Zn−1ZT

n−1

]
: E

, ϕ̃ = aT Γ̃b. (32)

The F : E denotes tensor contraction (summing the product of matrix entries term-wise). In the
case that the parameter appears in component Ai0,j0 we can use E = δi,i0δj,j0 . More generally,
the estimator just needs the matrix E to yield a denominator that is non-zero. The form of the
dependence of Γ̃ on Ã further suggests that noise-related parameters ϕ could be more challenging
to estimate that θ parameters.

Using our Verlet-style integrator above as our linear model for the dynamics we can obtain
an MLE approach for estimating the following parameters with the specified target values. We
consider trajectories that were generated with the stiffness K = 1.5, drag γ = 3.2, and temperature
kbT = 0.1. We take the mass to be m = 0.1 and generate trajectories having 18 time-steps to obtain
103 samples using the specified time-steps in ∆t below. In this study, we use the time step as a
proxy for the time-scale on which we probe the physical system. To simplify the estimation problem,
we also take the time-steps to be the same when generating the training data as when estimating
the physical parameters. We perform estimation using the same linear dynamics as the numerical
integrator and obtain the following relative accuracies. For ∆t = 5× 10−4, the relative accuracies
were K : 4.6 × 10−1, γ : 1.0 × 10−3, kbT : 2.0 × 100. We see on this time-scale the stiffness and
thermal parameters are not estimated very well. When we increase the time-scale to ∆t = 10−3

we obtain relative accuracies K : 1.9 × 10−2, γ : 1.3 × 10−4, kbT : 3.9 × 10−2. When we further
increase the time-scale to ∆t = 10−2 we obtain relative accuracies K : 2.3× 10−2 , γ : 3.4× 10−3 ,
kbT : 6.6× 10−3. We find γ is estimated accurately throughout, but the accuracy of K and KBT
are more sensitive and depend on ∆t.

We see that such estimators rely on specifying a linear model and approximations that tacitly
make assumptions on the time-scale on which Zn is represented and on other statistical properties.
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This is required to ensure the sampling yields matrices and divisors that are non-singular. This
further requires sufficient decay in correlations so that the differences appearing in expressions
are large enough to be numerically well-conditioned and that the sampling errors are sufficiently
small. Among other factors, this can depend sensitively on the choices of ∆t and the number of
time-steps. For inertial stochastic systems and integrators modeling such dynamics there also can be
non-directly measured quantities obscured by fluctuations, such as the velocity or latent variables.
While more sophisticated MLE estimators also can be considered, this poses additional analytic
complexity to obtain the needed expressions, to obtain problem specific implementations, or to fine
tune hyper-parameters to obtain viable estimators [149, 22].

While the SDYN-GANs approaches also require probing the dynamics on appropriate time-
scales, they require fewer assumptions about the dynamics and probe systems more directly using the
marginal and conditional distributions of sample trajectories. This provides for a more general and
flexible approach than the estimators based on the stepping dynamics and first and second moment-
based estimates. The SDYN-GANs also make fewer assumptions on the parameter dependence and
can readily handle cases even when the dependence on the parameters is non-linear in the trajectory
observation data.

4.2.2. Results for SDYN-GANs using Conditional and Marginal Distributions over Different
Time-Scales.

To investigate further the performance of SDYN-GANs, we perform training using a few different
approaches. This includes varying the time-scale τ over-which we sample the system configurations
X(t) and the type of distributions implicitly probed. For instance, we use the full-trajectory over a
time-duration T , while considering conditionals or marginals statistics over shorter time durations.
For this purpose, we use the different training protocols and time-scales τ discussed in Section 2.2.
Throughout, we use the default target model parameters m = 0.1,K0 = 1.5, γ = 3.2, kBT = 0.1
and kernel parameters α = 2, ℓ = 0.01. During training mini-batch sizes of 20 trajectories were
used. The duration of training trajectories excluding the initial conditions were tN = 1.8× 10−2

over nt = 18 steps with ∆t = 10−3. For the different SDYN-GANs methods and training protocols,
we show the accuracy of our learned generative models in the Tables 2–4.

