The Hidden Role of Mathematics and Computation in Scientific Discovery and Engineering

Summer Sessions

Groundbreaking Research / Innovative Technology GRIT Series

July 2016

Paul J. Atzberger Department of Mathematics Department of Mechanical Engineering University of California Santa Barbara

Mathematics in Modern Technology and Science

Impact of Mathematics (a few examples):

- Internet Services: Search, Streaming, Encryption, Machine Learning.
- Cell Phones: Design, Materials, Data Compression.
- Engineering: Design, Virtual Testing, Optimization, Elasticity, Fluid-Structure Interaction.
- Scientific Investigations: Modeling, Simulation, Data Analysis.

Cell Phones, Images, and Data Compression

Cell Phone Cameras and Pictures

- Typical cell phone camera: 16 megapixels (millions of pixels).
- Direct storage/transmission of information not practical (raw image ~ 48MB, 24-bit color).
- Means 1 GB ~ only 20 images could be stored or transmitted!

Compression

- Only subset of features of the image are perceived when viewing.
- Need good mathematical ways to process and discard less perceptible features.
- If we can achieve even 10:1 compression then 1GB ~ 200 images stored or transmitted!
- Image compression methods ← JPEG currently most widely used standard.

Part I : Image Compression

Visual Perception : Models to Represent Color

Color Representations : $RGB \rightarrow Y'C_BC_R$

Perception : Primarily Smooth Variations

JPEG Images and Discrete Fourier Transforms

JPEG Compression Protocol

JPEG Protocol

• RGB image data transformed to YC_BC_R color space and quantize (drop bits).

3_hit 2_hit 1_hi

- Transform by DCT 8x8 blocks to frequency space.
- Frequency coefficients are quantized (stored with less bits) [Q controlled].
- Remaining data is entropy encoded (lossless compression).
- Final result is JPEG file. What is compression achieved in practice?

 C_R

 C_{B}

JPEG Images

Compression Ratio = 51:1

Compression Ratio = 6:1

Compression Ratio = 18:1

Mathematics in Modern Technology and Science

Impact of Mathematics (a few examples):

- Internet Services: Search, Streaming, Encryption, Machine Learning.
- Cell Phones: Design, Materials, Data Compression.
- Engineering: Design, Virtual Testing, Optimization, Elasticity, Fluid-Structure Interaction.
- Scientific Investigations: Modeling, Simulation, Data Analysis.

Part II: Stochastic Modeling and Scientific Computation

Normal Distribution: Gauss' Curve

Other Phenomena:

Height of Ocean Waves

SAT Exam Scores

Brownian Motion

- 1827 : R. Brown : observes erratic motions of pollen grains of plant Clarkia pulchella.
- 1905 : Einstein : theory of Brownian motion : links diffusivity D to mechanical drag, temperature.
- 1908/1915 : Langevin / Smoluchowski develop theories in classical mechanics with random forces.
- ~1930's : Wiener develops mathematical foundations (measure theory on function spaces / non-diff).

Brownian Motion

Brownian Motion: Molecular Collisions

Langevin Equation (ma = F)

$$m\frac{dV}{dt} = -\gamma V + -\nabla \Phi + F_{\text{thm}}$$

$$F_{\text{thm}}(s) \sim \text{Gaussian}$$

$$\langle F_{\text{thm}}(s)F_{\text{thm}}(t) \rangle = 2k_B T \gamma \delta(t-s)$$

Hydrodynamics + Fluctuations

Continuum Gaussian Random Field

Colloids / Suspensions

Membranes (lipids)

Polymers

Cell Biology

CFD : Approaches to Fiuid-Structure Interactions

J. Peraire and P.-O. Persson

Brady et al., G. Gompper et al.

Atzberger, Peskin, Kramer

Stochastic Immersed Boundary Method

Fluid-structure equations

Fluid:

$$\rho \frac{D \mathbf{u}(\mathbf{x}, t)}{Dt} = \mu \Delta \mathbf{u}(\mathbf{x}, t) - \nabla p(\mathbf{x}, t) + \mathbf{F}_{\text{prt}}(\mathbf{x}, t)$$
$$\nabla \cdot \mathbf{u}(\mathbf{x}, t) = 0.$$

Microstructure:

$$\frac{d\mathbf{X}^{[j]}(t)}{dt} = \int \delta_a(\mathbf{x} - \mathbf{X}^{[j]}(t))\mathbf{u}(\mathbf{x}, t)d\mathbf{x}$$
$$\mathbf{F}_{\text{ptr}}(\mathbf{x}, t) = \sum_{j=1}^M \mathbf{F}^{[j]}\delta_a\left(\mathbf{x} - \mathbf{X}^{[j]}(t)\right)$$

Thermal fluctuations

$$\begin{aligned} \mathbf{F}_{\text{thm}}(\mathbf{x},t) &= \mathbf{F}_{\text{drift}}(\mathbf{x},t) + \mathbf{F}_{\text{stoch}}(\mathbf{x},t) \sim \text{Gaussian} \\ \left\langle \mathbf{F}_{\text{stoch}}(\mathbf{x},t) \mathbf{F}_{\text{stoch}}^{T}(\mathbf{y},s) \right\rangle &= -2k_{B}T\mu\Delta\delta(\mathbf{x}-\mathbf{y})\delta(t-s) \\ \mathbf{F}_{\text{drift}} &= -k_{B}T\sum_{j=1}^{M} \nabla_{\mathbf{X}^{[j]}}\delta_{a}(\mathbf{x}-\mathbf{X}^{[j]}(t)) \end{aligned}$$

Numerical Discretization

Fluid-Structure Coupling

Rheological Properties and Microstructure Dynamics

Rheometry:

Lees-Edwards Conditions:

Material Stress ← Forces

Polymeric Fluid (FENE)

Polymeric Material

Lipid Bilayer Membranes : Coarse-Grained Modeling

Cell Biology / Biophysics

Lipid Interactions

Deserno 2005.

SIB/SELM Model

Tail

Self

Lipid Bilayer Membranes

Self-Assembled Bilayers

Atzberger 2016.

Saffman, Delbruck 1975

Correlation Analysis

Two-point correlation

Displacement At

Results

Langevin:Stokes Drag

SELM: Fluctuating Hydrodynamics

Conclusions

Mathematics broad impact.

Future Studies / Career

- Best Jobs: (Wall Street Journal 2011)
- 1. Mathematician
- 2. Actuary
- 3. Statistician
- 4. Biologist
- 5. Software Engineer
- 6. Computer Systems Analyst

Math Increasingly Central

Atzberger, P., Sigurdsson, J. et al.