# Introduction to Machine Learning

Foundations and Applications

**Paul J. Atzberger**University of California Santa
Barbara



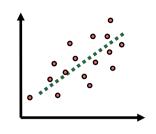


#### Regression

#### Consider

 $y_i = f(x_i) + \epsilon_i$ , where  $f \in \mathcal{F}$  is sampled with  $x \sim \mathcal{D}_{\mathcal{X}}$  and  $\epsilon_i$  is noise with  $\mathbb{E}\left[\epsilon_i\right] = 0$ .

**Task:** From data samples  $S = \{(x_i, y_i)\}_{i=1}^m$  find model  $h \in \mathcal{H}$  so that  $y \sim h(x)$ .

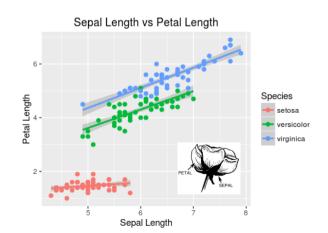


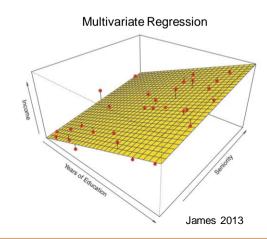
**Linear regression:**  $h(x) = w \cdot x + b$ . **Kernel regression:**  $h(x) = w \cdot \Phi(x) + b$ , with  $k(x_i, x_j) = \langle \Phi(x_i), \Phi(x_j) \rangle$ .

**Linear regression** and variants among the most common.

**Insights from weights w** into how features  $\mathbf{x}_i = (x_i^1, x_i^2, ..., x_i^N)$  contribute to  $y_i$ .







#### Regression

#### Consider

 $y_i = f(x_i) + \epsilon_i$ , where  $f \in \mathcal{F}$  is sampled with  $x \sim \mathcal{D}_{\mathcal{X}}$  and  $\epsilon_i$  is noise with  $\mathbb{E}\left[\epsilon_i\right] = 0$ .

**Task:** From data samples  $S = \{(x_i, y_i)\}_{i=1}^m$  find model  $h \in \mathcal{H}$  so that  $y \sim h(x)$ .

**Loss Function:**  $L(y', y) : \mathcal{Y} \times \mathcal{Y} \to \mathbb{R}$ .

**Examples**:  $L_p$ -loss:  $L(y',y) = ||y'-y||_p^p$ , special case  $L_2$ -loss (least squares)  $L(h(x), f(x)) = ||h(x)-f(x)||_2^2$ .

#### **Generalization Error (Risk):**

$$R(h) = \mathbb{E}_{x \sim \mathcal{D}} [L(h(x), f(x))].$$

#### **Empirical Error (Empirical Risk):**

$$\hat{R}(h) = \frac{1}{m} \sum_{i=1}^{m} \hat{L}(h(x_i), f(x_i)).$$

**Technical Assumption:** We may find it useful to bound the loss functions  $L(y', y) \leq M$ , referred to as **(bounded regression problem)**.

**Example:** Loss  $L(h(x), f(x)) = \min\{\||h(x) - f(x)\||_2^2, M\}$ .

#### Many variants of regression:

- Linear Regression, Kernel Ridge Regression
- Support Vector Regression, LASSO Regression, ...

### Regression: Motivation of Least-Squares

Regression: Consider

$$y_i = f(x_i) + \eta_i$$
, with i.i.d.  $\eta_i \sim \eta(0, \sigma^2) = [Gausssian mean 0, variance  $\sigma_*^2]$ , and  $f(x) = w_*^T x$ .$ 

**Task:** From  $S = \{(x_i, y_i)\}_{i=1}^m$  find model  $h \in \mathcal{H} = \{h \mid h(x) = w^T x\}$ .

**Probabilistic Model:** Predictions of the data use distribution  $\tilde{y}_i = w^T x_i + \eta_i$  with  $\eta_i \sim \eta(0, \sigma^2)$ .

#### **Probability Densities:**

noise: 
$$\rho(\eta) = \left(2\pi\sigma^2\right)^{-1/2} \exp\left(-\frac{\eta^2}{2\sigma^2}\right) \Rightarrow \text{observation: } \rho(y_i \mid x_i, w) = \left(2\pi\sigma^2\right)^{-1/2} \exp\left(-\frac{\left(y_i - w^T x_i\right)^2}{2\sigma^2}\right).$$

For the full data set S we have

$$\rho(y_1,\ldots,y_m\mid x_1,\ldots,x_m;w)=\prod_{i=1}^m\rho(y_i\mid x_i,w)=\left(2\pi\sigma^2\right)^{-m/2}\exp\left(-\frac{\sum_{i=1}^m\left(y_i-w^Tx_i\right)^2}{2\sigma^2}\right)=\underbrace{\mathcal{L}(w|\mathcal{S})}_{\text{Likelihood}}.$$

**Maximum Likelihood Method**: We can estimate  $w_*$  as

$$\tilde{w}^* = \arg \max_{w} \mathcal{L}(w|\mathcal{S}) \ \Rightarrow \ \tilde{w}^* = \arg \min_{w} \frac{1}{m} \sum_{i=1}^{m} (y_i - w^T x_i)^2.$$

This gives Method of Least-Squares.