We find the stiffness and damping mechanics each can be learned with an accuracy of around 5%
or less. The thermal fluctuations of the system were more challenging to learn from the trajectory
observations. This appeared to arise from other contributing factors to perceived fluctuations
associated with sampling errors and a tendency to over-estimate the thermal parameters to help
enhance alignment of the candidate generative model with the trajectory data. We found accuracies
of only around 50% for the thermal fluctuations of the system. We found the time delay τ used in
probing the temporal sub-sampling of the dynamics can play a significant role in the performance of
the learning methods.

For the temporal sampling, we found when the τ time-scales are relatively large the models were
learned more accurately. This appears to be related to the samples better probing the time-scales in
the trajectory data over-which the stiffness and damping make stronger contributions. The longer
trajectory durations appear to provide a better signal for learning these properties. As τ became
smaller, we found the accuracy of the learned models decreased for this task.

We further found the training protocol chosen could have a significant impact on the accuracy
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Accuracy K0 vs τ-Delay

τ-Delay 1.70e-02 1.19e-02 5.83e-03

MMD-full-traj 1.03e-02± 1.1e-02 2.62e-02± 2.4e-02 1.13e-02± 7.8e-03

MMD-conditionals 9.19e-03± 1.9e-03 2.22e-02± 1.7e-02 2.66e-02± 4.5e-02

MMD-marginals 1.54e-02± 6.7e-03 8.92e-03± 1.1e-02 4.37e-02± 4.5e-02

τ-Delay 4.08e-03 2.86e-03 2.00e-03

MMD-full-traj 1.62e-02± 1.5e-02 8.02e-03± 5.2e-03 1.37e-02± 7.0e-03

MMD-conditionals 1.03e-01± 1.9e-01 8.52e-01± 1.7e+00 5.68e-01± 1.1e+00

MMD-marginals 4.44e-02± 8.0e-02 1.63e+00± 3.2e+00 1.72e+00± 3.4e+00

Table 2: Accuracy K0 verses τ-Delay: Inertial Ornstein-Uhlenbeck Process. SDYN-GANs training
performed using the protocols over the (i) full trajectory, (ii) marginals, and (iii) conditionals, as discussed in
Section 2.2. The accuracy of the stiffness estimate ϕ̃ for ϕ = K0 given by the relative error ϵrel = |ϕ̃− ϕ|/|ϕ|.
The number of epochs was 3000. Standard deviations are reported for 4 runs. The duration of trajectories are
tN = 1.8× 10−2 over nt = 18 steps with ∆t = 10−3.

of the learned models. For the current task, we found throughout that either the full-trajectory
protocols or marginals protocols tended to perform the best. A notable feature of the marginals
protocol is that the trajectory samples include the same fragments of the trajectory arising in
the conditionals, particularly those starting near the sampled initial conditions. This appears to
have contributed to the marginals out-performing the conditionals, the latter of which contain less
information about the longer-time dynamics.

Accuracy kBT vs τ-Delay

τ-Delay 1.70e-02 1.19e-02 5.83e-03

MMD-full-traj 5.36e-01± 9.5e-01 1.71e+00± 3.4e+00 3.62e+00± 7.1e+00

MMD-conditionals 6.43e-01± 1.1e+00 1.46e+00± 2.6e+00 1.92e+01± 3.8e+01

MMD-marginals 6.54e-01± 1.2e+00 1.51e+00± 2.9e+00 1.39e+01± 2.7e+01

τ-Delay 4.08e-03 2.86e-03 2.00e-03

MMD-full-traj 3.47e+00± 6.7e+00 6.43e+00± 1.3e+01 6.90e+00± 1.4e+01

MMD-conditionals 2.42e+01± 4.7e+01 9.54e+01± 1.7e+02 9.38e+01± 1.7e+02

MMD-marginals 1.85e+01± 3.7e+01 3.95e+01± 7.9e+01 3.82e+01± 7.6e+01

Table 3: Accuracy kBT verses τ-Delay: Inertial Ornstein-Uhlenbeck Process. SDYN-GANs
training performed using the protocols over the (i) full trajectory, (ii) marginals, and (iii) conditionals, as
discussed in Section 2.2. The accuracy of the temperature estimate ϕ̃ for ϕ = kBT given by the relative error
ϵrel = |ϕ̃− ϕ|/|ϕ|. The number of epochs was 3000. Standard deviations are reported for 4 runs. The duration
of trajectories are tN = 1.8× 10−2 over nt = 18 steps with ∆t = 10−3.

