Mango-Selm Software: Fluid-Structure Interaction subject to Thermal Fluctuations
Soft Materials, Biophysics, Fluidics

April 2021

Paul J. Atzberger
Department of Mathematics
Department of Mechanical Engineering
University of California Santa Barbara

DOE ASCR CM4
DE-SC0009254

DOE ASCR PhILMS
DE-SC0019246

NSF Grant
DMS - 1616353

NSF CAREER Grant
DMS-0956210
Mango-Selm Software: Overview

Selm - Simulation Package:

SELM fluctuating hydrodynamics for fluid-structure interactions subject to thermal fluctuations.

- Python, Jupyter notebooks, and other scripting for model building and simulation.
- Stochastic numerical time-step integrators for inertial and quasi-steady physical regimes in (C/C++)

Molecular dynamics integration with LAMMPS

- Modeling, interactions, many potentials, statistical analysis.
- Thermostats and many ensembles possible such as Lees-Edwards for shear simulations.

Standardized formats

- XML for parametrization and data output.
- VTK output for continuum fields and microstructures (visualization / analysis).

Mango – GUI for Model Building:

Graphical User Interface (GUI) for setting up model geometry and simulation parameters.

- Generates scripts and data files for SELM fluctuating hydrodynamics simulations.

Extendible object-oriented architectures for inclusion of new numerical methods.

Motivations

Stochastic Immersed Boundary Methods (SIBMs)
Eulerian-Lagrangian Methods (ELMs)
Implicit-Solvent Coarse-Grained (IS-CG) Simulations
Soft Materials / Complex Fluids
- Microstructure interactions on the order of $k_B T$.
- Properties arise from balance of entropy-enthalpy.
- Solvent plays important role (interactions / dynamic responses).

Approaches
- Atomistic Molecular Dynamics.
- Continuum Mechanics.
- Coarse-Grained Particle Models (solvated or implicitly treated).
- Challenges from phenomena spanning wide temporal-spatial scales.

Simulation Aims
- Investigate how larger-scale mechanics arise from microstructure interactions / kinetics.
- Capture roles of solvent mediated interactions efficiently (i.e. continuum level).
- Resolve microstructure mechanics and dynamics.
- Computational efficiencies allow for accessing larger length and time-scales for investigating wider class of phenomena.
Fluctuations arise from spontaneous momentum transfer from molecular-level collisions.

Stochastic model of thermal fluctuations captured through random stress $\Sigma \sim$ Gaussian.

Challenges for analysis and numerical methods presented from the δ-correlation in space-time.

Fluid-structure interactions: How to incorporate tractably?
Stochastic Eulerian Lagrangian Methods (SELMs) for Fluid-Structure Interactions

Fluid Equations

\[
\begin{align*}
\rho \frac{\partial \mathbf{u}}{\partial t} &= \mathcal{L} \mathbf{u} + \Lambda [\mathcal{Y} (\mathbf{v} - \Gamma \mathbf{u})] + \lambda + \mathbf{f}_{\text{thm}} \\
\nabla \cdot \mathbf{u} &= 0
\end{align*}
\]

Microstructure Equations

\[
\begin{align*}
\frac{d \mathbf{X}}{dt} &= \mathbf{v} \\
m \frac{d \mathbf{v}}{dt} &= -\mathcal{Y} (\mathbf{v} - \Gamma \mathbf{u}) - \nabla \mathbf{X} \Phi [\mathbf{X}] + \zeta + \mathbf{F}_{\text{thm}}
\end{align*}
\]

Thermal Fluctuations

\[
\begin{align*}
\langle \mathbf{f}_{\text{thm}} (s) \mathbf{f}_{\text{thm}}^T (t) \rangle &= - (2k_B T) (\mathcal{L} - \Lambda \mathcal{Y} \Gamma) \delta (t - s) \\
\langle \mathbf{F}_{\text{thm}} (s) \mathbf{F}_{\text{thm}}^T (t) \rangle &= (2k_B T) \mathcal{Y} \delta (t - s) \\
\langle \mathbf{f}_{\text{thm}} (s) \mathbf{F}_{\text{thm}}^T (t) \rangle &= - (2k_B T) \Lambda \mathcal{Y} \delta (t - s)
\end{align*}
\]

Operators:

- \(\mathcal{L}\) → Fluid dissipation (viscosity).
- \(\mathcal{Y}\) → Structure “slip” relative to local flow field.
- \(\Gamma\) → Kinematic particle velocity for given flow.
- \(\Lambda\) → Induced fluid force density from particle.

