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Soft Materials and Fluidics
• Interactions on order of KBT.

• Properties arise from balance of entropy-enthalpy.

• Solvent plays important role (interactions / responses).

• Phenomena span wide temporal-spatial scales.

Approaches
• Atomistic Molecular Dynamics.

• Continuum Mechanics.

• Coarse-Grained Particle Models (solvated / implicit).

Simulation Methods / Thermostats
• NVE vs NVT ensembles.

• NVE  Velocity-Verlet (no thermostat).

• NVT  Berendsen, Nose-Hoover (artificial dynamics).

• NVT Langevin Dynamics (kinetics?).

• What about solvent mediated kinetics? What about other ensembles (NPT, γVT)? 
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Lipid Bilayer Membranes : Amphiphilic Molecules 

Lipid Bilayer Membranes
• Cellular biology : membranes compartmentalize cell, dynamic structures, diverse functions. 

• Fluid phase two layered structure (bilayer).

• Mechanics of a fluid-elastic sheet (in-plane flow, elastic response to bending).

• Phenomena span wide temporal-spatial scales.

Amphiphilic Molecules (Lipids)
• Amphiphiles have a polar head (hydrophilic) and non-polar tail (hydrophobic).

• Solvent plays key role driving self-assembly (hydrophobic-hydrophilic effect).

• Phases fluid vs gel, micelle vs lamellar, size of polar vs non-polar part.

Partially Ordered Structures
• Lyotropic liquid crystals (temperature and concentration determines phase).

• Smectic A and C phases (translational order in layers, orientation orthogonal/tilt in layer).

• Lamellar sheets most relevant to biology, but many other phases possible.

PhosphogylcerideCell Membranes



Fluidics Transport
Fluidic Devices Electrokinetics Geometry / Confinement

Fluidic Devices

• Developed to miniaturize and automate many laboratory tests, diagnostics, characterization. 

• Hydrodynamic transport at such scales must grapple with dissipation / friction.

• Electrokinetic effects utilized to drive flow.

Key Features

• Large surface area to volume.

• Ionic double-layers can be comparable to channel width.

• Brownian motion plays important role in ion distribution and analyte diffusion across channel.

• Hydrodynamic flow effected by close proximity to walls or other geometric features.

• Ionic concentrations often in regime with significant discrete correlations /density fluctuations.

Challenges

• Develop theory and methods beyond mean-field Poisson-Boltzmann theory.

• Methods capable of handling hydrodynamics, fluctuations, geometry/confinement.



Modeling Approaches for Lipid Bilayer Membranes

Grossfield 2013
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Duncan 2012
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Atzberger et al. 2009

Atzberger & Sigurdsson 2013Deserno 2007

Coarse-Grained 

Implicit-Solvent

Atzberger 2013

Atomistic Molecular Dynamics
• Representation of solvent fluid molecules and lipids. 

• Atomic detail of molecules.

• Limited length and time-scales.

Explicit-Solvent Coarse-Grained (ES-CG)
• Atoms grouped/represented by coarse-grained units.

• Effective free-energy of interaction used on remaining degrees of freedom (DOF). 

• Reduces entropy of the system (caution).

• Smooths energy landscape with often less stiff dynamics.

• Explicit-solvent is expensive, still requires resolving molecules of the bulk.

Implicit-Solvent Coarse-Grained (IS-CG)
• Atoms grouped/represented by coarse-grained units.

• Effective free-energy of interaction used on remaining degrees of freedom (DOF).

• Used widely for equilibrium studies, however, dynamics augmented by missing solvent effects.

• To extend for kinetic studies, need thermostats to account for correlation contributions of solvent in IS-CG.
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Solvent Hydrodynamics

CFD Fluid-Structure Interactions



Fluid-Structure Interactions

http://www.liveanimalslist.com/

Peskin,C and McQueen, D. et al. Atzberger, P.,Sigurdsson, J. et al.

http://www.jlsong.net/research.html

Song, J., Luo, H., Hedrick, T.L.

Deserno et al.

David Rogers

neutralphilChasingABacterium.mov
lipidFluctuationBudding1.mpg


CFD : Approaches

J. Peraire and P.-O. Persson Atzberger, Peskin, KramerBrady et al., G. Gompper et al.



Thermostats

Langevin

particle momentum

thermal 
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Fluctuating Hydrodynamics

particle momentum

solvent

(fluid fluctuations)

solvent

(fluid modes)

missing correlations through solvent!

lateral momentum transfer : correlations



Fluctuating Hydrodynamics

• Spontaneous momentum transfer from molecular-level interactions.

• Thermal fluctuations captured through random stress Σ.

• Mathematically, equations present challenges since δ-correlation in space-time.

• Fluid-structure interactions?

Landau-Lifschitz fluctuating hydrodynamics

Brownian Motion: Molecular Collisions Continuum Gaussian Random FieldHydrodynamics + Fluctuations

brownianMotion_LJ_Fluid_hd720.mpg
fluctHydrodynamics_velocityField_passiveTracersFew_10x10x10_lag1.avi


Immersed Boundary Method

• Allows conventional discretizations for fluid domain (FV, FFTs).