We found overall a better job was done by the full-trajectory training protocol which uses
more steps along the trajectory than the marginals and conditionals protocols. The marginals also
tended to do better than the conditionals. As an exception, we did find in a few cases for small τ
the conditionals did a better job than the marginals in estimating the stiffness. This was perhaps
since when working over shorter time durations, the more temporally localized sampling near the
same initial conditions in the conditionals provide more consistent and less obscured information on
the stiffness responses, relative to the full set of trajectory fragments contributing in the marginals
protocols.
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Accuracy γ vs τ-Delay

τ-Delay 1.70e-02 1.19e-02 5.83e-03

MMD-full-traj 1.53e-02± 1.5e-02 3.31e-02± 2.5e-02 2.91e-02± 4.3e-02

MMD-conditionals 2.85e-02± 2.3e-02 6.57e-02± 6.0e-02 2.29e-02± 3.3e-02

MMD-marginals 1.67e-02± 8.4e-03 3.34e-02± 1.9e-02 6.20e-02± 8.9e-02

τ-Delay 4.08e-03 2.86e-03 2.00e-03

MMD-full-traj 5.20e-02± 4.7e-02 4.70e-02± 4.6e-02 2.20e-02± 1.8e-02

MMD-conditionals 2.00e-01± 3.7e-01 1.91e+00± 3.8e+00 1.88e+00± 3.7e+00

MMD-marginals 1.90e-01± 3.0e-01 5.54e+00± 1.1e+01 5.47e+00± 1.1e+01

Table 4: Accuracy γ verses τ-Delay: Inertial Ornstein-Uhlenbeck Process. SDYN-GANs training
performed using the protocols over the (i) full trajectory, (ii) marginals, and (iii) conditionals, as discussed in
Section 2.2. The accuracy of the damping estimate ϕ̃ for ϕ = γ given by the relative error ϵrel = |ϕ̃− ϕ|/|ϕ|.
The number of epochs was 3000. Standard deviations are reported for 4 runs. The duration of trajectories are
tN = 1.8× 10−2 over nt = 18 steps with ∆t = 10−3.

For the longer τ cases when comparing with the conditionals, the marginals tended to more
accurately estimate simultaneously the stiffness and damping. This likely arose, since unlike the
conditionals case, the marginals do not require the initial parts of the trajectory fragments being
compared to share the same initial conditions. For the general short-duration fragments, there is
additional information on the long-time dynamical responses contributing to the marginals. In
summary, the results suggest using the full-trajectory protocols when possible and relatively long τ
sampling. When one is only able to probe short-duration trajectory fragments, the results suggest
the marginals provide some advantages over the conditionals. Which protocols work best may be
dependent on the task and the time-scales associated with the dynamical behaviors being modeled.
These results show a few strategies for using SDYN-GANs to learn generative models for stochastic
systems.
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4.3. Learning Non-linear Force-Laws with SDYN-GANs Generative Modeling

Figure 6: Learning Non-linear Force-Laws. SDYN-GANs is used to learn an unknown force-law from
observation of particle trajectories (left). The learned force-law can be represented using neural networks or
other model classes (middle). The generative models use the dependence in the probabilities of the stochastic
trajectories using m-step stochastic numerical discretizations (right). The models are learned using a few
different training protocols using statistics of the (i) full-trajectory, (ii) conditionals, and (iii) marginals, as
discussed in Section 2.2.

