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Hypothesis Class Complexity 

Motivations

Hypothesis classes are typically infinite |H| = ∞.  

Can we still efficiently learn concepts c?

Yes, recall interval problem and axis-aligned rectangle problem was infinite but 

PAC-Learnable.

We need a notion of complexity for hypothesis class H beyond cardinality |H|.

Ultimately, we aim to obtain bounds on the generalization error in terms of the 

empirical risk.

Obstacle Navigation

robot

wall wall

Building Identification

Google Maps: UCSB South Hall

Picture Annotation, Facial Recognition
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Rademacher Complexity

Notation and definitions:

X input space, Y output space

C concept class, concept c(x): X → Y

H hypothesis class, hypothesis h(x): X → Y.

Issue: Hypothesis classes are typically infinite |H| = ∞.  Can we still efficiently learn concepts c?

Recall: Axis-aligned rectangle problem has infinite |H| = ∞ but proved is PAC-Learnable.

Need a notion of complexity for hypothesis class H beyond cardinality |H|.

Let loss function be denoted L: Y x Y  → ℝ and let G be family of loss functions associated with H.

Definition: The empirical Rademacher complexity of a family of functions G with g(z): Z → [a,b] ⊂ ℝ and m 

fixed samples S = (z1,z2,…,zm)  is given by 

, where σ = (σ1, σ2, …, σm) are uniform random variables in {-1,+1}.

Hans Rademacher

1892-1969
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Rademacher Complexity

Notation and definitions:

X input space, Y output space

C concept class, concept c(x): X → Y

H hypothesis class, hypothesis h(x): X → Y.

Definition: The empirical Rademacher complexity of a family of functions G with g(z): Z → [a,b] ⊂ ℝ and m 

fixed samples S = (z1,z2,…,zm)  is given by 

Definition: The Rademacher complexity of a family of functions G on m samples is

• Averaged sum term can be viewed as an inner-product: ∑σi·g(zi) = σ · gS.  

• Rademacher complexity gives a measure of the “richness” of family G in approximating random functions.

, where σ = (σ1, σ2, …, σm) are uniform random variables in {-1,+1}.

.    Gives a measure of the “correlation” between gS and σ .

Hans Rademacher

1892-1969
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Rademacher Complexity

Example: Rademacher Complexity for family of functions G = ሼg z = 𝑔0 ∈ −c, 𝑐 } (constants). 

Definition: The empirical Rademacher complexity of a family of functions G with 

g(z): Z → [a,b] ⊂ ℝ and m fixed samples S = (z1,z2,…,zm)  is given by 

, where σ = (σ1, σ2, …, σm) are random in set {-1,+1}.
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Rademacher Complexity
Notation and definitions:

X input space, Y output space

C concept class, concept c(x): X → Y

H hypothesis class, hypothesis h(x): X → Y.

Theorem: (expectation bounds g: Z → [0,1]) For family of loss functions G into [0,1] and any 𝛿 > 0 we have 

with probability 1 − 𝛿 that the following bounds hold uniformly for any 𝑔 ∈ 𝐺, 

Significance: The expected value E[g] can be bounded by the observed empirical average.  This differs at 

most by the Rademacher Complexity plus a term vanishing as m → ∞.

We shall use for bound on the generalization error by the empirical risk.

,  (Rademacher bound)

,  (Empirical Rademacher bound)

Hans Rademacher

1892-1969

empirical 
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Rademacher Complexity
Notation and definitions:

X input space, Y output space

C concept class, concept c(x): X → Y

H hypothesis class, hypothesis h(x): X → Y.

Definition: The Empirical Rademacher Complexity of a hypothesis class H is

Definition: The Rademacher Complexity of a hypothesis class H is

Lemma: For the family of 0-1 loss functions                                                    we have

• Allows for working more directly with the hypothesis space in constructing bounds.

,  (note: we take h ∈ {-1,1})

,  (note: we take h ∈ {-1,1})

Hans Rademacher

1892-1969
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Rademacher Complexity
Notation and definitions:

X input space, Y output space

C concept class, concept c(x): X → Y

H hypothesis class, hypothesis h(x): X → Y.