• Particles, fibers, membranes, and bodies possible.

• Thermal fluctuations: Fthm = ?

Features:

Fluid dynamics

Structure dynamics

Atzberger, Peskin, Kramer 2007



Thermal fluctuations

Stochastic Immersed Boundary Method

Fluid-Structure Equations
Fluid-structure equations

Atzberger, Peskin, Kramer 2007



Numerical Approximation
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Dissipation rates are different for continuum and discrete system

• Must approximate differently thermal fluctuations in design of numerical methods.

• Mathematical formulation (Atzberger, Kramer, Peskin 2007, Atzberger 2011):

• Fluctuation-dissipation balance (ito calculus, nyquist relations).

• Invariance of Gibbs-Boltzmann (kolomogorov pde’s, detailed balance)

Fluctuation-dissipation balance condition



Numerical Stiffness

Fluid Modes Particle Diffusion

Time-scales

t

Z
t

λ = 10nm : τ = 10-3ns

λ = 1000nm : τ = 10ns

Sources of stiffness

• Fluid-structure have stochastic trajectories.  

• Thermal fluctuations excite all fluid modes.

• Length-scales of microstructure involve fluid dynamics at small Re << 1.

• Equilibration relaxation time-scales of system.

• Elasticity of microstructures.

Two approaches

• Develop stiff stochastic time-step integrators.

• Perturbation analysis of SPDEs : reduced descriptions.



Structure equations

Fluid equations

(incompressibility)

(particle force)

(thermal force)

(viscous damping)
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Integration by exponential factor (ito calculus)

Stiff Time-step Integrator



Thermal fluctuations

Particle force

Stiff Time-step Integrator

Approximate by constant force

Integration by exponential factor (ito calculus)

Ito calculus yields Gaussian with



Fluid Integrator

• unconditionally stable.

• accuracy depends only on structure force approximation (otherwise exact).

• requires prior knowledge of Г.

• method viable only if efficient to compute           .

• viable for uniform meshes (FFTs). 

Integration by exponential factor (ito calculus)

 is Gaussian with

,

Stiff Time-step Integrator



Structure equations

Fluid equations

(incompressibility)

(particle force)

(thermal force)

(viscous damping)

t

X
X

t

Integrate structure dynamics (ito calculus)

Stiff Time-step Integrator



Structure Integrator

Integrate structure dynamics (ito calculus)

Integrated fluctuating fluid velocity

is a Gaussian with

is correlated with 

• stability depends now on structure forces.

• accuracy depends on 

• fluid sampling approximation X(t) ~ X(0) and structure force approximation.

• method viable only if efficient to compute exponentials.

• viable for uniform meshes (FFTs). 

Stiff Time-step Integrator



Fluid Integrator

• method viable only if efficient to compute exponentials.

• viable for uniform meshes (FFTs). 

• under-resolves fluid mode dynamics and fluctuations.

• time-step limited by structure’s motions.

Summary : Stiff Integrator 

 is Gaussian with

,

Structure Integrator

is a Gaussian with

is correlated with 



Validation of Numerical Methods
diffusion velocity autocorrelation equilibrium 

Validation

• Diffusivity of under-resolved particles correct.

• Velocity auto-correlation has t-3/2 tail (Adler & Wainright 1950),

• Auto-correlation persists from hydrodynamic “memory.”

• Equilibrium configurations have Gibbs-Boltzmann statistics.

• Can ideas be extended to other coupling types and regimes?



Generalization : Stochastic Eulerian Lagrangian Methods

Thermal fluctuations

Structure

Fluid

Atzberger 2011 



Adjoint condition

Conservation of energy

Conservation of momentum

Coupling Operators

• Energy conserved  coupling operators are adjoints!

• Useful for deriving coupling operators.

“integrates to one.”

(overdamped limit)



Coupling operators

Peskin delta-function

Immersed Boundary Method



Coupling Operators based on Faxen Relations

Faxen Kinematic Relations Γ :

Adjoint Condition  Λ :



Coupling Operators based on Faxen Relations

Excellent agreement for r > 2a !



Numerical Stiffness

Fluid Modes Particle Diffusion

Time-scales

t

Z
t

λ = 10nm : τ = 10-3ns

λ = 1000nm : τ = 10ns

Sources of stiffness

• In SELM additional sources of stiffness from 

• microstructure inertia 

• fluid-structure slip  

• Thermal fluctuations also excite coupling modes and all fluid modes.

• Elasticity of microstructures.

• Equilibration time-scales of system vary over wide range.

Two approaches

• Develop stiff stochastic time-step integrators (as for SIBM).

• Perturbation analysis of SPDEs : reduced descriptions.