Notation:

- \(\mathbf{u} = \mathbf{u}(\mathbf{x}, t)\) → Fluid velocity.
- \(\mathbf{X} = \mathbf{X}(\mathbf{q}, t)\) → Structure configuration.
- \(\mathbf{v} = \mathbf{v}(\mathbf{q}, t)\) → Structure velocity.
Thermostats

Berendson, Nose-Hoover

\[\frac{dV}{dt} = -\gamma V - \nabla \Phi(X) + \sqrt{2k_B T\gamma} \frac{dB_t}{dt} \]

\[\frac{dX}{dt} = V. \]

missing correlations through solvent!

Langevin

\[\frac{dV}{dt} = -\gamma V - \nabla \Phi(X) + \sqrt{2k_B T\gamma} \frac{dB_t}{dt} \]

\[\frac{dX}{dt} = V. \]

Fluctuating Hydrodynamics

\[\frac{dX}{dt} = \nu \]

\[m\frac{d\nu}{dt} = -\gamma (\nu - \Gamma u) - \nabla X \Phi[X] + \zeta + F_{\text{thm}} \]

lateral momentum transfer: correlations
Coupling Operators, Immersed Boundary Methods

SELM Coupling:

adjoint condition

\[\langle \Gamma v_\gamma F \rangle = \sum_i \frac{\partial}{\partial v_i} \cdot F_i = \int_{\Omega} v(x) \cdot (\Lambda F)(x) \, dx = \langle v, \Lambda F \rangle \]

IB-Kernel coupling:

\[\Gamma u = \int_{\Omega} \eta (y - X(t)) u(y, t) \, dy \]
\[\Lambda F = \eta (x - X(t)) F. \]

Generalized Coupling (Faxen)

\[\Gamma_0 u = \sum_m \langle \eta_0 (y_m - (X_{cm} + z)) \cdot u_m \rangle_{S,|x|=R} \Delta x_m^3 \]
\[\Gamma_1 u = \frac{3}{2R^2} \sum_m \langle \eta_1 (y_m - (X_{cm} + z)) (z \times u_m) \rangle_{S,|x|=R} \Delta x_m^3. \]
\[\Lambda_0 (x_m) = \left(\frac{\eta_0 (x_m - (X_{cm} + z))}{S,|x|=R} \right) F \]
\[\Lambda_1 (x_m) = -\frac{3}{2R^2} \left(\langle z \eta_1 (x_m - (X_{cm} + z)) \rangle_{S,|x|=R} \right) \times T. \]
Summary of Regimes for SELMs

Stochastic Eulerian Lagrangian Methods (SELMs)

Fluid dynamics:
\[
\begin{align*}
 \frac{\partial u}{\partial t} &= \mu \Delta u - \nabla p + \Lambda \left[(v - \Gamma u) \right] + f_{\text{thm}} \\
 \nabla \cdot u &= 0
\end{align*}
\]

Structure dynamics:
\[
\begin{align*}
 \frac{dX}{dt} &= v \\
 m \frac{d\nu}{dt} &= -\Upsilon (v - \Gamma u) - \nabla_x \Phi[X] + \zeta + F_{\text{thm}}
\end{align*}
\]