#### Regression: Bayesian Motivation

#### **Probability of Observations for Model** *w*:

$$\rho(y_1,\ldots,y_m\mid x_1,\ldots,x_m;w)=\prod_{i=1}^m\rho(y_i\mid x_i,w)=\left(2\pi\sigma^2\right)^{-m/2}\exp\left(-\frac{\sum_{i=1}^m\left(y_i-w^Tx_i\right)^2}{2\sigma^2}\right)=\underbrace{\mathcal{L}(w|\mathcal{S})}_{\text{Likelihood}}.$$

#### Bayes Rule for Posterior Distribution over Models w:

$$\Pr\{w|\mathcal{S}\} = \frac{\Pr\{\mathcal{S}|w\}\Pr\{w\}}{\Pr\{\mathcal{S}\}} = \underbrace{\frac{\mathcal{L}(w|\mathcal{S})\Pr\{w\}}{\Pr\{\mathcal{S}\}}}_{\text{evidence}}.$$

**Maximum A Posteriori (MAP) Estimate**: We can estimate  $w_*$  as

$$\tilde{w}^* = \arg\min_{w} - \log\left(\Pr\{w|\mathcal{S}\}\right) \ \Rightarrow \ \tilde{w}^* = \arg\min_{w} \frac{1}{m} \sum_{i=1}^{m} \left(y_i - w^T x_i\right)^2 + \lambda R(w), \ R(w) = -\log\left(\Pr\{w\}\right), \lambda = \frac{2\sigma^2}{m}.$$

**Role of Prior:** For  $\Pr\{w\}$  with  $\rho(w) = \left(2\pi\nu^2\right)^{-1/2} \exp\left(-w^2/2\nu^2\right)$  we can take  $R(w) = w^2$ ,  $\lambda = \frac{\sigma^2}{m\nu^2} \in \mathbb{R}_+$ .

**Bayesian prior** provides regularization R(w) for selection of w (related to "ridge regression" methods).

As  $\nu \to \infty$  the prior becomes increasingly less informative and  $\lambda \to 0$  reducing regularization of least-squares.

#### Bias-Variance Trade-Off: $L_2$ -Risk

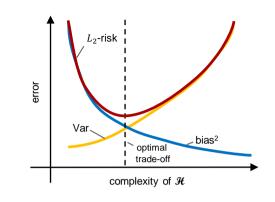
L<sub>2</sub>-Risk: 
$$L(h(x), f(x)) = ||h(x) - f(x)||_2^2$$
 with

 $\mathcal{H} = \{\text{all measurable functions } x \sim \mathcal{D}\}, f \text{ measurable.}$ 

**Optimal Solution:**  $m = \arg\min_{h \in \mathcal{H}} \mathbb{E}_{\mathcal{D}} [L(h(X), Y)]$  is given by

$$m(x) = \mathbb{E}[Y|X=x].$$

Recovers m(x) = f(x) except for set of measure zero  $\sim \mathcal{D}$ .



**Regression:** Consider  $\mathcal{H}$  now more restrictive. Estimate  $m_n(x) \in \mathcal{H}$  from n data samples  $\mathcal{S}_n = \{(x_i, y_i)\}_{i=1}^n$ .

 $L_2$ -error can be expressed as

$$\mathbb{E}\left[|m_{n}(x) - m(x)|^{2}\right] = \mathbb{E}\left[m_{n}^{2}(x) - 2m_{n}(x)m(x) + m^{2}(x)\right] = \mathbb{E}\left[m_{n}^{2}(x)\right] - 2\mathbb{E}\left[m_{n}(x)\right]m(x) + m^{2}(x)$$

$$= \mathbb{E}\left[m_{n}^{2}(x)\right] - (\mathbb{E}\left[m_{n}\right])^{2} + (\mathbb{E}\left[m_{n}\right])^{2} - 2\mathbb{E}\left[m_{n}(x)\right]m(x) + m^{2}(x)$$

$$= \operatorname{Var}\left[m_{n}(x)\right] + (\mathbb{E}\left[m_{n}(x)\right] - m(x))^{2}$$

$$= \operatorname{Var}\left[m_{n}(x)\right] + (\operatorname{bias}\left(m_{n}(x)\right))^{2}.$$

**Bias-Variance Trade-off:** As complexity of  $\mathcal{H}$  increases bias  $\downarrow$  but  $\text{Var} \uparrow$  since more sensitivity to changes in data samples  $\mathcal{S}_n$  drawn.

Generalization: Suggests balancing model accuracy on the training set with complexity to help generalization.

### Curse of Dimensionality

**Sampling on Unit Cube:** Consider samples  $X, X_1, X_2, \ldots, X_n \in [0, 1]^d$  (*d*-dimensional hypercube).

**Minimum Sample Distance:** For n samples, denote the minimum distance between X and nearest sample  $X_i$  by

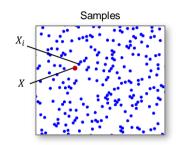
$$d_{\infty}(d,n) = \mathbb{E}\left[\min_{i \in [1,n]} \|X - X_i\|_{\infty}\right]$$

We can express in terms of probability as

$$d_{\infty}(d,n) = \int_{0}^{\infty} \Pr\{\min_{i \in [1,n]} \|X - X_i\|_{\infty} > t\} dt = \int_{0}^{\infty} 1 - \Pr\{\min_{i \in [1,n]} \|X - X_i\|_{\infty} \le t\} dt.$$

