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W
e introduce a software package integrated with the molecular dynamics software LAMMPS
for fluctuating hydrodynamics simulations of fluid-structure interactions subject to ther-
mal fluctuations. The package is motivated to provide dynamic thermostats to extend

implicit-solvent coarse-grained (IS-CG) models by incorporating kinetic contributions from
the solvent to facilitate their use in a wider range of applications. To capture the thermal and
hydrodynamic contributions of the solvent to dynamics, we introduce momentum conserving
thermostats and computational methods based on fluctuating hydrodynamics and the Stochas-
tic Eulerian Lagrangian Method (SELM). SELM couples the coarse-grained microstructure de-
grees of freedom to continuum stochastic fields to capture both the relaxation of hydrodynamic
modes and thermal fluctuations. Features of the SELM software include (i) numerical time-step
integrators for SELM fluctuating hydrodynamics in inertial and quasi-steady regimes, (ii) Lees-
Edwards-style methods for imposing shear, (iii) a Java-based Graphical User Interface (GUI)
for setting up models and simulations, (iv) standardized XML formats for parametrization
and data output, and (v) standardized formats VTK for continuum fields and microstructures.
The SELM software package facilitates for pre-established models in LAMMPS easy adoption
of the SELM fluctuating hydrodynamics thermostats. We provide here an overview of the
SELM software package, computational methods, and applications.

1 Introduction

We introduce a computational package for fluctuating
hydrodynamics thermostats for dynamic simulations
of implicit-solvent (IS) coarse-grained (CG) models.
IS-CG models have been developed to study phenom-
ena relevant to soft materials and biophysics on length
and time scales difficult to attain with fully atomistic
molecular dynamics. IS-CG models explicitly model
microstructures at a coarse-grained level and remove
the solvent degrees of freedom to treat instead the
solvent contributions implicitly in the effective free en-
ergy of interaction between the microstructures. Gains
in computational efficiency are achieved through (i) a
reduction in the number of degrees of freedom as a con-
sequence of the removed solvent and coarse-graining of

the microstructure and (ii) by reducing the roughness
and complexity of the energy landscape that results
in less stiff mechanics and more rapid equilibration.
The IS-CG approach has worked well to gain insights
into diverse phenomena relevant to soft materials and
biophysics [14,16,18,21,25,32,39,42].

IS-CG models have primarily been motivated and
used to study equilibrium properties of soft materials
using Monte-Carlo sampling or Langevin dynamics.
For kinetic studies, IS-CG models simulated with
Langevin dynamics neglect important contributions
in the kinetics arising from the missing solvent de-
grees of freedom. The solvent not only contributes
to the free energy of interaction but also to the ki-
netics by mediating lateral momentum transport as
manifested in hydrodynamics. The Langevin ther-
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mostat uses local sources and sinks of momentum
that suppress such lateral correlations between mi-
crostructures [44]. To capture consistently at the
level of hydrodynamics the momentum transport and
thermal fluctuations, we introduce a momentum con-
serving thermostat based on fluctuating hydrodynam-
ics referred to as the Stochastic Eulerian Lagrangian
Method (SELM) [9]. In SELM, we introduce contin-
uum stochastic fields that are coupled to the implicit-
solvent models to thermostat the system in a manner
conserving momentum [9].

2 Stochastic Eulerian Lagrangian
Method (SELM)

The Stochastic Eulerian Lagrangian Method (SELM)
provides a framework for modelling fluid-structure
interactions subject to thermal fluctuations. To ob-
tain a tractable description, approximate operators
modelling the fluid-structure interaction can be used
as in the Immersed Boundary Method [35]. A La-
grangian description of the microstructure, typically
a collection of markers in the fluid, is coupled to an
Eulerian mesh for the hydrodynamics, see Figure 1.
The thermal fluctuations are accounted for by stochas-
tic driving fields introduced in a manner consistent
with the approximation and statistical mechanics [9].

(a) (b)

Figure 1: Stochastic Eulerian Lagrangian Method. (a)

coupling of a Lagrangian body with the Eulerian discretiza-

tion mesh, (b) can represent extended bodies, filaments, or

point particles.

This facilitates the development of efficient stochastic
numerical methods building upon deterministic com-
putational fluid dynamics solvers. Microstructures
can include point particles, slender filaments, or solid
bodies [9, 15,35].