Stochastic Reduction

Backward-Kolomogorov PDE: 

Atzberger & Tabak 2015 

Stochastic differential equation: 

Split operator into “slow” and “fast” parts:

ε  0 : compare orders

Perturbation Analysis:

Reduced dynamics:

,

invariant distribution

,

average drift part remainder

leading order dynamics.



Fluid-structure dynamics:

Microstructure density matched with fluid

Fluid-Structure Equations:

Microstructure-fluid stress balance

Fluid-Structure Equations:

Microstructure-fluid no-slip coupling (S-Immersed-Boundary)

Summary of regimes

Atzberger & Tabak 2015 

Thermal Fluctuations: Thermal Fluctuations:

Structure dynamics:

Fluid dynamics:

Thermal Fluctuations

Stochastic Eulerian Lagrangian Method (SELM)

• Structure momentum no longer tracked.

• Removes a source of stiffness.
• Non-conjugate Hamiltonian formulation yields metric-factor in phase-space.

• Structure dynamics no-longer inertial. 

• Removes additional sources of stiffness.

• Regime of the Stochastic Immersed Boundary Method.

• Phase-space metric reflected in the drift term.

• Fluid momentum no longer tracked. 

• Balance of hydrodynamic stresses with elastic stresses.

• Removes additional sources of stiffness.

• Regime of the Stokesian-Brownian Dynamics (Brady 1980, McCammond 1980’s).

• Phase-space metric reflected in the drift term.

Thermal Fluctuations:
Phase space compressibility (p,X).



Adaptive Meshes

• Thermal fluctuation propagation pose challenges for non-uniform discretizations.

• Dissipative numerical operators need to be compatible stochastic driving fields.

• Additional time-scales arise from the microstructure – fluid momentum coupling.

• We developed Finite Element Methods + Stochastic Iterative Methods for SELM.

Fluid dynamics Structure dynamics

Atzberger, Plunkett, Hu, Siefert 2014 



Fluidics Transport
Fluidic Devices Electrokinetics Geometry / Confinement

Fluidic Devices

• Developed to miniaturize and automate many laboratory tests, diagnostics, characterization. 

• Hydrodynamic transport at such scales must grapple with dissipation / friction.

• Electrokinetic effects utilized to drive flow.

Key Features

• Large surface area to volume.

• Ionic double-layers can be comparable to channel width.

• Brownian motion plays important role in ion distribution and analyte diffusion across channel.

• Hydrodynamic flow effected by close proximity to walls or other geometric features.

• Ionic concentrations often in regime with significant discrete correlations /density fluctuations.

Challenges

• Develop theory and methods beyond mean-field Poisson-Boltzmann theory.

• Methods capable of handling hydrodynamics, fluctuations, geometry/confinement.



Stochastic Iterative Methods

Stochastic iteration

Choice related to target covariance C by

Autocorrelation in the sampler satisfies

Gauss-Siedel iterations (Goodman & Sokal 1986)

Preconditioners improve decorrelations (multigrid , cg).

(Atzberger & Plunkett  2014)



Stochastic Multigrid

S-Gauss-Siedel S-Multigrid

~100 iterations ~ 10 iterations

~108 visitations ~106 visitations

-3x10-3 rate exp -1x10-1 rate exp

Error < 1% 

2014 Atzberger & Plunkett



Summary of Solvers

(Atzberger & Plunkett  2014)

Solvers Developed
• Compatible stochastic discretizations developed for SELM (F-D, G-B).

• Finite Volume / Spectral / Finite Element

• Stochastic field generation methods

• Factorization methods.

• Fast Fourier Transforms (FFTs).

• Stochastic Iterative Methods (multigrid, cg).

• Complex geometries and spatial adaptivity.

• Stiff numerical time-step integrators.

• Stochastic reduction analysis.  

• Open source software package.
http://atzberger.org

(more on this later)



Conclusions

Recent Students / Post-docs

• B. Gross

• J. K. Sigurdsson

• Y. Wang

• P. Plunkett

• G. Tabak

• M. Gong

• I. Sidhu 
More information: http://atzberger.org/

Funding
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Summary

• Stochastic Eulerian Lagrangian Method (SELM) for fluctuating hydrodynamic descriptions of mesoscale systems.

• SELM incorporates into traditional hydrodynamic and CFD approaches the role of thermal fluctuations.

• Developed both coarse-grained and continuum approaches for soft-materials and fluidics.

• Many applications: polymeric fluids, colloidal systems, lipid bilayer membranes, electrokinetics, fluidics. 

• Open source package in LAMMPS MD for SELM simulations: http://mango-selm.org/

Coarse-Grained Lipid Models

Fluctuating Hydrodynamics Approaches

Continuum Mechanics of Bilayer Membranes        

Fluctuating Hydrodynamics Approaches
Hybrid Descriptions for Fluidics

Fluctuating Hydrodynamics Approaches 

http://mango-selm.org/

SELM Fluctuating Hydrodynamics 

Software Packages 
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• N. Trask (Brown / Sandia)
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