The probability of being at most t apart in  $\|\cdot\|_{\infty}$ -norm is

$$\Pr\{\min_{i\in[1,n]} \|X - X_i\|_{\infty} \leq t\} \leq n(2t)^d.$$



**Lower Bound on Distance:** 
$$d_{\infty}(d,n) \geq \int_{0}^{1/2n^{1/d}} 1 - n(2t)^{d} dt = \frac{d}{2(d+1)} \frac{1}{n^{1/d}} \sim n^{-1/d}$$

| samples:           | $n = 10^2$ | $n = 10^3$ | $n = 10^4$ | $n = 10^5$  |
|--------------------|------------|------------|------------|-------------|
| $d_{\infty}(1,n)$  | ≥ 0.0025   | ≥ 0.00025  | ≥ 0.000025 | ≥ 0.0000025 |
| $d_{\infty}(10,n)$ | ≥ 0.28     | ≥ 0.22     | ≥ 0.18     | ≥ 0.14      |
| $d_{\infty}(20,n)$ | ≥ 0.37     | ≥ 0.34     | ≥ 0.30     | ≥ 0.26      |
|                    |            |            |            | Györfi 2002 |

**Consequence:** Shows for n samples, the minimum distance decreases very slowly for large d,  $d_{\infty} \sim n^{-1/d}$ .

**Regression:** Without using assumed structure, regression requires many samples to ensure accuracy.

## Generalization Error Bounds

## Regression: Rademacher Complexity

#### **Notation and definitions:**

 ${\mathcal X}$  input space,  ${\mathcal Y}$  output space

*e* concept class, concept f(x):  $x \to y$ 

 $\mathcal{H}$  hypothesis class, hypothesis h(x):  $\mathcal{X} \rightarrow \mathcal{Y}$ .



**Theorem:** (regression bounds) Consider  $\mathcal{H}$  so that  $|h(x) - f(x)| \le M$  for all  $x \in \mathcal{X}, h \in \mathcal{H}$ , then for any  $p \ge 1$  and any  $\delta > 0$  we have with probability  $1 - \delta$  that the following bounds hold uniformly for  $h \in \mathcal{H}$ ,

$$\mathrm{E}\left[\left|h(x)-f(x)\right|^{p}\right] \leq \frac{1}{m}\sum_{i=1}^{m}\left|h(x_{i})-f(x_{i})\right|^{p} + 2pM^{p-1}\mathfrak{R}_{m}(H) + M^{p}\sqrt{\frac{\log\frac{1}{\delta}}{2m}} \;\;\text{, (Rademacher bound)}$$

$$\mathrm{E}\left[\left|h(x)-f(x)\right|^p\right] \leq \frac{1}{m}\sum_{i=1}^m \left|h(x_i)-f(x_i)\right|^p + 2pM^{p-1}\widehat{\mathfrak{R}}_S(H) + 3M^p\sqrt{\frac{\log\frac{2}{\delta}}{2m}} \quad \text{, (Empirical Rademacher bound)}$$

**Significance:** The expected value of the loss can be bounded by the observed empirical average. This differs at most by the Rademacher Complexity of regression class  $\mathcal{H}$  plus a term vanishing as m  $\rightarrow \infty$ .

We see complexity of the space of hypothesis functions used for the regression effects rate of convergence of the generalization error as  $m \to \infty$ .

Key is to **find bounds** on the regression space **Rademacher complexity**  $\mathcal{R}(H)$ .

### Regression: Pseudo-dimension Bounds and VC-Dimension

**Motivation:** Are there combinatorial bounds similar in spirit to VC-dimension we can use to characterize complexity of regression spaces  $\mathcal{H}$ ?

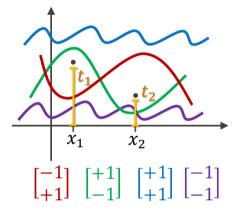
**Definition:** Let G be family of functions  $\mathcal{X} \to \mathbb{R}$ . We say a set  $\{x_1, x_2, ... x_m\}$  is **shattered** by

G if there exists  $t_1, t_2, ..., t_m$  such that

$$\left| \left\{ \begin{bmatrix} \operatorname{sgn} \left( g(x_1) - t_1 \right) \\ \vdots \\ \operatorname{sgn} \left( g(x_m) - t_m \right) \end{bmatrix} : g \in G \right\} \right| = 2^m$$

We call the threshold values  $t_1, t_2, ..., t_m$  the witness to the shattering.

**Definition:** For a family of functions G:  $\mathcal{X} \to \mathbb{R}$  we define the **pseudo-dimension** of G denoted Pdim(G) as the largest m so a set of points is shattered.



Remark: This is related to VC-dim by considering corresponding classifiers

$$\operatorname{Pdim}(G) = \operatorname{VCdim}\left(\left\{(x,t) \mapsto 1_{(g(x)-t)>0} \colon g \in G\right\}\right)$$

**Lemma (hyperplanes)** The pseudo-dimension of hyperplanes in  $\mathbb{R}^N$  is given by

$$Pdim(\{\mathbf{x} \mapsto \mathbf{w} \cdot \mathbf{x} + b \colon \mathbf{w} \in \mathbb{R}^N, b \in \mathbb{R}\}) = N + 1$$

## Regression: Pseudo-dimension Bounds

**Theorem:** If the pseudo-dimension Pdim(G) = d then for any  $\delta > 0$  we have with probability  $1 - \delta$  that the following bounds hold uniformly for any  $h \in \mathcal{H}$ 

$$R(h) \le \widehat{R}(h) + M\sqrt{\frac{2d\log\frac{em}{d}}{m}} + M\sqrt{\frac{\log\frac{1}{\delta}}{2m}}$$

where 
$$G = \{x \to L(h(x), f(x)): h \in H\}, L \leq M$$
.



**Remark:** This gives analogous result as for VC-dimension. This is not tightest bound but gives worst-case guarantees when bounds on Rademacher complexity are difficult.