We show how SDYN-GANs can be used to learn force-laws F(X) from observations of trajectories
of stochastic systems. We consider the inertial Langevin dynamics of particle systems of the form

mdV(t) = −γV(t)dt+ F(X; θF )dt+
√

2kBTγdW(t), dX(t) = V(t)dt, (33)

where X,V ∈ R3. For individual particles this dynamics gives stochastic trajectories in a 6
dimensional space. The methods also readily can be generalized with X,V ∈ Rn giving stochastic
trajectories in a 2n dimensional space. The force-law F(X) will be modeled using Deep Neural
Networks (DNNs) [84, 53]. In this case, θF are the DNN weights and biases to be learned. We consider
here the case of radial potentials F(X) = F(∥X∥) = F (r)er with er = X/∥X∥. For simplicity, we
focus on the case where m, γ, T are fixed, but these also could be learned in conjunction with the
force-law. The data-driven task is to learn DNN representations F(X; θF ) for the force-law from
the configuration trajectories X[0,T ] = {X(t)}t∈[0,T ] discretized as (X(t1), . . . ,X(tN )), see Figure 6.
The V(t) is not observed directly. We use for our generative models the Langevin dynamics of
equation 33 approximated by the (m = 2)-step stochastic numerical discretizations discussed in
Section 4.1. We use the default values in training given in Table 1. We show samples of the training
data in Figure 7.
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Figure 7: Learning Non-linear Force Laws: Trajectory Data. We show a few samples of the particle
trajectories (left). The force-law is learned from samples of trajectory fragments using the different training
protocols discussed in Section 2.2, (middle). SDYN-GANs is used to learn a neural network representation
of the force-law from observations of trajectories of the particle system. We show a few empirical radial
probability distributions computed from histograms using the range [0, L] with L = 2.5 and bin-width ∆x = 0.05
(right). We evaluate the accuracy of the learned model by considering the relative L1-norm of marginal
time-dependent radial probability distributions of samples of the learned model compared with the target particle
system .

In our generative models, we use DNN architectures of multi-layer perceptrons with input-
hidden-output sizes nin-n1-n2-n3-nout and LeakyReLU [155] units with slope=-0.01. In the DNNs
we use nout = nin = 1, with default values of n1 = n2 = n3 = 100 and biases for all layers
except for the last layer. The DNNs serve to model the F in the radial force F = F (r; θF )er.
For learning the dynamics we consider the case with target forces arising from a double-well
radial potential U(r) = k

4 (r − r1)
2(r − r2)

2. This gives the target force F (r) = −U ′(r) =

−k
2

(
(r − r1)(r − r2)

2 + (r − r1)
2(r − r2)

)
, where k = 500, r1 = 0.5, and r2 = 1.5. For the other

parameters the model had m = 0.1, kBT = 50, γ = 32.

We use SDYN-GANs to learn generative models by probing trajectories on different time-scales
τ and training protocols that are based on sampling the (i) full-trajectory, (ii) conditionals, and
(iii) marginals, as discussed in Section 2.2. To train the models, we simulate the trajectories of the
candidate generative models and compare with the samples of the observation training data. To
characterize the final accuracy of the learned models, we use the relative errors under the L1-norm
of the time-dependent radial probability distributions to compare the samples of the generative
model with the target particle system. We emphasize the L1-error is not used during training, but
only on the final models to characterize the accuracy of the stochastic trajectories they generate.
We train using SDYN-GANs with different time-scales τ and training protocols, with our results
reported in Table 5.

We find the generative models learn the force-law with an accuracy of around 20%. We found
the training protocols using the full trajectory and the marginals performed best, see Table 5. We
remark that in theory the large τ in the infinite time horizon limit would give samples for X from
the equilibrium Gibbs-Boltzmann distribution, ρ(X) = 1/Z exp (−U(X)/kBT ). The equilibrium
distribution only depends on the potential U of the force-law. Interestingly, we find in the training
there was not a strong dependence in the results on the choice of τ . The results highlight that
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in contrast to equilibrium estimators, the SDYN-GANs learning methods allow for flexibility in
estimating the force-law even in the non-equilibrium setting and from observations over shorter-time
trajectories relative to the equilibration time-scale.