Theorem: (bound on generalization error for 0-1 loss) For 0 - 1 loss                                                  and any 

𝛿 > 0 we have with probability 1 − 𝛿 that the following bounds hold uniformly for any 𝑔 ∈ 𝐺, 

Significance: The generalization error can be bounded by the observed empirical risk.  This differs most 

by the Rademacher Complexity plus a term vanishing as m → ∞.

• This shows we can use Rademacher complexity in place of |H| to obtain bounds on generalization error

to obtain scaling in m.

,  (Rademacher bound)

,  (Empirical Rademacher bound)

Hans Rademacher

1892-1969

empirical 

estimate

model 

complexity

sampling 

confidence
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Rademacher Complexity

Example: Rademacher Complexity for family of functions H = ሼh x = ℎ0 ∈ −c, 𝑐 ,𝑐 = 1} (constants). 

Theorem: (bound on generalization error for 0-1 loss) For 0 - 1 loss                                                            

and any 𝛿 > 0 we have with probability 1 − 𝛿 that the 

following bounds hold uniformly for any 𝑔 ∈ 𝐺, 

,  (Empirical Rademacher bound)

(from previous derivation)
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Rademacher Complexity
Theorem: (bound on generalization error for 0-1 loss) For 0 - 1 loss                                                            

and any 𝛿 > 0 we have with probability 1 − 𝛿 that the                                            

following bounds hold uniformly for any 𝑔 ∈ 𝐺, 

Theorem (Massert’s lemma): Let 𝐴 ⊆ ℝ𝑛 be a finite set of vectors with 𝑟 = max
𝑎∈𝐴

𝑎 2 then   

Hypothesis class H and m samples consider the set A = ℎ 𝑥1 , ℎ 𝑥2 , … , ℎ 𝑥𝑚 ∶ ℎ ∈ H .

Finite hypothesis class we have 𝐴 ≤ H .

Note: Result similar to prior complexity bound for finite consistent case

Massert’s Lemma significantly generalizes this result since |A| is now allowed to grow with m for H = ∞.

Alternatively, combinatorial measures like complexity |A| may be easier to estimate than Rademacher complexity.

,  (Empirical Rademacher bound)
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Growth Function
Definition: The growth function Π𝐻: ℕ → ℕ for a hypothesis class H is defined as

Π𝐻 𝑚 = max
𝑥1 ,𝑥2,…,𝑥𝑚 ⊆𝑋

ሼ ℎ 𝑥1 , ℎ 𝑥2 , … , ℎ 𝑥𝑚 : ℎ ∈ H}

Counts maximum number of distinct m-vectors ℎ 𝑥1 , ℎ 𝑥2 , … , ℎ 𝑥𝑚 that can be generated                            

by the hypothesis class H.  

Upper bound on the number of distinct ways m points can be classified by H.

Example: X = {-2,-1,1}, Y = {-1,1}, H = {h1(x) = sign(x), h2(x) = sign(x – 1.5)}, h1: -1,-1,1; h2: -1,-1,-1.  For m=2, 

most variation for x1=-1, x2=1, with Π𝐻 2 = −1,+1 , −1,−1 = 2. In general, we have Π𝐻 𝑚 = 2.

Remark: For finite hypothesis class always have Π𝐻 𝑚 ≤ H . 

Example: X = ℝ, Y = {-1,1}, H = {h(x) = sign(p(x)) with p(x) polynomial degree n}.                                                        

Now H = ∞ and we have Π𝐻 𝑚 ≤ r(m)2n+1, r = poly.  Follows from Lagrange interpolation.

Example: X = ℝ, Y = {-1,1}, H = {h(x) = sign(x- a) with a ∈ ℝ} half-space classifiers.                                                   

Now H = ∞ and we have Π𝐻 𝑚 = 𝑚 + 1. h(x)

+1

-1

polynomial classifier

h(x)

+1

-1

linear classifier
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Growth Function
Definition: The growth function Π𝐻: ℕ → ℕ for a hypothesis class H is defined as

Π𝐻 𝑚 = max
𝑥1 ,𝑥2,…,𝑥𝑚 ⊆𝑋

ሼ ℎ 𝑥1 , ℎ 𝑥2 , … , ℎ 𝑥𝑚 : ℎ ∈ H}

• Counts maximum number of distinct m-vectors ℎ 𝑥1 , ℎ 𝑥2 , … , ℎ 𝑥𝑚 that can be generated                            

by the hypothesis class H.  