**Remark:** Hyperplanes in  $\mathbb{R}^N$  (linear regression)  $\mathcal{H} = \{h \mid h(x) = w^T x + b\}$  have d = N + 1.

**Remark:** Note, these bounds are when using only ERM. Alternatively, we also can use regularization and other strategies to select model h(x) (discussed later).

# Linear Regression

## Linear Regression

#### **Optimization Problem:**

$$\min_{\mathbf{w},b} \frac{1}{m} \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b - y_i)^2$$

#### **Equivalent Optimization Problem I:**

$$\min_{\mathbf{W}} F(\mathbf{W}) = \frac{1}{m} \|\mathbf{X}^{\top} \mathbf{W} - \mathbf{Y}\|^{2} \qquad \mathbf{X} = \begin{bmatrix} \Phi(x_{1}) & \dots & \Phi(x_{m}) \\ 1 & \dots & 1 \end{bmatrix} \quad \mathbf{W} = \begin{bmatrix} w_{1} \\ \vdots \\ w_{N} \\ b \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} y_{1} \\ \vdots \\ y_{m} \end{bmatrix}$$

**Solution:**  $W = (XX^T)^{\dagger}XY$ 

$$\nabla_w F = 0, \ \Rightarrow \frac{2}{m} X \left( X^T W - Y \right) = 0 \ \Rightarrow X X^T W = X^T Y \ \Rightarrow W = (X X^T)^\dagger X^T Y.$$

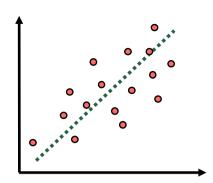
Pick w with smallest  $||w||_2$  when  $XX^T$  is non-invertible.

**Pseudo-inverse:** For matrix A the pseudo-inverse is

$$A^{\dagger} = \lim_{\gamma \downarrow 0} \left( A^{T} A + \gamma I \right)^{-1} A^{T}$$

For 
$$Ax = b$$
,  $x = A^{\dagger}b \iff x^{\gamma} = \arg\min \|Ax - b\|_2^2 + \gamma \|x\|_2^2$ ,  $x = \lim_{\gamma \downarrow 0} x^{\gamma}$ .

When A is invertible,  $A^{\dagger} = A^{-1}A^{-T}A^{T} = A^{-1}$ .

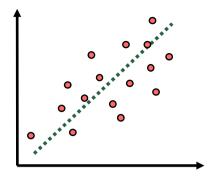


## Linear Regression

#### **Equivalent Optimization Problem I:**

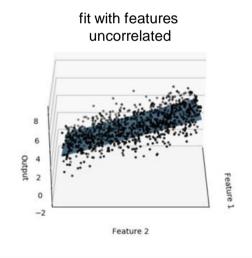
$$\min_{\mathbf{W}} F(\mathbf{W}) = \frac{1}{m} \|\mathbf{X}^{\top} \mathbf{W} - \mathbf{Y}\|^2 \quad \mathbf{X} = \begin{bmatrix} \Phi(x_1) & \dots & \Phi(x_m) \\ 1 & \dots & 1 \end{bmatrix} \quad \mathbf{W} = \begin{bmatrix} w_1 \\ \vdots \\ w_N \\ b \end{bmatrix} \quad \mathbf{Y} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$$

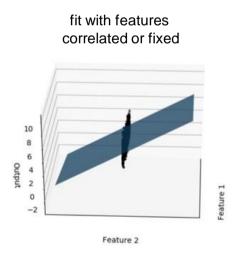
**Solution:**  $W = (XX^T)^{\dagger}XY$ 

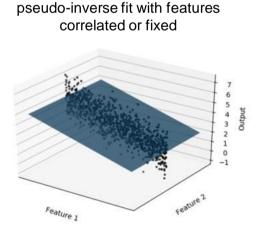


**Issues** when features  $x_i^a$  are strongly correlated with  $x_i^b$ , say equal, or one has a fixed value.

#### **Strong correlations or co-linearity** can result in XX<sup>T</sup> **nearly-singular.** Results very sensitive to noise in data!







**Theorem:** (ridge regression bounds) Consider kernel regression using  $\mathcal{H} = \{h(x) = w \cdot \Phi(x) | \|w\|_2 \le \Lambda\}$  with  $K(x,x) \le r^2$  and  $|f(x)| \le \Lambda r$  then for any  $\delta > 0$  we have with probability  $1 - \delta$  that the following bounds hold uniformly for  $h \in \mathcal{H}$ 

$$R(h) \le \widehat{R}(h) + \frac{8r^2\Lambda^2}{\sqrt{m}} \left( 1 + \frac{1}{2} \sqrt{\frac{\log \frac{1}{\delta}}{2}} \right)$$

$$R(h) \le \widehat{R}(h) + \frac{8r^2\Lambda^2}{\sqrt{m}} \left( \sqrt{\frac{\text{Tr}[\mathbf{K}]}{mr^2}} + \frac{3}{4} \sqrt{\frac{\log \frac{2}{\delta}}{2}} \right)$$

Significance: Provides tighter bounds than the combinatorial approach using pseudo-dimension.

**Second bound** provides **tighter estimate** since  $Tr[K] \leq mr^2$ , trace makes use of properties of the kernel.

Tightest bound from minimizing the RHS. This yields an optimization problem.