2.1 Inertial Regime

In the inertial description of the fluid-structure sys-
tem, we model the microstructure dynamics similar
to Langevin by

dX

dt
= v (1)

m
dv

dt
= −Υ(v − Γu)−∇XΦ[X] + Fthm. (2)

A key difference with Langevin is that we reference the
drag force relative to the solvent hydrodynamic field
u. The contributions of the solvent fluid are modelled
by the incompressible fluctuating hydrodynamics

ρ
∂u

∂t
= µ∆u−∇p+ Λ[Υ(v − Γu)] + fthm (3)

∇ · u = 0. (4)

In the notation, the X denotes the collective de-
grees of freedom of the microstructures, the v the
microstructure velocity, and m the microstructure ex-
cess mass [5, 9]. The fluid velocity is denoted by u,
the fluid density by ρ, and the dynamic viscosity by µ.
The pressure acts as a Lagrange multiplier to enforce
the incompressibility constraint given in equation 4.
The Υ denotes the coefficient of microstructure drag
with respect to the fluid and Φ the potential energy
associated with the microstructure configuration X.

Thermal fluctuations are taken into account by
Gaussian stochastic driving fields Fthm and fthm with
mean zero and moments

(5)

〈fthm(s)fTthm(t)〉 = − (2kBT ) (L − ΛΥΓ) δ(t− s)
〈Fthm(s)FT

thm(t)〉 = (2kBT ) Υδ(t− s)
〈fthm(s)FT

thm(t)〉 = − (2kBT ) ΛΥδ(t− s).

We denote L = µ∆u. The stochastic equations are to
be given the Ito interpretation throughout [24, 33].
This particular spatial covariance was derived for
SELM using the fluctuation-dissipation principle of
statistical mechanics [9, 38].

The operators Γ and Λ model the fluid-structure
interactions through the equal and opposite dissipa-
tive terms −Υ(v − Γu) acting as a drag force on the
microstructures and ΛΥ(v−Γu) acting as a drag force
density on the fluid [5,9]. To achieve desirable prop-
erties in the mechanics and numerics we require the
coupling operators to be adjoints throughout [5,9,35].
The fluid-structure interactions and particular choice
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of Γ,Λ contribute important correlations in the ther-
mal fluctuations, see equation 5.

Many types of operators can be used to couple the
microstructure and fluid depending on the problem [9].
For simplicity, we take the widely used Immersed
Boundary Method [35] which is based on a kernel func-
tion to perform averages using markers in the fluid
to obtain a reference velocity and to perform force
spreading, see Figure 1,

Γu =

∫
Ω

η (y −X(t)) u(y, t)dy (6)

ΛF = η (x−X(t)) F. (7)

The kernel functions η(z) are chosen to be the Peskin
δ-Function which has a number of important prop-
erties, such as near translational invariance over the
mesh, which is useful in numerical methods [7, 35].

2.2 Quasi-Steady Regime

A central challenge in the development of viable nu-
merical methods for equations 1– 4 is the signifi-
cant temporal stiffness that arises from the stochastic
driving fields that excite diverse scales in the fluid-
structure system [9]. This has been handled through
the development of stiff numerical time-step integra-
tors [7], and alternatively, through the development
of stochastic asymptotics that exploit a separation
of time-scales to obtain reduced stochastic equations
having less stiff dynamics [5, 9].

In problems where the overall hydrodynamic cou-
pling is important but not the relaxation dynamics of
the hydrodynamic modes, the SELM equations can
be reduced to [5, 9]

dX

dt
= HSELM[−∇XΦ(X)] (8)

+ (∇X ·HSELM)kBT + hthm

HSELM = Γ(−℘L)−1Λ (9)

〈hthm(s)hT
thm(t)〉 = (2kBT )HSELM δ(t− s). (10)

The L = µ∆ and the ℘ denotes a projection opera-
tor that imposes the incompressibility constraint in
equation 4 [5, 15].

This provides a mesh based approach for computing
the quasi-steady hydrodynamic coupling in a manner
especially useful for complex geometries or when im-
posing special boundary conditions [10,37]. This for-
mulation of SELM treats a physical regime similar to
Brownian-Stokesian Dynamics simulations [6, 13,20].

For a more detailed discussion and SELM methods
for other physical regimes see [5, 7, 9].

2.3 Computational Methods

In the current SELM package release, we consider
numerical methods and implementations for the two
extremal regimes (i) fully inertial dynamics of the mi-
crostructure and hydrodynamics, and (ii) overdamped
dynamics of the microstructure subject to quasi-steady
hydrodynamics. For SELM methods for other physical
regimes and more details see [5, 9].