• Upper bound on the number of distinct ways m points can be classified by H.

Theorem (Massert’s Lemma): The Rademacher complexity is bounded by the growth function as

Theorem (bound on generalization error for 0-1 loss): For any 𝛿 > 0 we have with probability 1 − 𝛿 that the 

following bounds hold uniformly for any h ∈ H, 

Note: Bound is now distribution D independent depending only on combinatorial features of H.
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VC-Dimension
Definition: For a sample set S = (x1,x2,…,xm) of size m, a dichotomy is one of the                                          

possible ways to label the set (y1,y2,…,ym).

Definition: A set S of size m is said to be shattered by the hypothesis class H

if for each dichotomy y there is an ℎ ∈ H so that (h(x1) = y1, h(x2) = y2,…, h(xm) = ym).

Example: X = {-2,-1,1}, Y = {-1,1}, H = {h1(x) = sign(x), h2(x) = sign(x – 1.5)}.  

h1: -1,-1,1; h2: -1,-1,-1.  Now for x1 = -2 with dichotomy y1 = 1 can not be obtained from either h1 or h2

this hypothesis class fails to shatter even Xm for m = 1.

Example: X = ℝ, Y = {-1,1}, H = {h : h x = sign(𝑥 − 𝑎) ∙ sign(𝑏 − 𝑥) for some a, 𝑏 ∈ ℝ} the set of intervals [a,b]. 

Now for m = 2 for any two points x1, x2 ∈ ℝ we have H shatters X2 by taking [a,b] to contain points 

with y𝑖 = 1 and exclude any point with y𝑖 = -1.  

However, for m ≥ 3 we can not match all dichotomies.  Take for example  𝑥1 < 𝑥2 < 𝑥3 with the 

labels y1 = +1, y2 = −1, y3 = +1 then there is no interval containing both x1 and x3 but excluding x2.  

Therefore, there exists dichotomies when m = 3 that no ℎ ∈ H can classify correctly.

Vladimir Vapnik Alexey Chervonenkis
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VC-Dimension
Definition: The Vapnik-Chervonenkis dimension is defined as

𝑉𝐶𝑑𝑖𝑚(H) = maxሼ𝑚 ∶ Π𝐻 𝑚 = 2𝑚}

• The VC-dimension measures the size of the largest set that can be shattered by the                            

hypothesis class H.

• When 𝑉𝐶𝑑𝑖𝑚(H) = 𝑑 this means there exists a set of size d that can be fully shattered by H.

• For finite |H|< ∞ hypothesis space we have 𝑉𝐶𝑑𝑖𝑚 H ≤ log(|H|).

Example: X = ℝ, Y = {-1,1}, H = {h : h x = sign(𝑥 − 𝑎) ∙ sign(𝑏 − 𝑥) for some a, 𝑏 ∈ ℝ} the set of intervals [a,b]. 

For m = 2 for any two points x1, x2 ∈ ℝ we have H shatters X2 by taking [a,b] to contain points with y𝑖
= 1 and exclude any point with y𝑖 = -1.  

However, for m ≥ 3 we can not match all dichotomies.  Take for example  𝑥1 < 𝑥2 < 𝑥3 with the 

labels y1 = +1, y2 = −1, y3 = +1 then there is no interval containing both x1 and x3 but excluding x2.  

Therefore,𝑉𝐶𝑑𝑖𝑚(H) = 2.

Example: X = ℝ, Y = {-1,1}, H = {h : h x = sign(p(x)) polynomial p x of degree n}. We have H shatters Xm

for 𝑚 = 𝑛+ 1.  This follows from Lagrange interpolation.  However, can not shatter for m > n + 1,                             

so d = 𝑉𝐶𝑑𝑖𝑚 H = 𝑛 + 1.

Vladimir Vapnik Alexey Chervonenkis
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VC-Dimension
Definition: The Vapnik-Chervonenkis dimension is defined as

𝑉𝐶𝑑𝑖𝑚(H) = maxሼ𝑚 ∶ Π𝐻 𝑚 = 2𝑚}

• The VC-dimension measures the size of the largest set that can be shattered by the                            

hypothesis class H.