We need  $||w||^2 \le \Lambda^2$  so making  $\Lambda^2$  as small as possible corresponds to making  $||w||^2$  small. Can view bound as

$$R(h) \leq \widehat{R}(h) + \lambda \Lambda^2$$
 where  $\lambda = \frac{8r^2}{\sqrt{m}} \left(1 + \frac{1}{2} \sqrt{\frac{\log \frac{1}{\delta}}{2}}\right) = O(\frac{1}{\sqrt{m}})$ 

Yields optimization problem

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2$$

#### **Optimization Problem:**

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2$$

$$\mathbf{X} = \left[egin{array}{ccc} \Phi(x_1) & \dots & \Phi(x_m) \ 1 & \dots & 1 \end{array}
ight] \qquad \mathbf{W} = \left[egin{array}{c} w_1 \ dots \ w_N \ b \end{array}
ight] \qquad \mathbf{Y} = \left[egin{array}{c} y_1 \ dots \ y_m \end{array}
ight]$$

#### **Equivalent Problem:**

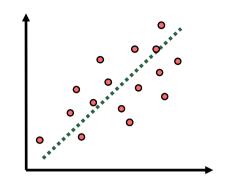
$$\min_{w} F(w) = \lambda ||w||^2 + ||X^T w - Y||^2$$

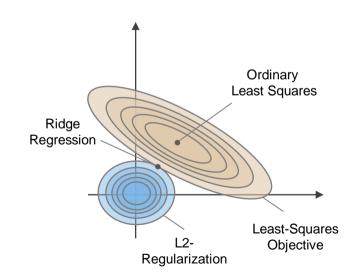
#### **Solution:**

$$abla_w F(w) = 0 \Rightarrow (XX^T + \lambda I) w = XY$$

$$\Rightarrow w = (XX^T + \lambda I)^{-1} XY.$$

Kernelization using the dual formulation.





#### **Primal Problem:**

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2$$



#### **Equivalent optimization problem I:**

$$\min_{\mathbf{w}} \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2 \text{ subject to: } \|\mathbf{w}\|^2 \leq \Lambda^2$$

#### **Equivalent optimization problem II:**

$$\min_{\mathbf{w}} \sum_{i=1}^{m} \xi_i^2 \quad \text{subject to: } (\|\mathbf{w}\|^2 \le \Lambda^2) \land (\forall i \in [1, m], \ \xi_i = y_i - \mathbf{w} \cdot \mathbf{\Phi}(x_i))$$

**Kernelization** of the regression makes use of the **dual formulation**.

#### Lagrangian

$$\mathcal{L}(\boldsymbol{\xi}, \mathbf{w}, \boldsymbol{\alpha}', \lambda) = \sum_{i=1}^{m} \xi_i^2 + \sum_{i=1}^{m} \alpha_i' (y_i - \xi_i - \mathbf{w} \cdot \boldsymbol{\Phi}(x_i)) + \lambda (\|\mathbf{w}\|^2 - \Lambda^2)$$

## Kernel Ridge Regression : Dual Formulation

#### Lagrangian

$$\mathcal{L}(\boldsymbol{\xi}, \mathbf{w}, \boldsymbol{\alpha}', \lambda) = \sum_{i=1}^{m} \xi_i^2 + \sum_{i=1}^{m} \alpha_i' (y_i - \xi_i - \mathbf{w} \cdot \boldsymbol{\Phi}(x_i)) + \lambda (\|\mathbf{w}\|^2 - \Lambda^2)$$

$$\mathbf{X} = \left[egin{array}{ccc} \Phi(x_1) & \dots & \Phi(x_m) \ 1 & \dots & 1 \end{array}
ight] & \mathbf{Y} = \left[egin{array}{c} y_1 \ dots \ y_m \end{array}
ight]$$



#### **KKT Conditions**

 $\lambda(\|\mathbf{w}\|^2 - \Lambda^2) = 0.$ 

$$\nabla_{\mathbf{w}} \mathcal{L} = -\sum_{i=1}^{m} \alpha_i' \mathbf{\Phi}(x_i) + 2\lambda \mathbf{w} = 0 \qquad \Longrightarrow \qquad \mathbf{w} = \frac{1}{2\lambda} \sum_{i=1}^{m} \alpha_i' \mathbf{\Phi}(x_i)$$

$$\nabla_{\xi_i} \mathcal{L} = 2\xi_i - \alpha_i' = 0 \qquad \Longrightarrow \qquad \xi_i = \alpha_i'/2$$

$$\forall i \in [1, m], \alpha_i' (y_i - \xi_i - \mathbf{w} \cdot \mathbf{\Phi}(x_i)) = 0$$

#### **Solution:**

$$w = X (K + \lambda I)^{-1} Y$$
  

$$h(x) = w \cdot \Phi(x) = \sum_{i=1}^{m} a_i k(x_i, x)$$

#### **Dual Formulation:** Substitute $w^*$ , $\xi^*$ so $F(\alpha') = \inf_{w,\xi} \mathcal{L}(\xi, w, \alpha', \lambda) = \mathcal{L}(\xi^*, w^*, \alpha', \lambda)$ .

$$F(\alpha') = \sum_{i=1}^{m} \frac{\alpha_{i}^{',2}}{4} + \sum_{i=1}^{m} \alpha_{i}^{'} y_{i} - \sum_{i=1}^{m} \frac{\alpha_{i}^{',2}}{2} - \frac{1}{2\lambda} \sum_{i,j=1}^{m} \alpha_{i}^{',2} \alpha_{j}^{',2} \Phi(x_{i}) \cdot \Phi(x_{j}) + \lambda \left( \frac{1}{4\lambda^{2}} \left\| \sum_{i=1}^{m} \alpha_{i}^{'} \Phi(x_{i}) \right\|^{2} - \Lambda^{2} \right)$$

$$= -\lambda^{2} \sum_{i=1}^{m} \alpha_{i}^{2} + 2\lambda \sum_{i=1}^{m} \alpha_{i} y_{i} - \lambda \sum_{i,j=1}^{m} \alpha_{i} \alpha_{j} \Phi(x_{i}) \cdot \Phi(x_{j}) - \lambda \Lambda^{2}, \quad \alpha_{i} = \alpha_{i}^{'} / 2\lambda.$$