Accuracy vs τ-Delay

Method / τ-Delay 1.90e-02 1.16e-02 7.12e-03

MMD-full-traj (Is = 50) 1.20e-01± 4.9e-02 1.02e-01± 4.1e-02 8.67e-02± 3.2e-02

MMD-conditionals 1.33e-01± 3.5e-02 1.42e-01± 6.1e-02 1.42e-01± 4.2e-02

MMD-marginals 8.20e-02± 4.5e-02 1.05e-01± 3.4e-02 9.00e-02± 2.3e-02

MMD-full-traj (Is = 100) 1.56e-01± 8.8e-02 1.27e-01± 4.3e-02 1.06e-01± 2.8e-02

MMD-conditionals 1.39e-01± 4.0e-02 1.68e-01± 5.7e-02 1.33e-01± 4.7e-02

MMD-marginals 9.75e-02± 4.7e-02 9.96e-02± 3.4e-02 9.97e-02± 2.3e-02

MMD-full-traj (Is = 200) 2.22e-01± 1.6e-01 1.69e-01± 7.7e-02 1.51e-01± 3.8e-02

MMD-conditionals 1.67e-01± 6.2e-02 2.28e-01± 8.3e-02 2.28e-01± 3.7e-02

MMD-marginals 1.16e-01± 3.1e-02 1.24e-01± 2.3e-02 1.15e-01± 2.4e-02

Table 5: L1-Accuracy of Learned Force-Law. We investigate how the relative L1-errors of the time-
dependent marginal probability densities at times Istep = 50, 100, 200, epoch = 5000, compare between the
learned generative models and the target stochastic process. The mean and standard deviation are reported
over 5 runs. SDYN-GANs training protocols are based on trajectory samples from distributions of the (i)
full trajectory, (ii) conditionals, and (iii) marginals, for details see Section 2.2. The L1-relative-errors of the
empirical radial probability distributions were computed from histograms using the range [0, L] with L = 2.5 and
bin-width ∆x = 0.125. The duration of trajectories are tnt = 2.0× 10−2 over nt = 20 steps with ∆t = 10−3.

We found for this task the sampling from the full trajectory and marginals tended to perform
better than the conditionals. For the shorter-time durations, this appears to arise from the marginals
including contributions from trajectory fragments that are included in the conditionals and also
trajectory fragments from later parts of the trajectories. Again, this provides additional information
on the longer-time dynamical responses, here enhancing learning of the force-laws. The matching
of the marginals also may be more stringent during training than the conditionals. Obtaining
agreement requires more global coordination in the generated trajectories so that statistics of later
segments of the trajectory match the observed target system.

We remark that for both the conditionals and marginals, the use of shorter duration trajectory
fragments helps reduce the dimensionality of the samples. This appears to improve in the loss
function the ability to make comparisons with the observation data. The results indicate the
marginals again may provide some advantages for training SDYN-GANs when one is able only to
probe trajectory data in fragments over relatively short time durations.

In summary, the results show a few strategies for using SDYN-GANs for learning non-linear
force-laws and other physical properties from observations of the system dynamics. The samples-
based methods of SDYN-GANs allows for general generative modeling classes to be used, without a
need for specification of likelihood functions. This facilitates the use of general generative models
for learning generative models of stochastic systems. The SDYN-GANs approaches also can be
used for non-neural network modeling classes, and combined with other training protocols, such as
data augmentation, further regularizations, and other prior information motivated by the task and
knowledge from the application domain.
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5. Conclusions

We introduced SDYN-GANs for adversarial learning of generative models of stochastic dynamical
systems. The learning approaches only require making comparisons between empirical trajectory
samples from the candidate generative model and observation data. This is in contrast to MLE
which requires specifying likelihood functions. We developed practical adversarial training methods
for generative models based on stable m-step stochastic numerical integrators. We showed results
for how this can be used to facilitate learning models for long-time prediction and simulation. We
introduced several training methods for utilizing probabilistic dependencies, leveraging different
statistical properties of the conditional and marginal distributions, and for probing dynamics on
different time-scales. We showed how our methods can be used for physical systems to learn
force-laws, mechanical responses, and thermal parameters. The introduced SDYN-GANs methods
provide versatile approaches for learning robust stochastic dynamical models for use in diverse tasks
arising in machine learning, statistical inference, dynamical systems identification, and scientific
computation.
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Appendix