• When 𝑉𝐶𝑑𝑖𝑚(H) = 𝑑 this means there exists a set of size d that can be fully shattered by H.

Theorem (bound on generalization error for 0-1 loss): When 𝑉𝐶𝑑𝑖𝑚 H = 𝑑, for any 𝛿 > 0 we have with 

probability 1 − 𝛿 that the following bounds hold uniformly for any h ∈ H, 

• Note the ratio of m/d governs the bound.  This corresponds to the overall form

• This shows we need sample size m >> d to obtain small bound.  Provides useful complexity when |H| = ∞.

Vladimir Vapnik Alexey Chervonenkis
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VC Dimension
Example: 𝑉𝐶𝑑𝑖𝑚(H) axis-aligned rectangles.

Claim: 𝑉𝐶𝑑𝑖𝑚 H = 4.

Two steps:

(i) lower bound 𝑉𝐶𝑑𝑖𝑚(H) ≥ 4

(ii) upper bound 𝑉𝐶𝑑𝑖𝑚(H) < 5

Lower bound: Place 4 points into a diamond configuration.                                                                          

All cases can clearly be handled.

Upper bound: Place 5 points with 4 on rectangle and the 5th point in the interior.                                                        

No axis-aligned rectangle that can correctly classify these points for all labels.                                       

Hence, 𝑉𝐶𝑑𝑖𝑚(H) < 5.

Characterizes the complexity of the infinite dimensional hypothesis space H.

VC-dimension bounds provide a sampling complexity for learning the axis-aligned rectangle.

Building Identification

Google Maps: UCSB South Hall

Case for 5 points

Picture Annotation, Facial Recognition

usplash

Cases for 4 points

Mori 2012
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Example: Learning separating hyperplane in ℝN (related to SVM).

For data {(xi,yi)} with xi ∈ ℝN and yi ∈ {-1,1}. Ideally, find w, b so                                                                                           

that sign(𝒘𝑇𝒙𝑖 + 𝑏) = 𝑦 ሶ𝑖.

Hypothesis class:

H = {h: h 𝐱 = sign(𝐰T𝐱 + b) with 𝒘 ∈ ℝN, b ∈ ℝ}.

What is the 𝑽𝑪𝒅𝒊𝒎 H ?

Claim: 𝑉𝐶𝑑𝑖𝑚 H = N + 1 

Two steps:

(i) lower bound 𝑉𝐶𝑑𝑖𝑚 H ≥ N + 1.

(ii) upper bound 𝑉𝐶𝑑𝑖𝑚 H < N + 2. 

Lower bound: For N + 1 points, let x0 = (0,0,…,0) origin, 𝐱𝑖 = 0,… 1,… 0, 0 = 𝐞𝐢 , with ith component one.  

For any labels yi∈ {−1,1}, let 𝐰 = y1, y2, … , y𝑁 and 𝑏 =
𝑦0

2
which defines the classifier 

h 𝐱i = sign(𝐰T𝐱𝐢 + b) = sign 𝑦𝑖 +
𝑦0

2
= 𝑦𝑖 . This verifies any N + 1 labels can be classified correctly. 

Hyperplanes H shatters this N + 1 point-set so 𝑉𝐶𝑑𝑖𝑚 H ≥ N+1. 

VC-Dimension: Hyperplanes

features

fe
a
tu
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Linear Classifier

Image Database
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Example: Learning separating hyperplane in ℝN (related to SVM).

For data {(xi,yi)} with xi ∈ ℝN and yi ∈ {-1,1}.  Ideally, find w, b so                                                                                           

that sign(𝒘𝑇𝒙𝑖 + 𝑏) = 𝑦 ሶ𝑖.

Upper bound: 𝑉𝐶𝑑𝑖𝑚 H < N+2.  Must show for any N + 2                                                                                    
points for some labels there is no hyperplane classifier. 

Theorem (Radon): In ℝN a set of N + 2 points always can be                                                                       

partitioned into two disjoint subsets X1 and X2 that have                                                                                 

intersecting convex hulls 𝐶(X1) ረC(X2)≠∅ .

Implication: Let labels of X1 be say +1 and X2 be -1 then                                                                                                  

there is no separating hyperplane (it would separate the convex hulls).