A central challenge in developing viable compu-
tational methods for the fluctuating hydrodynamic
equations 1– 4 is that solutions u are highly irreg-
ular in space and time. Technically, the fields are
solutions of the stochastic partial differential equa-
tions only in a weak generalized sense described by
distributions [31, 40]. This requires special considera-
tion in the development of discretizations and in the
approximation of the stochastic driving fields [7, 9].

2.3.1 Spatial Discretization

Many different approaches can be used to discretize
SELM including spectral methods, finite differences,
and finite elements [7,9,37]. For simplicity, we discuss
here the case of finite difference methods on a uni-
form periodic mesh. We approximate the Laplacian
∆u ∼ Lu where

[Lu]m =

3∑
j=1

um+ej − 2um + um−ej

∆x2
. (11)

We approximate the fluid incompressibility constraint
∇ · u = 0 by the divergence operator ∇ · u ∼ D · u
where

[D · u]m =

3∑
j=1

uj
m+ej

− uj
m−ej

2∆x
. (12)

The m = (m1,m2,m3) denotes the index of the lat-
tice site. The ej denotes the standard basis vector
in three dimensions. We spatially semi-discretize the
SELM equations by replacing the operators in equa-
tions 1– 4 with the corresponding discrete operators.
We approximate the stochastic driving fields by re-
placing the continuum fields with a Gaussian process
on the lattice sites of the mesh with moments imposed
by equations 5 corresponding to the discrete opera-
tors. This ensures the discretization approximates

Page 3 of 13



fluctuation-dissipation balance and can be shown to
have other desirable properties. For a more detailed
discussion see [7, 9].

2.3.2 Temporal Discretization

For the SELM dynamics in equation 1– 4, we de-
velop a temporal integrator that extends the Velocity-
Verlet Method used in molecular dynamics [43]. The
Velocity-Verlet Method was originally developed for in-
tegrating deterministic time-reversible dynamics such
as Newton’s equations of mechanics to preserve sym-
metries to achieve advantageous stability and energy
conservation [3, 23,43]. In the stochastic setting, the
time-reversible symmetry is broken by the dissipative
terms and the stochastic driving fields. However, de-
spite this broken symmetry the scheme still offers some
advantages over Euler-Marayuma [29]. For the SELM
equations 1– 4, we use the Verlet-style integrator

vn+ 1
2 = vn +

∆t

2
m−1Fn (13)

+
∆t

2

(
−m−1Υ

(
vn− 1

2 − Γnun− 1
2

)
+ m−1gn− 1

2

)
un+ 1

2 = un +
∆t

2
ρ−1µLun− 1

2

− ∆t

2

(
ρ−1Λn

[
−Υ

(
vn− 1

2 − Γnun− 1
2

)
+gn− 1

2

])
+ hn− 1

2

Xn+1 = Xn + vn+ 1
2 ∆t

vn+1 = vn+ 1
2 +

∆t

2
m−1Fn+1

+
∆t

2

(
−m−1Υ

(
vn+ 1

2 − Γn+1un+ 1
2

)
+m−1gn+ 1

2

)
un+1 = un+ 1

2 +
∆t

2
ρ−1µLun+ 1

2

− ∆t

2

(
ρ−1Λn+1

[
−Υ

(
vn+ 1

2 − Γn+1un+ 1
2

)
+gn+ 1

2

])
+ hn+ 1

2 .

where

〈gn− 1
2 gn− 1

2T 〉 = 4kBTΥ/∆t (14)

〈hnhnT 〉 = 4kBTρ
−2µL/∆t. (15)

The Fn gives the forces for particle configuration Xn.
The scheme extends the Velocity-Verlet method to in-
clude the dissipative and stochastic terms by sampling
them at the half-time steps in a staggered manner
relative to the microstructure configurations. The
numerical integrator is momentum conserving even in
the presence of the dissipative and stochastic driving
terms which can be shown to only transfer momentum
between the microstructure and hydrodynamic fields.
This can be contrasted with the Langevin dynam-
ics which uses local sources and sinks of momentum
to thermostat. Finally, to temporally discretize the
quasi-steady SELM dynamics in equation 8– 10, we
use the Euler-Marayuma method [10,29].

2.4 Shear Boundary Conditions :
Lees-Edwards for SELM

( a ) ( b ) ( c )

Figure 2: Lees-Edwards Boundary Conditions. (a) ”slid-

ing bricks” model for imposed shear, (b) microstructure

interactions with shifted periodic images, (c) deforming

discretization mesh for hydrodynamics.