#### **Dual Optimization Problem:**

$$\max_{\alpha \in \mathbb{R}} -\lambda \alpha^T \alpha + 2\alpha^T Y - \alpha^T \left( X^T X \right) \alpha \quad \rightarrow \quad \max_{\alpha \in \mathbb{R}} -\alpha^T \left( K + \lambda I \right) \alpha + 2\alpha^T Y.$$

# Kernel Ridge Regression Example

**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ 

Kernel Ridge Regression (KRR): Find minimizer of

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2 \implies h(x) = \sum_{i=1}^{m} a_i K(x_i, x)$$

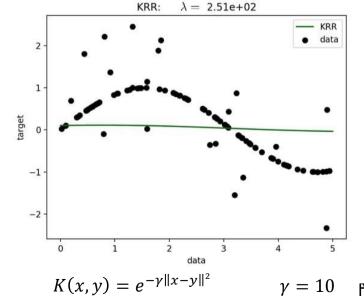
**Solution:** (Radial Basis Function Kernel (RBF),  $K(x, y) = e^{-\gamma ||x-y||^2}$ N = 100, gamma = 10, vary lambda)

**How does fit vary** with different choices of the lambda?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).





**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ .

Kernel Ridge Regression (KRR): Find minimizer of

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^m \left(\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i\right)^2 \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

**Solution:** (Radial Basis Function Kernel (RBF),  $K(x,y) = e^{-\gamma ||x-y||}$  N = 100, gamma = 10, vary lambda)

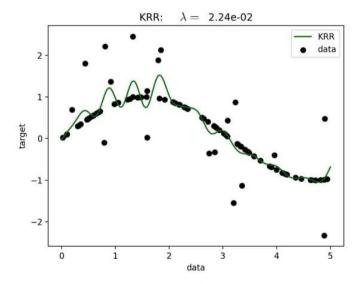
How does fit vary with different choices of the lambda?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).

KRR typically use grid-search try to obtain best fit in CV.



$$K(x, y) = e^{-\gamma ||x-y||^2}$$

 $\gamma = 10$ 



**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ 

Kernel Ridge Regression (KRR): Find minimizer of

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2 \implies h(x) = \sum_{i=1}^{m} a_i K(x_i, x)$$

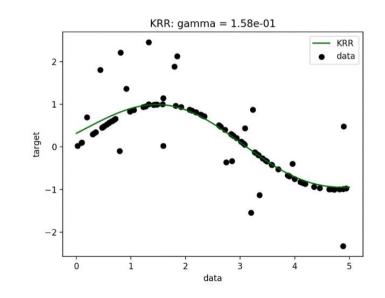
**Solution:** (Radial Basis Function Kernel (RBF), N = 100, lambda = 0.1, vary gamma)

How does fit vary with different choices of the lambda?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



$$K(x,y) = e^{-\gamma ||x-y||^2}$$



**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ .

Kernel Ridge Regression (KRR): Find minimizer of

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i)^2 \implies h(x) = \sum_{i=1}^{m} a_i K(x_i, x)$$

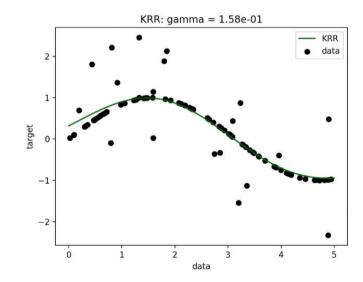
**Solution:** (Radial Basis Function Kernel (RBF), N = 100, lambda = 0.1, vary gamma)

How does fit vary with different choices of the lambda?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



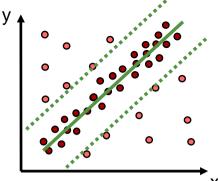
$$K(x,y) = e^{-\gamma ||x-y||^2}$$



**Definition:** For any  $\varepsilon > 0$  we define the support-limited loss function

$$|y' - y|_{\epsilon} = \max(0, |y' - y| - \epsilon)$$

also referred to as the  $\varepsilon$ -insensitive loss function.



**Theorem (support vector regression)** Consider kernel regression using  $\mathcal{H} = \{h(x) = w \cdot \Phi(x) | \|w\|_2 \le \Lambda \}$  with  $K(x,x) \le r^2$  and  $|f(x)| \le \Lambda r$  then for any  $\delta > 0$  we have with probability  $1 - \delta$  that the following bounds hold uniformly for  $h \in \mathcal{H}$ 

$$\mathop{\mathbf{E}}_{x \sim D}[|h(x) - f(x)|_{\epsilon}] \leq \mathop{\mathbf{E}}_{x \sim \widehat{D}}[|h(x) - f(x)|_{\epsilon}] + \frac{2r\Lambda}{\sqrt{m}} \left(1 + \sqrt{\frac{\log \frac{1}{\delta}}{2}}\right)$$

$$\underset{x \sim D}{\text{E}}[|h(x) - f(x)|_{\epsilon}] \le \underset{x \sim \widehat{D}}{\text{E}}[|h(x) - f(x)|_{\epsilon}] + \frac{2r\Lambda}{\sqrt{m}} \left(\sqrt{\frac{\text{Tr}[\mathbf{K}]}{mr^2}} + 3\sqrt{\frac{\log\frac{2}{\delta}}{2}}\right)$$

Remark: The bound takes on the form

$$R(h) \le \widehat{R}(h) + \lambda \Lambda$$

#### **Optimization Problem (Support Vector Regression (SVR))**

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left| y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \right|_{\epsilon}$$

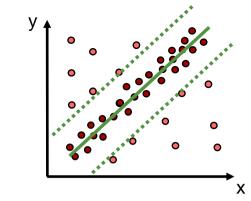
**Definition:** For any  $\varepsilon > 0$  we define the support-limited loss function

$$|y' - y|_{\epsilon} = \max(0, |y' - y| - \epsilon)$$

also referred to as the  $\varepsilon$ -insensitive loss function.