Proof (Radon): Consider the set of N + 1 linear equations in N + 2 unknowns:                   and 

Non-trivial null-space so equations have non-zero solution 𝛽i ,… ,𝛽d+2 with           .  Let 𝐼1 = ሼi : 𝛽i > 0}

and 𝐼2 = ሼi : 𝛽i ≤ 0}, then both non-empty.  Let                                           with                .                                     

We have                                and 
𝛽i1

𝛽
≥ 0, 

−𝛽i2

𝛽
≥ 0, so 𝑥∗ ∈ 𝐶(X1)ረC(X2)≠∅ so convex hulls intersect. ∎

VC-Dimension: Hyperplanes
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Example: Learning separating hyperplane in ℝN (related to SVM).

For data {(xi,yi)} with xi ∈ ℝN and yi ∈ {-1,1}.  Ideally, find w, b so                                                                                           

that sign(𝒘𝑇𝒙𝑖 + 𝑏) = 𝑦 ሶ𝑖.

Hypothesis class:

H = {h: h 𝐱 = sign(𝐰T𝐱 + b) with 𝒘 ∈ ℝN, b ∈ ℝ}.

What is the 𝑽𝑪𝒅𝒊𝒎 H ?

Claim: 𝑉𝐶𝑑𝑖𝑚 H = N + 1 

Shows in separable case that we have bound on generalization error

Turns out we can do even better in bounding sampling complexity for SVM.  Want independent of 
feature dimension N, for bounded features (future lectures).

Will discuss further these results later when we cover Support Vector Machines.

VC-Dimension: Hyperplanes
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VC Dimension: Lower Bounds
Lower Bounds: Given assumptions of PAC-Learning and 𝑉𝐶𝑑𝑖𝑚(H).                                                               
What is lower bound on generalization error given m samples?        

Theorem: Under assumptions of PAC for d = 𝑉𝐶𝑑𝑖𝑚 H > 1 given any learning                                                  
algorithm A there always exists a distribution D and concept 𝑓 ∈ C so that for                                                                                 

m samples

Shows that at least 1% of the time you will always have generalization error                                                            

bigger than 
𝑑− 1

32𝑚
.  

Characterizes the worse-case generalization errors given complexity of H.

Consequence: If 𝑉𝐶𝑑𝑖𝑚 H = ∞ then task is not PAC-Learnable.

Building Identification

Google Maps: UCSB South Hall

Picture Annotation, Facial Recognition

usplash
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VC Dimension: Lower Bounds
Example: Consider hypothesis class of all polynomials 

H = {h: h(x) = sign(p(x)) any polynomial of finite degree}. 

Complexity: 𝑉𝐶𝑑𝑖𝑚 H = ∞ (recall for n degree polynomial VCdim = n+1).                                                   

Consequence: Concepts from H are not PAC-Learnable.  

Why? At least 1% of the time you will always have generalization error                                                            

bigger than 
𝑑− 1

32𝑚
so make 𝑑 = 31.7𝑚+ 1 (since 𝑉𝐶𝑑𝑖𝑚 H = ∞ can take any d > 1) then we have   

Shows no matter how many samples m used, 1% of the time the generalization error is greater than 99%.

Not enough information from finite data alone to distinguish unknown function in H without further 

assumptions (i.e. could miss local variations).  Need other approaches (i.e. regularization, level of smoothness).

Consequence, if 𝑉𝐶𝑑𝑖𝑚 H = ∞ then task is not PAC-Learnable.
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Complexity: Rademacher, Growth Functions, VC-Dimension
Complexity Bounds Theory and Practice

Significance: Complexity measures give some guarantees to assess                     

generalization errors based on observed empirical risk.

In practice, often challenging since models have large complexity and we want to avoid 

overfitting data by only minimizing empirical risk. Training methods often also have 

further regularizations or stochasticity (Kernel-SVM, N-Nets, SGD, Dropout).

Many extensions to the introduced ideas here but PAC + complexity bounds provide a 

good starting point for theory and intuition.

How can we use complexity measures in practice to inform our design of learning 

algorithms, training methods, and assess expected performance? 

Image Classification

Abdellatif Abdelfattah

Forecasting

washingtonpost.com

Support Vector Machines

Clustering Methods

Neural Networks and Deep Learning Generative Methods

GANs

MIT and Boston Dynamics

Robotics and Control
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