To model imposed shear stress on a simulation do-
main, Lees-Edwards introduced methods for molecular
dynamics [30]. The central idea is to use a ”sliding
bricks model” where a periodic-like boundary condi-
tion is imposed on interactions near the boundary but
with a time-dependent shift of the periodic images.
In addition the velocity of particles in the periodic
images are accordingly adjusted, see Figure 2. We
have developed a similar approach in the context of
SELM by imposing in the hydrodynamic equations
the condition [10]

u(x, y, L, t) = u(x− vt, y, 0, t) + vex. (16)

This corresponds to a domain of size L with shear
along the z-axis in the x-direction at the shear rate
γ̇ = v/L. However, in numerical discretizations
on a cartesian mesh the shift x − vt is inconve-
nient and results in interpolation error from a mis-
match of lattice points [10]. To avoid this issue, the
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SELM fluctuating hydrodynamic equations are re-
formulated and solved on a deforming mesh for the
equivalent hydrodynamic field w(q, t) = u(φ(q, t), t),
where φ(q, t) = (q1 + q3γ̇t, q2, q3) and q = (q1, q2, q3)
parametrizes the unit cell. The jump in velocity at
the boundary is handled by introducing a localized
source term in the SELM equations. This reformula-
tion allows for the field w to be treated numerically as
periodic w(q1, q2, L, t) = w(q1, q2, 0, t). This allows
for efficient computational methods using FFTs [10].

An important feature of the Lees-Edwards-style
approach is that shear is imposed by modifying in-
teractions only locally near the domain boundary.
This is in contrast to imposing a global affine trans-
formation of the entire simulation domain as some-
times done in studies of polymeric networks [22,41].
This local-global distinction can be important since
shear stresses can induce non-affine deformations in
systems [11, 27, 41]. The approach above allows for
incorporating the Lees-Edwards-style conditions for
imposing shear into SELM fluctuating hydrodynamic
simulations [10]. We give an example simulation using
these methods in Section 5.2.

3 SELM Software Package for
LAMMPS

To facilitate use by a wide community, we have inte-
grated implementation of the SELM computational
methods with the LAMMPS molecular dynamics soft-
ware [36]. The methods have been implemented in
C++. An overview for how the codes are used to

setup models, interact with LAMMPS, and produce
simulation output is shown in Figure 3.

Figure 3: Package Interactions and Data Flow. SELM

simulations can be setup with Python, LAMMPS scripts,

or the MANGO graphical user interface. Standardized

XML formats are used for input and output.

Models can be setup in a few different ways, in-
cluding (i) custom commands in the LAMMPS script,
(ii) Python codes to generate input data and control
SELM-LAMMPS, or (iii) the MANGO Graphical User
Interface (GUI). The main SELM module interfaces
with LAMMPS through a custom ”fix class” referred
to as USER-SELM in the terminology of LAMMPS.
These codes provide the hooks for the time-stepping
routines, force interactions, calculations of statistics,
and data input/output. The SELM module obtains
model geometry and parameters through standard
LAMMPS data structures and by reading select pa-
rameter files having a standardized XML format that
closely follows the object classes of SELM.

LAMMPS1SELMuInterfaceu XMLuInterface
fix_SELMWcpp Atz_XML_Helper_ParseDataWcpp
fix_SELM_XML_HandlerWcpp Atz_XML_PackageWcpp
SELM_PackageWcpp Atz_XML_ParserWcpp
Atz_XML_Handler_Example_AWcpp Atz_XML_SAX_DataHandlerWcpp
Atz_XML_Helper_DataHandler_ListWcpp Atz_XML_SAX_Handler_MultilevelWcpp
Atz_XML_Helper_Handler_SkipNextTagWcpp Atz_XML_SAX_Handler_PrintToScreenWcpp
EulerianuMechanics LagrangianuMechanics
SELM_EulerianWh SELM_LagrangianWh
SELM_Eulerian_TypesWh SELM_Lagrangian_Delegator_XML_HandlerWh
SELM_Eulerian_Delegator_XML_HandlerWh SELM_Lagrangian_LAMMPS_ATOM_ANGLE_STYLEWh
SELM_Eulerian_LAMMPS_SHEAR_UNIFORMB_FFTW3Wh SELM_Lagrangian_LAMMPS_ATOM_ANGLE_STYLE_XML_HandlerWh
SELM_Eulerian_LAMMPS_SHEAR_UNIFORMB_FFTW3_XML_HandlerWh SELM_Lagrangian_TypesWh
SELM_Eulerian_UniformB_PeriodicWh SELM_PackageWh
SELM_Eulerian_UniformB_Periodic_XML_HandlerWh
Time1StepuIntegration Fluid1StructureuCoupling
SELM_IntegratorWh SELM_CouplingOperatorWh
SELM_Integrator_Delegator_XML_HandlerWh SELM_CouplingOperator_Delegator_XML_HandlerWh
SELM_Integrator_FFTW3_PeriodWh SELM_CouplingOperator_LAMMPS_SHEAR_UNIFORMB_FFTW3_TABLEBWh
SELM_Integrator_LAMMPS_SHEAR_QUASI_STEADYB_FFTW3Wh SELM_CouplingOperator_LAMMPS_SHEAR_UNIFORMB_FFTW3_TABLEB_XML_HandlerWh
SELM_Integrator_LAMMPS_SHEAR_QUASI_STEADYB_FFTW3_XML_HandlerWh