Thermal Fluctuations:
\[
\begin{align*}
 \langle f_{\text{thm}}(s)F^T_{\text{thm}}(t) \rangle &= -(2k_B T) \mu \Delta \Lambda \Upsilon \delta(t-s) \\
 \langle F_{\text{thm}}(s)F^T_{\text{thm}}(t) \rangle &= (2k_B T) \Upsilon \delta(t-s) \\
 \langle f_{\text{thm}}(s)F^T_{\text{thm}}(t) \rangle &= -(2k_B T) \Lambda \Upsilon \delta(t-s).
\end{align*}
\]

Fluid-structure equations: Microstructure-fluid no-slip coupling (S-Immersed-Boundary)

Structure momentum no longer tracked.
- Removes a source of stiffness.
- Non-conjugate Hamiltonian formulation yields metric-factor in phase-space.

Microstructure density matched with fluid

Fluid-structure dynamics:
\[
\begin{align*}
 \frac{dp}{dt} &= \rho^{-1} \Gamma p + \Lambda \left[-\nabla_x \Phi(X) \right] - \left(\nabla_x \cdot \Lambda \right) k_B T + \lambda + g_{\text{thm}} \\
 \frac{dX}{dt} &= \rho^{-1} \Gamma p
\end{align*}
\]

Thermal Fluctuations:
\[
\begin{align*}
 \langle g_{\text{thm}}(s)g^T_{\text{thm}}(t) \rangle &= -(2k_B T) \zeta \delta(t-s) \\
 \langle G_{\text{thm}}(s)G^T_{\text{thm}}(t) \rangle &= (2k_B T) \zeta T^{-1} \delta(t-s) \\
 \langle g_{\text{thm}}(s)G^T_{\text{thm}}(t) \rangle &= 0.
\end{align*}
\]

- Structure momentum no longer tracked.
- Removes a source of stiffness.
- Non-conjugate Hamiltonian formulation yields metric-factor in phase-space.

Fluid-structure equations: Microstructure-fluid stress balance

Structure momentum no longer tracked.
- Balance of hydrodynamic stresses with elastic stresses.
- Removes additional sources of stiffness.
- Phase-space metric reflected in the drift term.
SELM-LAMMPS Integration

Molecular Dynamics and Coarse-Grained Modeling Approaches
Mango-Selm Software: Overview

Selm - Simulation Package:
SELM fluctuating hydrodynamics for fluid-structure interactions subject to thermal fluctuations.
 - Python, Jupyter notebooks, and other scripting for model building and simulation.
 - Stochastic numerical time-step integrators for inertial and quasi-steady physical regimes in (C/C++).

Molecular dynamics integration with LAMMPS
 - Modeling, interactions, many potentials, statistical analysis.
 - Thermostats and many ensembles possible such as Lees-Edwards for shear simulations.

Standardized formats
 - XML for parametrization and data output.
 - VTK output for continuum fields and microstructures (visualization / analysis).

Mango – GUI for Model Building:
Graphical User Interface (GUI) for setting up model geometry and simulation parameters.
 - Generates scripts and data files for SELM fluctuating hydrodynamics simulations.

Extendible object-oriented architectures for inclusion of new numerical methods.

Download: http://mango-selm.org/
Mango-Selm Implementation
SELMS − Source Codes:

<table>
<thead>
<tr>
<th>LAMMPS-SELM Interface</th>
<th>XML Interface</th>
</tr>
</thead>
<tbody>
<tr>
<td>fix_SELM.cpp</td>
<td>Atz_XML_Helper_ParseData.cpp</td>
</tr>
<tr>
<td>fix_SELM_XML_Handler.cpp</td>
<td>Atz_XML_Package.cpp</td>
</tr>
<tr>
<td>SELM_Package.cpp</td>
<td>Atz_XML_Parser.cpp</td>
</tr>
<tr>
<td>Atz_XML_Handler_Example_A.cpp</td>
<td>Atz_XML_SAX_DataHandler.cpp</td>
</tr>
<tr>
<td>Atz_XML_Helper_DataHandler_List.cpp</td>
<td>Atz_XML_SAX_Handler_MultiLevel.cpp</td>
</tr>
<tr>
<td>Atz XML Helper HandlerSkipNextTag.cpp</td>
<td>Atz_XML_SAX_Handler_PrintToScreen.cpp</td>
</tr>
<tr>
<td>Eulerian Mechanics</td>
<td>Lagrangian Mechanics</td>
</tr>
<tr>
<td>SELM_Eulerian.h</td>
<td>SELM_Lagrangian.h</td>
</tr>
<tr>
<td>SELM_Eulerian_Types.h</td>
<td>SELM_Lagrangian_Delegator_XML_Handler.h</td>
</tr>
<tr>
<td>SELM_Eulerian_Delegator_XML_Handler.h</td>
<td>SELM_Lagrangian_LAMMPS_ATOM_ANGLE_STYLE.h</td>
</tr>
<tr>
<td>SELM_Eulerian_LAMMPS_SHEAR_UNIFORM1_FFTW3.h</td>
<td>SELM_Lagrangian_LAMMPS_ATOM_ANGLE_STYLE_XML_Handler.h</td>
</tr>
<tr>
<td>SELM_Eulerian_LAMMPS_SHEAR_UNIFORM1_FFTW3_XML_Handler.h</td>
<td>SELM_Lagrangian_Types.h</td>
</tr>
<tr>
<td>SELM_Eulerian_Uniform1_Periodic.h</td>
<td>SELM_Package.h</td>
</tr>
<tr>
<td>SELM_Eulerian_LAMMPS_SHEAR_QUASI_STEADY1_FFTW3.h</td>
<td>SELM_CouplingOperator.h</td>
</tr>
<tr>
<td>SELM_Eulerian_LAMMPS_SHEAR_QUASI_STEADY1_FFTW3_XML_Handler.h</td>
<td>SELM_CouplingOperator_LAMMPS_SHEAR_UNIFORM1_FFTW3_TABLE1_XML_Handler.h</td>
</tr>
</tbody>
</table>

Features:

- **Object-oriented C++ classes** mirroring parts of SELM with XML parameter files.
- **Delegator design pattern** is used to control the work-flow.
- **Four main SELM classes** correspond to:
 - Eulerian Mechanics
 - Lagrangian Mechanics
 - Fluid-Structure Coupling (Eulerian-Lagrangian communication)
 - Time-Step Integration
- **Additional classes** for XML parsing, data generation.
- **Designed to be easily extended** for new types of SELM formulations and integrators.
Mango GUI Model Builder

Mango - Modeling Software:

Mango Model Builder for Stochastic Eulerian Lagrangian Methods
Version 2.1.1
Paul J. Atzberger

Python Interactive Editor 1.0: Implemented by Paul J. Atzberger, copyright 2013.

Startup Script for MAM Python Interpreter
Written by Paul J. Atzberger
Date: March, 2011.

Model Build Package 1: Authored by Paul J. Atzberger; Version 1.0
Setup appears to have completed with no known errors.

