1. Consider a random variable X that is non-negative satisfying the inequality $\Pr[X > t] \leq c \exp(-2mt^2)$ for all $t > 0$. Show that $\mathbb{E}[X^2] \leq \log(c)/2m$. Hint: Do this by using that $\int_0^\infty \Pr[X^2 > t^2] dt = \int_u^\infty \Pr[X^2 > t^2] dt + \int_u^\infty \Pr[X^2 > t^2] dt$ for any choice of $u > 0$.

2. Consider a game where we see coin flips and need to decide which of two coins generated the data. Consider the case when the coins have probabilities of heads $p_A = 1/2 + \gamma$ and $p_B = 1/2 - \gamma$ with $\gamma = 0.1$. Suppose we use the strategy of attributing the coin based on a sample of m flips if we saw that most were heads or most were tails. At most how many coin tosses m do we need to observe so that our strategy would identify the correct coin 99% of the time? Hint: Use Hoeffding’s Inequality to get an upper bound on m so that $\Pr[|\frac{1}{m}S_m(i) - p_i| \geq t] \leq 2 \exp(-2t^2m) < \delta = 0.01$, where $i \in \{A, B\}$.

3. Consider a family of functions $f^{(m)}: \mathcal{X}^m \to \mathbb{R}$ on a sample space \mathcal{X} and a sequence c_i with $\sum_{i=1}^\infty c_i^2 < \infty$. Suppose that $f^{(m)}$ has bounded dependence on parameters in the sense

$$|f^{(m)}(x_1, \ldots, x_i, \ldots, x_m) - f^{(m)}(x_1, \ldots, x^*_1, \ldots, x_m)| \leq c_i.$$ (1)

For short-hand we denote $f(s) = f^{(m)}(x_1, \ldots, x_i, \ldots, x_m)$.

Consider the case when $f^{(m)} = (1/m) \sum_{k=1}^m X_k$ for i.i.d random variables $X_i \in \mathcal{X}$ with $|X_i| \leq C$. Show this has bounded dependence. How many samples m do we need so that the values $f(S)$ and its mean value $\mathbb{E}[f(S)]$ are within the distance 0.1 and this occurs 99% of the time? In other words, establish the following bound and find for what m we have

$$\Pr[|f(S) - E[f(S)]| \geq \epsilon] \leq 2 \exp \left(-2\epsilon^2/\sum_{i=1}^m c_i^2 \right) < \delta,$$ (2)

where $\delta = 0.01$ and $\epsilon = 0.1$. Hint: Use McDiarmid’s Inequality with $c_i = C/i$.

4. Consider k Nearest Neighbor (k-NN) classifiers. Suppose the input data space has features from the unit cube in d-dimensional space and there are two classes we want to distinguish. Suppose in order to capture well the classes we need for any given input x a prototype within a distance at most ϵ. Give a lower bound on the number m of training samples (prototypes) sufficient to ensure this distance requirement holds. Consider the case here of the Euclidean distance. How does the number m of prototypes scale with dimension d? How many samples m do you need when $\epsilon = 10^{-1}$ and $d = 100$? Do you expect in general for k-NN to work well if there are a lot of features and you only use Euclidean distance?

5. Suppose for a data point x_0 in d dimensional space the conditional probability of a neighboring data point X is distributed uniformly within the unit sphere. Compute the probability density of $\rho(r)$ where $\Pr\{r_1 \leq |X - x_0| \leq r_2\} = \int_{r_1^2}^{r_2^2} \rho(r)dr$. Show as $d \to \infty$ for any $\epsilon > 0$ that $\Pr\{1 - \epsilon \leq |X - x_0| \leq 1\} \to 1$. Give an upper bound on $|\Pr\{1 - \epsilon \leq |X - x_0| \leq 1\} - 1|$ in
terms of ϵ and d. This result shows that when d corresponds to a high dimensional space we have that the neighboring data points tend to distribute near to the surface of the sphere. For $d = 100$ what is the probability that the neighbor X for x_0 is within the distance $r = 10^{-1}$? For $\epsilon = 10^{-1}$ how large must d be for $\Pr\{1 - \epsilon \leq |X - x_0| \leq 1\} = 99\%$? Explain briefly what implications this might have for k-NN and other methods.