Figure 4: Source codes in C++ for the Stochastic Eulerian Lagrangian Methods.
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The C++ classes can be organized into roughly
six categories (i) Eulerian Mechanics, (ii) Lagrangian
Mechanics, (iii) Coupling Operators, (iv) Force In-
teractions,(v) Time-Step Integrators, and (vi) XML
Processors. We show a typical collection of source
files from our first release in Figure 4. The specific
C++ classes and source files for the current release
can be found in the distribution package. The classes
are designed to operate with few inter-dependencies
and interact through a standardized programming
interface. In addition, each of the classes receives pa-
rameter values through a standardized XML interface.

Figure 5: The package USER-SELM and the SELM time-

step integrator classes coordinate the simulation. Shown

are the broad categories of C++ classes and the interac-

tions between SELM and LAMMPS.

The implementation has been designed for each of
the general class categories to be easily extended for
the creation of new spatial-temporal numerical meth-
ods, types of Eulerian-Lagrangian descriptions, and
physical models. Each category has a ”delegator class”
that is responsible for interpreting the class type from
an identify string passed along from a script or XML
data associated with a given physical model [12,19].
In practice, this is done easily by creating a new de-
rived class implementing the standardized interface
and by updating the delegator class to include an
identifier string linked with this new class.

The primary LAMMPS-SELM interface is imple-
mented in the class fix SELM.cpp. The time-step
integrator class coordinates primarily the software
components shown in Figure 5. In a typical simula-
tion of the Vertlet-style, the integrator class performs
the following operations: (i) receives input concern-
ing the physical state from LAMMPS, (ii) integrates
the initial half time-step for the stochastic dynamics
of the microstructure and hydrodynamic fields, (iii)

computes the microstructure-fluid hydrodynamic in-
teractions using the specified fluid-structure coupling
operators, (iv) computes any custom interaction forces
acting on the microstructures or hydrodynamic fields,
(v) returns output data and control to LAMMPS to
complete the initial half-time step, (vi) receives final
half-time step input from LAMMPS, (vii) integrates
the final half time-step for the stochastic dynamics of
the microstructure and hydrodynamic fields similar to
step iii and iv, (viii) returns output data and control
to LAMMPS to repeat the above steps. An important
task handled by LAMMPS is to compute efficiently
the bonded and non-bonded interactions for different
types of potentials and boundary conditions using
specialized data structures and sorting methods [36].
In summary, the modular design of the package facili-
tates future extensions and development of the SELM
fluctuating hydrodynamics methods.

4 Model Specification

Models can be setup using the SELM software pack-
age in the following ways (i) custom commands in the
LAMMPS script, (ii) Python codes to generate input
data and control SELM-LAMMPS, or (iii) using the
Java-based MANGO Graphical User Interface (GUI).

4.1 LAMMPS scripts

For simple models, the LAMMPS script can be mod-
ified easily so that the integrator is used from the
SELM package. This can done by use of a command
of the form

fix 1 all SELM FENE_Dimer.SELM_params

This gives the name of a master XML file that speci-
fies the model. The master XML file specifies the
Eulerian mechanics for the hydrodynamics, fluid-
structure coupling, and other aspects of the SELM
model and parametrization. An example demonstrat-
ing this approach can be found in the folder /USER-
SELM/examples/FENE Dimer/. This provides a par-
ticularly simple way to convert an existing model
already setup in LAMMPS.

