Midterm Exam:
Professor: Paul J. Atzberger
Introduction to Numerical Analysis, 104A
July 14th, 2009

Scoring:

Problem1: 2.5

Problem2: 2.5

Problem3: 2.5

Problem4: 2.5

Directions: Answer each question carefully and be sure to show all of your work. You are permitted to use a calculator but please be sure to show intermediate steps in your calculations. If you have any questions please feel free to ask.
Problem 1: Compute to four decimal places the absolute and relative errors when approximating \(p \) by the value \(p^* \). Also, state the number of significant digits.

a) \(p = \pi \) by \(p^* = 3.1416 \)

\[
\varepsilon_{abs} = |p^* - p| = 7.3464 \times 10^{-6}
\]

\[
\varepsilon_{rel} = \frac{|p^* - p|}{|p|} = 2.3354 \times 10^{-6}
\]

Six significant digits.

b) \(p = e^\pi \) by \(p^* = 1157/50 \)

\[
\varepsilon_{abs} = |p^* - p| = 6.9263 \times 10^{-4}
\]

\[
\varepsilon_{rel} = \frac{|p^* - p|}{|p|} = 2.9931 \times 10^{-5}
\]

Five significant digits.
Problem 2: In this problem we shall use k-digit-chopping to model the role of floating point arithmetic and the accuracy of numerical values computed using different algorithms. As a model problem, consider 2-digit-chopping for the number representation and arithmetic used to compute the numerical value p^* which is suppose to approximate p. Consider each of the formulas given below. Specifically state: (i) the final numerical value, (ii) the number of significant digits in your final solution, and (iii) for this particular calculation of p, which formula is to be preferred (has smaller error).

Formula 1: $p_1^* = ((e^1 \cdot \pi + \sqrt{2} \cdot \pi) + e^1 \sqrt{8}) + 4$

Formula 2: $p_2^* = (\sqrt{8} + \pi) \cdot (\sqrt{2} + e^1)$

To high precision the solution is given by $p = 24.67107921715017$.

\[
\begin{align*}
\epsilon_1 & \rightarrow 2, 7, \pi \rightarrow 3, 1, \sqrt{2} \rightarrow 1, 4, \sqrt{8} \rightarrow 2, 8 \\
e^1 \cdot \pi & \rightarrow (2, 7) \cdot (3, 1) \rightarrow 8, 3 \\
\sqrt{2} & \rightarrow (1, 4) \cdot (3, 1) \rightarrow 4, 3 \\
e^1 \cdot \sqrt{8} & \rightarrow (2, 7) \cdot (2, 8) \rightarrow 7, 5 \\
(e^1 \cdot \pi + \sqrt{2} \cdot \pi) & \rightarrow (8, 3) + (4, 3) \rightarrow 12 \\
((e^1 \cdot \pi + \sqrt{2} \cdot \pi) + e^1 \cdot \sqrt{8}) & \rightarrow 12 + 7, 5 \rightarrow 19 \\

p_1^* & = 12, 3 \\
\varepsilon_{rel} & = \frac{|p_1^* - p|}{|p_1|} = 6, 7734 \times 10^{-2}, \text{ one significant digit}
\end{align*}
\]

\[
\begin{align*}
\sqrt{8} + \pi & \rightarrow (2, 8) + (3, 1) \rightarrow 5, 9 \\
\sqrt{2} + e^1 & \rightarrow (1, 4) + (2, 7) \rightarrow 4, 1 \\
(\sqrt{8} + \pi) \cdot (\sqrt{2} + e^1) & \rightarrow (5, 9) \cdot (4, 1) \rightarrow 4 \\

p_2^* & = 4 \\
\varepsilon_{rel} & = \frac{|p_2^* - p|}{|p_1|} = 2, 7962 \times 10^{-2}, \text{ two significant digits}
\end{align*}
\]

Formula 2 is more precise.
Problem 3: For the following fixed point iteration methods $x_{n+1} = g(x_n)$ determine the fixed point and the rate of convergence. In particular, state if the method converges at a rate which is linear, quadratic, or higher order.

a) $g(x) = x - \frac{1}{100}(x^3 - x)$, with $|x_0| < 1$.