Atzberger 2016
Mango Modeling Software

Mango - Codes

Atzberger 2016

Paul J. Atzberger

http://atzberger.org/

UC Santa Barbara
Mango Modeling Software

MANGO - Codes

<table>
<thead>
<tr>
<th>SELM Builder</th>
<th>JPanel_Lagrangian.java</th>
</tr>
</thead>
<tbody>
<tr>
<td>application_Project Atz XML DataHandler LAMMPS USER SELM.java</td>
<td>JPanel_Lagrangian CONTROL PTS BASIC1.java</td>
</tr>
<tr>
<td>application_Project Atz XML DataHandler_SELM_Builder.java</td>
<td>JPanel_Lagrangian CONTROL PTS_FAXEN1.java</td>
</tr>
<tr>
<td>application_SharedData.java</td>
<td>JPanel_Lagrangian LAMMPS_ATOM_ANGLE_STYLE.java</td>
</tr>
<tr>
<td>application_Window_About.java</td>
<td>JPanel_Lagrangian NULL java</td>
</tr>
<tr>
<td>application_Window_Main.java</td>
<td>JPanel_Lagrangian_SPECTRAL_FILAMENT1.java</td>
</tr>
<tr>
<td>application_Window_Main.SetupThread.java</td>
<td>JTable CouplingOperator LAMMPS SHEAR UNIFORM1 FFTW3 TABLE1.java</td>
</tr>
<tr>
<td>application_Window_Splash.java</td>
<td>JTable_interaction.java</td>
</tr>
<tr>
<td>Atz_Application_Data_Communication.java</td>
<td>JTable Interaction LAMMPS_ANGLES.java</td>
</tr>
<tr>
<td>Atz_ClassLoader.java</td>
<td>JTable Interaction LAMMPS_CUSTOM1.java</td>
</tr>
<tr>
<td>Atz_DataChangeable.java</td>
<td>JTable Interaction LAMMPS_PAIR_COEFF.java</td>
</tr>
<tr>
<td>Atz_DataChangeEvent.java</td>
<td>JTable Interaction LAMMPSPAIRS_HARMONIC.java</td>
</tr>
<tr>
<td>Atz_DataChangeListener.java</td>
<td>JTable Interaction LAMMPS_SPECIAL_BONDS.java</td>
</tr>
<tr>
<td>Atz_File_Generator.java</td>
<td>JTable Interaction PAIRS_BONDS.java</td>
</tr>
<tr>
<td>Atz_File_Generator_LAMMPS_USER_SELM1.java</td>
<td>JTable Lagrangian_ControlPts_BASIC1.java</td>
</tr>
<tr>
<td>Atz_FileFilter.java</td>
<td>JTable Langrangian_CONTROLPTS.java</td>
</tr>
<tr>
<td>Atz_Helper_Generic.java</td>
<td>JTable MainData.java</td>
</tr>
<tr>
<td>Atz_ObjectFactory.java</td>
<td>JTable MainData XML LAMMPS_USER_SELM.java</td>
</tr>
<tr>
<td>Atz_ObjectFactory_Generic.java</td>
<td>JTable MainData XML_SELMBuilder java</td>
</tr>
<tr>
<td>Atz_Struct_DataChangeEvent.java</td>
<td>JTable Preferences.Other.java</td>
</tr>
<tr>
<td>Atz_Struct_DataChangeListener.java</td>
<td>JTable Preferences.Renaming.java</td>
</tr>
<tr>
<td>Atz_Struct_DataChangeListener_MainData.java</td>
<td>JTable Preferences_TableDisplay.java</td>
</tr>
</tbody>
</table>

Features:

- **Object-oriented classes in Java** mirroring parts of SELM.
- **Dynamic object loaders** for delegator design pattern for control flow (extension after compiled byte-codes).
- **Four main SELM classes** correspond to:
 - Eulerian Mechanics
 - Lagrangian Mechanics
 - Fluid-Structure Coupling (Eulerian-Lagrangian communication)
 - Time-Step Integration
- **Designed to be easily extended** for new types of SELM formulations and integrators.
- **Custom classes and interfaces** for rendering models in 3D and interactively editing models.

Atzberger 2016
Mango Modeling Software

Mango – Codes:

<table>
<thead>
<tr>
<th>Rendering in 3D</th>
<th>for interactively editing for model geometry.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interactive editor features allow for</td>
<td></td>
</tr>
<tr>
<td>• interactive views of model</td>
<td></td>
</tr>
<tr>
<td>• adding / removing control points</td>
<td></td>
</tr>
<tr>
<td>• adding / removing bonds between points</td>
<td></td>
</tr>
<tr>
<td>• adding custom force interactions</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Physical Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atz_Unit.java</td>
</tr>
<tr>
<td>Atz_UnitsData.java</td>
</tr>
<tr>
<td>Atz_UnitsRef.java</td>
</tr>
<tr>
<td>Atz_UnitsRef_PhysicalUnits.java</td>
</tr>
</tbody>
</table>

Custom classes implemented for tracking physical units in tables.
Mango GUI Jython Interface

MANGO - Modeling Software:

Custom classes implement interactive terminal based on Jython.
Wrapper jython classes implemented for MANGO interface and SELM data structures.
Editor features allow for
- jython/python scripting to construct models
- custom GUI windows : interactive components in MANGO
- post-processing scripts
- generation of SELM XML files from the constructed MANGO data structures.