4.2 Python Interface to LAMMPS-SELM

Another approach to setup models is to use a Python
interface to LAMMPS and the SELM package. This
allows for models to be specified programmatically.
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LAMMPS provides an interface allowing for any script
command to be called interactively from Python.
In the current release, python interacts with SELM
through the standard LAMMPS interface and through
the generation of custom XML data files. In a typi-
cal simulation, the model is specified by developing
a custom python script that generates the needed
LAMMPS data structures, XML files that control

the SELM package, and perform a LAMMPS simu-
lation run. This provide a straight-forward way to
adopt readily models already setup in LAMMPS using
Python.

4.3 Graphical Modelling Software :
MANGO

Figure 6: Screenshot of the MANGO graphical user interface for setting up models and simulations.

We have developed a Java-based [26] Graphical User
Interface (GUI) for setting up SELM-LAMMPS mod-
els which is referred to as MANGO for (M)odeling
(A)nd (N)umerical (G)raphical (O)rchestrator. The
MANGO software allows for spreadsheet-like speci-
fication of parameters and interactive construction
and visualization of models, see Figure 6. MANGO
has been implemented in the Java programming lan-
guage [26] using a modular design allowing readily
for extension mirroring developments in the SELM
codes. In the current release simulations can be setup
for over-damped shear simulations. The interface al-
lows for interactive editing of the geometry of the
Lagrangian microstructures. For instance, the in-
terface allows for new control nodes in a model to
be created or deleted and to be moved interactively.
We also developed in MANGO an interface that al-

lows for Python-style scripting through a mimetic
language called Jython [1]. Many python scripts can
be run directly in Jython or with minor modifica-
tions. For running simulations, the MANGO interface
automatically generates both the LAMMPS script
driving the simulation and all needed XML data files
for the SELM package. The MANGO graphical in-
terface provides a particularly easy entry-point for
new users to setup SELM models and perform simu-
lations. An example project and simulation using the
MANGO interface can be found in the folder /USER-
SELM/examples/mango-project FENE Dimer/ by
opening FENE Dimer.SELM Builder Project.
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5 Applications

We discuss a few computational simulations performed
using the SELM fluctuating hydrodynamics numerical
methods. Many of these simulation results have been
reported in more detail in the prior papers [8–10,44].
To demonstrate the core capabilities of the SELM
methods, we discuss two particular applications. The
first is a basic model for a polymeric material con-
sisting of short polymer segments that have bonds
that can be irreversibly broken when subjected to
shear [10]. We study how the shear viscosity of the
material changes over time as bonds are broken and
the microstructure rearranges. The second is a dy-
namic extension of the implicit-solvent coarse-grained
(IS-CG) model for lipids developed by Cooke-Kremer-
Deserno [16]. For a self-assembled vesicle, we show
how the SELM fluctuating hydrodynamics captures
important collective dynamics of the lipids that are
missing in implicit-solvent simulations using Langevin
dynamics [44].

5.1 Physical Benchmarks

We discuss briefly features of how the SELM meth-
ods capture hydrodynamic interactions and thermal
fluctuations. We benchmark SELM against other hy-
drodynamic models used in the literature and with
results from statistical mechanics.

The effective hydrodynamic interactions in SELM
when using the immersed boundary (IB) coupling in
equation 6 yields interactions similar to the Rotne-
Prager-Yamakowa tensor [10,45], see Figure 8.

Figure 7: Hydrodynamic interactions. (IB) immersed

boundary coupling for the parallel and perpendicular com-

ponents of the pair-mobility tensor (data points), (RPY)

Rotne-Prager-Yamakowa tensor [45], (OS) Oseen ten-

sor [2].

The IB-coupling used with SELM exhibits in the far-

field the same behaviour as the Oseen tensor and
in the near-field a regularized interaction similar to
Rotne-Prager-Yamakowa [10,45].

For a particle tethered by a harmonic spring, we
benchmark the results of SELM to the predictions of
equilibrium statistical mechanics [8, 38], see Figure 9.

Figure 8: Particle subject to Harmonic Tether. The

probability distribution generated by SELM simulations

of a particle subject to a harmonic tether. The particle

position is shown on the left and the particle velocity is

shown on the right. For more details see [8].

For SELM within the inertial regime, we find good
agreement with the Gibbs-Boltzmann distribution of
statistical mechanics both for the exhibited distribu-
tion of particle positions and for the distribution of
particle velocities. For more details see [8, 38].

As a further benchmark, we consider the mo-
tions of a pair of ellipsoidal particles in proxim-
ity to a wall. We compare the correlations in
the passive diffusive motions with the determinis-
tic motions associated with the hydrodynamic cou-
pling in response to a force [8], see Figure 10.

interactions

mobility

Figure 9: Diffusivity of Ellipsoidal Particles near a Wall.