A. Gradient Equations for m-Step Generative Models

For our m-step generative models, the use of direct backpropagation for book-keeping the forward
calculations in generating trajectory samples can result in prohibitively large computational call
graphs. This is further increased as the time duration of the trajectories grow. We derive alternative
adjoint approaches to obtain more efficient methods for loss functions to compute the gradients
needed during training.

For our general m-step generative models discussed in Section 3.1, we use the formulation
f(x,p) = 0. For m ≤ j ≤ N , we have

[f ](j,d) = [Xj −Ψj−1(Xj−1, . . . ,Xj−m,ωj−1;p)]
(d) = 0. (34)

The index (j, d) refers to the jth time-step and dth dimension component associated with X
(d)
j .

We use for this the notations X
(d)
j = [Xj ]

(d) = X(j,d). The update map is denoted as Ψj−1. For
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j = 0, . . . ,m− 1, we have

[f ](0,d) = [X0 − x0]
(d) = 0, [f ](m−1,d) = [Xm−1 − xm−1]

(d) = 0. (35)

We can then provide the gradients for ∇XjΨj , . . . ,∇XjΨj+m and other terms.
We derive methods for solving efficiently JT r = −fp for r where J = fx. For details motivating

this formulation, see Section 3.1. Throughout, we use the Einstein convention for repeated indices,
which contract the two tensors over the shared index by summing the product [61]. We also first
show the overall product with fx being computed and then give the detailed form of this term
which shows the structure of the equations we need to solve. By using the structure of J = fx from
equations 34– 35, we can obtain the following set of recurrence equations for the components of r.
For 0 ≤ k ≤ N −m, we have

r(j,d)f(j,d),(k,d′) = r(k,d)δd,d′ −
[
∇X(k,d′)Ψ(k,d)

]
r(k+1,d) · · · −

[
∇X(k,d′)Ψ(k+m,d)

]
r(k+m,d) =

∂ϕ

∂X(k,d′)
. (36)

For k = N − ℓ, 1 ≤ ℓ ≤ m− 1, we have

r(j,d)f(j,d),(k,d′) = r(k,d)δd,d′ −
[
∇X(k,d′)Ψ(k,d)

]
r(k+1,d) · · · −

[
∇X(k,d′)Ψ(k+ℓ,d)

]
r(k+ℓ,d) =

∂ϕ

∂X(k,d′)
. (37)

For k = N , we have

r(j,d)f(j,d),(k,d′) = r(N,d)δd,d′ =
∂ϕ

∂X(N,d′)
. (38)

This gives an mth-order recurrence relation we can use to propagate values from N,N − 1, . . . , 0 to
obtain the components of r.

To obtain fp, we have for m ≤ j ≤ N , that

[fp](j,d) = −∇pΨ(j−1,d). (39)

For 0 ≤ j ≤ m− 1, we have

[f ](j,d) = [Xj − xj ]
(d) = 0, [f ](j,d),(k,d′) = δ(j,d),(k,d′), [fp](j,d) = −∂ [xj ]

(d)

∂p
. (40)

We compute the gradients needed for training by using

∇pg̃ = g̃p − rT fp. (41)

To compute r, we solve for each sample X[i] of the stochastic trajectories the mth-order recurrence
relations given in equations 36– 38. The g̃p = ∂g̃/∂p and fp are computed using equations 39– 40.

The final gradient is computed by averaging using ∇pḡ = 1
M

∑M
1=1∇pg̃

[i] over the M samples of the
stochastic trajectories indexed by [i]. There are also ways to obtain additional efficiencies by using
structure of the specific loss functions, as we discuss in Section 3.2. We use equations 34– 41 to
develop efficient methods for computing the gradients of our m-step generative models.
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