#### **Optimization Problem (Support Vector Regression (SVR))**

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left| y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \right|_{\epsilon}$$



#### Interpretation:

**Incurs penalty** only when loss exceeds  $\varepsilon$ . Data with  $|y'-y|_{\varepsilon} > \varepsilon$  are called **Support Vectors**.

Promotes fitting a "tube" that covers large part of the data set.

Helps filter out within data high-frenquency noise, control weighting of outliers, account for density effects.

Shares similarities with Support Vector Machines (SVM).

#### **Equivalent Optimization Problem I:**

$$\min_{\mathbf{w},b,\boldsymbol{\xi},\boldsymbol{\xi}'} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^{m} (\xi_i + \xi_i')$$

subject 
$$\xi_i \geq 0, \xi_i' \geq 0, \ (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) - y_i \leq \epsilon + \xi_i$$
  
$$y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \leq \epsilon + \xi_i'$$

#### **Dual Formulation:**

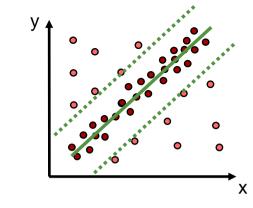
$$\max_{\boldsymbol{\alpha}, \boldsymbol{\alpha}'} - \epsilon (\boldsymbol{\alpha}' + \boldsymbol{\alpha})^{\top} \mathbf{1} + (\boldsymbol{\alpha}' - \boldsymbol{\alpha})^{\top} \mathbf{y} - \frac{1}{2} (\boldsymbol{\alpha}' - \boldsymbol{\alpha})^{\top} \mathbf{K} (\boldsymbol{\alpha}' - \boldsymbol{\alpha})$$
subject to:  $(\mathbf{0} \le \boldsymbol{\alpha} \le \mathbf{C}) \wedge (\mathbf{0} \le \boldsymbol{\alpha}' \le \mathbf{C}) \wedge ((\boldsymbol{\alpha}' - \boldsymbol{\alpha})^{\top} \mathbf{1} = 0)$ .

#### **Representation of solution**

$$h(x) = \sum_{i=1}^{m} (\alpha_i' - \alpha_i) K(\mathbf{x}_i, \mathbf{x}) + b$$

where b can be determined from any  $x_i$  with  $0 < \alpha_i < C$  or  $0 < \alpha'_i < C$ 

$$b = -\sum_{i=1}^{m} (\alpha_i' - \alpha_i) K(x_i, x_j) + y_j + \epsilon_i$$



#### **Complimentary Conditions (KKT)**

$$\alpha_i ((\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) - y_i - \epsilon - \xi_i) = 0$$
  
$$\alpha_i' ((\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) - y_i + \epsilon + \xi_i') = 0.$$

When we have  $\alpha_i' \neq 0$  then  $y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) - \epsilon = \xi_i'$  which corresponds to  $\mathbf{x}_i$  outside of  $\varepsilon$ -tube.

Similar condition holds for  $\alpha_i' \neq 0$ .

All  $x_i$  inside the  $\varepsilon$ -tube have  $\alpha_i = 0$  and  $\alpha'_i = 0$ .

# Support Vector Regression Example

**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ .

Support Vector Regression (SVR): Find minimizer of

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left| y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \right|_{\epsilon} \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

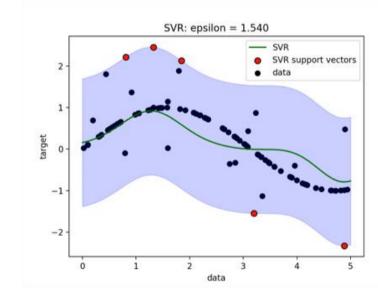
**Solution:** (Radial Basis Function Kernel (RBF), N = 100, epsilon = 0.1, gamma = 1)

**How does fit vary** with different choices of the  $\varepsilon$ -tube width?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



$$K(x,y) = e^{-\gamma ||x-y||^2}$$



**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ 

Support Vector Regression (SVR): Find minimizer of

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left| y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \right|_{\epsilon} \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

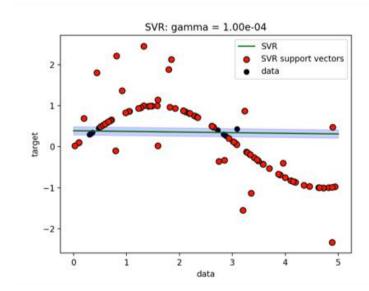
**Solution:** (Radial Basis Function Kernel (RBF), N = 100, epsilon = 0.1, gamma = 1)

**How does fit vary** with different choices of the  $\varepsilon$ -tube width?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



$$K(x,y) = e^{-\gamma ||x-y||^2}$$



**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ .

Support Vector Regression (SVR): Find minimizer of

$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left| y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \right|_{\epsilon} \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