For two interacting ellipsoidal particles, the correlated

diffusivity tensor components are compared to the hydro-

dynamic mobility components. Good agreement is found

both for particles near the channel center z = 10nm and

near the wall z = 2nm. For more details see [8].

The results confirm empirically that the stochastic dy-
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namics generated by SELM exhibit a Stokes-Einstein
relation between the mobility capturing the hydro-
dynamic responses and the tensor for the correlated
diffusive motions. For more details see [8]. In the
bulk, we also found in [8] that the SELM hydrody-
namic responses for the ellipsoidal particles are in
agreement with prior fluid mechanics calculations for
ellipsoid-shaped particles, see [8, 17,34].

Overall, these benchmark studies validate that the
SELM methods yield reasonable results for the hydro-
dynamics and fluctuations consistent with prior fluid
mechanics results in the literature and statistical me-
chanics [8,10,17,34,38,45]. The SELM methods can be
used to perform simulations for diverse applications.

5.2 Polymeric Material

A basic model has been developed using SELM for
a polymeric material with microstructures comprised
of cross-linked polymer chains [10]. The polymeric
chains are each comprised of five control points and
each have specialized binding sites at the second and
fourth control point. The inter-polymer bonds have a
preferred extension and angle of 70o. When an inter-
polymer bond is strained beyond 50% of its preferred
rest-length, the bond breaks irreversibly, see Figure 9.

This is modelled by the interaction energy

Φ[X] = Φmb + Φma + Φpb + Φpa (17)

Φmb[X] =
∑

(i,j)∈Q1

φmb(rij)

Φma[X] =
∑

(i,j,k)∈Q2

φma(τ ij , τ jk)

Φpb[X] =
∑

(i,j)∈Q3

φpb(rij)

Φpa[X] =
∑

(i,j,k)∈Q4

φpa(θijk),

where

φmb(r) =
1

2
K1(r − r0,1)2 (18)

φma(τ 1, τ 2) =
1

2
K2 |τ 1 − τ 2|2

φpb(r) = σ2K3 exp

[
− (r − r0,3)2

2σ2

]
φpa(θ) = −K4 cos(θ − θ0,4).

The energy terms are Φmb for monomer bonds, Φma

for monomer bond angles, Φpb for inter-polymer bonds,

Φpa for inter-polymer bond angles. The sets Qk de-
fine the interactions according to the structure of the
individual polymer chains and the topology of the
inter-polymer network. The r is the separation dis-
tance between two monomers, θ is the bond angle
between three monomers, and τ is a tangent vector
along the polymer chain. When bonds are stretched
beyond the critical length 3σ they are broken irre-
versibly, which results in the sets Q3 and Q4 being
time dependent. For more details and the specific
simulation parameters see [10]. The model is shown
in Figure 9.

To show how the methods can be used to inves-
tigate the relationship between the polymeric mi-
crostructures and contributions to the shear viscosity
ηp = σxz/γ̇, we used the Lees-Edwards formulation of
SELM [10] in the quasi-steady regime discussed in Sec-
tions 2.4 and 2.2. The shear viscosity is estimated us-
ing a variant of the approach of Irving-Kirkwood [28],
see [10]. As the polymeric network deforms under
the shear, the inter-polymer bonds break and the ma-
terial transitions from being like a gel to a complex
fluid. The contributions to the non-Newtonian shear
viscosity ηp during this progression is shown in Figure
10.

(a) (b) (c)
Figure 10: Polymeric Material Model. (a) five-bead poly-

mer chain with binding sites, (b) bonds can be irreversibly

broken, (c) initial polymeric network.

The time progression of the viscosity under shear
exhibits roughly three stages. In the first stage, the
polymer-network maintains its integrity. Contribu-
tions to the shear viscosity arise from stretching of
the inter-polymer and intra-polymer bonds. In the
second stage, the inter-polymer bonds of the polymer-
network begin to break. The polymers are then free
to align with the direction of shear which results in
relaxation of the intra-polymer bonds to their pre-
ferred rest-length. In the third stage, steady-state is
reached with the contributions to the shear viscosity
arising from thermal fluctuations that drive transient
misalignments of the polymers with the direction of
shear. For a more detailed discussion and specific
parameters used in the simulations see [10]. These
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results demonstrate how the SELM fluctuating hy-
drodynamics shear methods can be used to study
the relationship between material microstructure and
rheological properties.

Figure 11: Polymer contributions to the shear viscosity.