Fixed Points: $x^* = 0, x^* = 1, x^* = -1$.

Let $e_k = x_k - x^*$ then.

$$e_{k+1} = x_{k+1} - x^* = g(x_k) - g(x^*) = g'(x^*) (x_k - x^*) + \frac{1}{2} g''(\xi) (x_k - x^*)^2$$

$x^* = 0$: $g'(0) = 1 - \frac{1}{100} (3 \cdot 0 - 1) = 1 + \frac{1}{100} = \frac{101}{100} > 1$

$e_{k+1} = \left(\frac{101}{100}\right) e_k + \frac{1}{2} g''(\xi) e_k^2$, For e_k small we see that $e_{k+1} \leq \left(\frac{101}{100}\right) e_k$ which shows that iteration does not converge to $x^* = 0$ (since $\frac{101}{100} > 1$).

$x^* = -1$: $g'(-1) = 1 + \frac{2}{100} = \frac{102}{100} > 1$, does not converge to this f. pt.

$x^* = 1$: $g'(1) = 1 - \frac{3}{100} = \frac{97}{100} < 1$, will converge provided x_0 suff. close to x^*, Rate of convergence is linear since $g'(1) \neq 0$.

b) $g(x) = x - \frac{(x^2 - 1)}{2x}$, with $|x_0| < 1$.

Fixed Points: $x^* = 1, x^* = -1$.

$g'(x) = 1 - \frac{2x}{2x} + \frac{(x^2 - 1)(x)}{(2x)^2} = \frac{(x^2 - 1)}{2x^2}$

$g''(x) = \frac{2x}{2x^2} - \frac{2(x^2 - 1)}{2x^2} = \frac{1}{x} - \frac{(x^2 - 1)}{x^3}$

$$e_{k+1} = g(x_k) - g(x^*) = g'(x^*) e_k + \frac{1}{2} g''(x^*) e_k^2 + \frac{1}{6} g'''(\xi) e_k^3$$

$x^* = 1$: $g'(1) = g'(1) = 0$, $g''(1) = 1$, for e_k suff. small $e_{k+1} \leq \frac{1}{2} e_k^2$, so provided x_0 starts sufficiently close to x^* the convergence is quadratic.

$x^* = -1$: (follows similarly).
Problem 4: For the given data points compute the Lagrange interpolating polynomial of degree three using the method of Divided Differences. State your answer in terms of a polynomial of the form \(P(x) = a_0 + a_1(x - x_0) + a_2(x - x_0)(x - x_1) + a_3(x - x_0)(x - x_1)(x - x_2) \).

a) Consider the data given by \((x_k, f(x_k)) : (-2, -2), (-1, -1), (1, -1), (2, -2) \).

\[
\begin{array}{cccccc}
X_k & F[X_k] & F[X_k, X_{k+1}] & F[X_k, X_{k+1}, X_{k+2}] & F[X_k, X_{k+1}, X_{k+2}, X_{k+3}] \\
-2 & -2 & 1 & & \\
-1 & -1 & & -1 & \\
1 & -1 & & -1 & 0 \\
2 & 4 & & & \\
\end{array}
\]

\[
P(x) = -2 + (x - x_0) + \frac{-1}{3} (x - x_0)(x - x_1)
\]

b) Consider the data given by \((x_k, f(x_k)) : (-2, 4), (-1, 1), (1, 1), (2, 4) \).

\[
\begin{array}{cccccc}
X_k & F[X_k] & F[X_k, X_{k+1}] & F[X_k, X_{k+1}, X_{k+2}] & F[X_k, X_{k+1}, X_{k+2}, X_{k+3}] \\
-2 & 4 & -3 & & \\
-1 & 1 & & 0 & \\
1 & 1 & & 3 & \\
2 & 4 & & & \\
\end{array}
\]

\[
P(x) = 4 + -3(x - x_0) + (x - x_0)(x - x_1)
\]