Jupyter notebooks and Python interface now also available (directly with Selm-Lammps library).

Python and Jupyter notebook interfaces

Atzberger 2016
Selm-Lammps Integration

Python and Jupyter Notebook Interfaces
Tips for SELM Package: Installation and Usage

Instructions

Download at: http://mango-selm.org/

Installation in Linux preferred: Ubuntu 18.04 or 20.04 (pre-compiled binaries available).

Directories:
- /bin: collection of pre-compiled binaries.
- SELM-LAMMPS/src/USER-SELM: main C/C++ codes for SELM package
- SELM-LAMMPS/src/USER-SELM/examples: example models and simulation scripts

Installing Python components (uses lammps.py, lammps.so):
- Conda or virtualenv determine dir by “which python”
- Copy shared library and files into XX/site-packages/ directory.
- Create symbolic links to the shared library and binaries (or put in path)
 - ln –s XXX/bin/lammps.so lammps.so
- See examples directory for Jupyter notebooks, python scripts, for running simulations.
- See README files for more details.

Jupyter Notebooks and Python-based Simulations:
- Uses python-interfaces to LAMMPs.
- L.command(cmd_str); runs the command in cmd_str.
- Model building using python wrapper
 - sets up particles
 - sets up interactions, many possible types and potential available
 - sets up the simulation parameters.
Create Selm-Lammps instance

Setup the Simulation Files (such as .read_data)

In [125]:

 num_dim = 2
 num_part = 1
 num_atm = 5
 num_mol = 10

 # setup box
 box = np.linspace(num_part, num_part, num_mol) + np.linspace(0., 1.0, num_mol)

 # setup particles
 x1 = 0.
 y1 = 0.

 # setup interactions
 kappa = [0.1, 0.2, 0.3, 0.4, 0.5]

 # setup model
 mol_info = np.random.randint(0, 5, size=(num_mol, 1))

 # setup code
 code = ['(x1, y1)', 'x1, y1]

Model configuration (generated file)

Set up the interaction parameters

Setup parameters

SEL: LAMMPS XML file

Running simulation and analysis

Interface allows for:
- checking intermediate results
- resuming simulations
- performing analysis and visualization.
How to Setup Model in Practice

Example
Polymer: Thermal Fluctuations with Hydrodynamic Correlations

Directory:
/SELM-LAMMPS/src/USER-SELM/examples/Polymer4

Jupyter notebook:
simulation_polymer4.ipynb

Create Selm-Lammps instance

Setup model geometry and interactions

Run simulation and analysis

SELM XML files
Conclusions

Summary

Stochastic Immersed Boundary Methods with numerical solvers preserving statistical mechanics properties.

Stochastic Eulerian Lagrangian Methods for inertial and overdamped regimes, various boundary conditions.

Python interface for setting up simulations, **LAMMPS molecular dynamics integration** (modeling, analysis).

Applications in soft materials, complex fluids, rheology, microfluidics, biophysics, lipid bilayer membranes.

Papers

UCSB Recent Student Collaborators

Sandia Collaborators

N. Trask, P. Kuberry, J. Hu, C. Siefert, and others.

Funding

[DOE ASCR CM4 DE-SC0009254](http://atzberger.org)

[DOE ASCR PhilMS DE-SC0019246](http://atzberger.org)

[NSF Grant DMS - 1616353](http://atzberger.org)

[NSF CAREER Grant DMS-0956210](http://atzberger.org)

More information: http://atzberger.org

2016 Atzberger & Sigurdsson
Publications

For additional information: http://atzberger.org/