5.3 Lipid Bilayer Membrane

We use SELM to perform dynamic simulations of
lipid bilayer membranes based on the implicit-solvent
coarse-grained (IS-CG) model introduced for lipids
by Cooke-Kremer-Deserno [16,44]. We consider self-
assembled vesicles where the lipids are modelled by
the free energy of interactions [16]

(19)

Φ[X] = Φrep + Φbond + Φbend + Φattr,

φrep(r; b) =

{
4ε
[
(b/r)

12 − (b/r)
6

+ 1
4

]
, r ≤ rc

0, r > rc,

φbond(r) = −1

2
kbondr

2
∞ log

[
1− (r/r∞)2

]
,

φbend(r) =
1

2
kbend (r − 4σ)

2
,

φattr(r) =


−ε, r < rc
−ε cos2 (π(r − rc)/2wc) ,

rc ≤ r ≤ rc + wc

0, r > rc + wc.

Each of the lipids consist of three beads that interact
through the steric Weeks-Chandler-Andersen repul-
sion φrep, FENE bonds φbond, and bending energy
φbend. The second and third lipids interact with other
lipids through a long-range attractive potential with a
wide energy well near the minimum φattr that models

the hydrophobic-hydrophilic effect [16]. The parame-
ter b controls the steric lipid size, ε the energy scale of
interaction, wc the width of the energy well of the at-
tractive energy [16]. The IS-CG model can be used to
self-assemble bilayer sheets and vesicles, see Figure 11.
For more details see [16,44].

We perform simulations in the inertial regime us-
ing the SELM fluctuating hydrodynamics discussed
in Section 2.1. We make comparisons with Langevin
dynamics with Stokes drag parametrized to model the
same physical regime as SELM [44]. To investigate
the lateral correlations within the bilayer and make
comparisons, we consider

cM = 〈∆0X∆MX〉 /
〈
∆0X

2
〉
. (20)

This measures the correlations in the displacement of a
reference lipid ∆0X over time δt with the displacement
∆MX of the center-of-mass of a patch consisting of the
M nearest neighbours, where ∆MX = 1

M

∑M
j=1 ∆XIj .

Since the reference lipid is part of the patch, no signif-
icant correlations corresponds to a decay cM ∼ 1/M
as M is made larger. The results of this correlation
analysis is shown in Figure 12.

(a) (b) (c)

SELM

Langevin

Figure 12: Vesicle Lipid Bilayer Membrane Model. (a)

self-assembled vesicle and three bead lipid model, (b) mesh

of the SELM fluctuating hydrodynamics coupling the vesicle

lipids, (c) lipid pair correlations.

We can also consider the lipid pair correlations given
by Ψ(r) =

〈
∆rX∆0X

T
〉
. The subscript r specifies

the displacement vector from the center-of-mass of a
reference lipid to the center-of-mass of a second lipid
within the bilayer. By linear response theory, the
vector field w = Ψe1 can be related to the flow of
lipids within the bilayer that would occur in response
to the force e1 = (1, 0, 0). This is shown in Figure 11.
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Figure 13: Correlations between a lipid’s displacement

and a cluster of nearest neighbours.

We find that simulations with Langevin dynam-
ics modelling the same physical regime as SELM are
missing significant lateral correlations between the
lipids. The local non-momentum-conserving drag of
Langevin greatly suppresses the collective motions of
the lipids. In contrast the SELM fluctuating hydro-
dynamics uses the same Stokes drag coefficient, but
the momentum is conserved and instead transferred
between the lipid degrees of freedom and the hydro-
dynamic fields modelling the solvent. This preserves
better the collective dynamics and long-range spatial
correlations mediated by the solvent as seen in explicit
solvent simulations [4]. For a more detailed discus-
sion and further analysis see [44]. These simulations
demonstrate how the SELM fluctuating hydrodynam-
ics methods can be used to extend implicit-solvent
coarse-grained (IS-CG) models to include important
kinetic effects facilitating their use in a wider range
of applications.

6 Conclusions

We have developed a software package to facilitate
the use of SELM fluctuating hydrodynamics methods.
The package is interoperable with the widely used
molecular dynamics package LAMMPS. This facili-
tates using SELM on existing models already setup
in LAMMPS. The SELM fluctuating hydrodynam-
ics methods provide ways to extend implicit-solvent
coarse-grained (IS-CG) models to incorporate impor-
tant kinetic effects facilitating their use in a wider
range of applications.

The SELM software can be downloaded at
http://mango-selm.org.
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