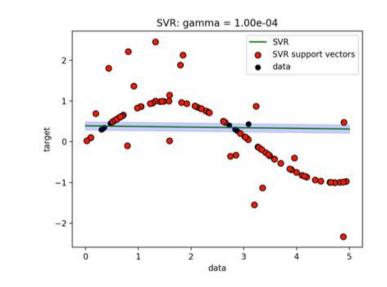
**Solution:** (Radial Basis Function Kernel (RBF), N = 100, epsilon = 0.1, gamma = 1)

**How does fit vary** with different choices of the  $\varepsilon$ -tube width?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



$$K(x,y) = e^{-\gamma ||x-y||^2}$$

**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ 

Support Vector Regression (SVR): Find minimizer of

$$\min_{\mathbf{w},b} \ \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m |y_i - (\mathbf{w} \cdot \Phi(x_i) + b)|_{\epsilon} \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

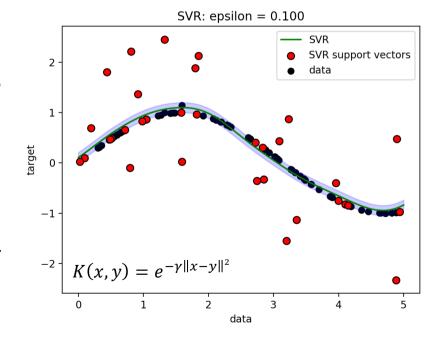
**Solution:** (Radial Basis Function Kernel (RBF), N = 100, epsilon = 0.1, gamma = 1)

**How does fit vary** with different choices of the  $\varepsilon$ -tube width?

**How does fit vary** with different choices of the RBF gamma width?

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



## Comparison KRR and SVR

## Comparison of KRR and SVR: Example $f(x) = \sin(x)$

**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ .

Kernel Ridge Regression (KRR): Find minimizer of

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^m \left(\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i\right)^2 \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

Support Vector Regression (SVR): Find minimizer of

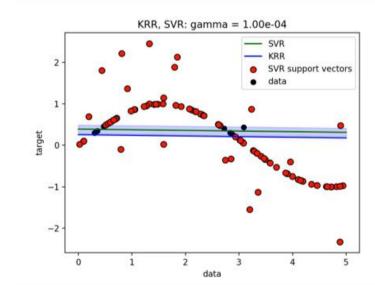
$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m \left| y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b) \right|_{\epsilon}$$

$$\Rightarrow h(x) = \sum_{i=1}^m (\alpha_i' - \alpha_i) K(\mathbf{x}_i, \mathbf{x}) + b$$

**Solution:** (Radial Basis Function Kernel (RBF), N = 100, epsilon = 0.1, gamma = 1)

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



$$K(x, y) = e^{-\gamma ||x-y||^2}$$



# Comparison of KRR and SVR: Example $f(x) = \sin(x)$

**Example:** Consider target function  $f(x) = \sin(x)$  where data  $y_i = f(x_i) + \eta_i$  where  $\eta_i$  is noise. Find  $h \in \mathcal{H}_{linear}$ .

Kernel Ridge Regression (KRR): Find minimizer of

$$\min_{\mathbf{w}} F(\mathbf{w}) = \lambda \|\mathbf{w}\|^2 + \sum_{i=1}^m \left(\mathbf{w} \cdot \mathbf{\Phi}(x_i) - y_i\right)^2 \implies h(x) = \sum_{i=1}^m a_i K(x_i, x)$$

Support Vector Regression (SVR): Find minimizer of

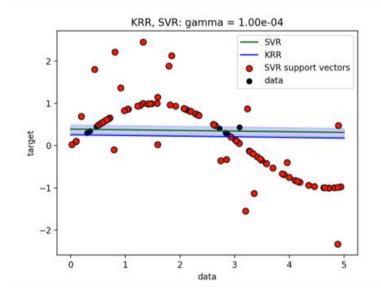
$$\min_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{i=1}^m |y_i - (\mathbf{w} \cdot \mathbf{\Phi}(x_i) + b)|_{\epsilon}$$

$$\Rightarrow h(x) = \sum_{i=1}^m (\alpha_i' - \alpha_i) K(\mathbf{x}_i, \mathbf{x}) + b$$

**Solution:** (Radial Basis Function Kernel (RBF), N = 100, epsilon = 0.1, gamma = 1)

Hyperparameter choice is crucial to obtain good fits.

Hyperparameters are tuned through Cross-Validation (CV).



SVR/KRR typically use grid-search try to obtain best fit in CV.

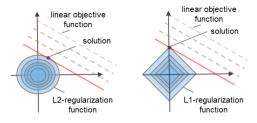
 $K(x,y) = e^{-\gamma ||x-y||^2}$ 

**•** 

# LASSO Regression

# LASSO: Least Absolute Shrinkage and Selection Operator

**L1-Norm Regularization:** Tends to result in weights that are more sparse than L2-Regularization  $(\min ||w||_2 \text{ vs } \min ||w||_1)$ .



**Theorem (LASSO regression)** Consider kernel regression using  $\mathcal{H} = \{h(x) = w \cdot x \mid ||w||_1 \leq \Lambda_1 \}$  with  $||x|| \leq r_{\infty}$  and  $|f(x)| \leq \Lambda_1 r_{\infty}$  then for any  $\delta > 0$  we have with probability  $1 - \delta$  that the following bounds hold uniformly for  $h \in \mathcal{H}$ 

$$R(h) \le \widehat{R}(h) + \frac{8r_{\infty}^2 \Lambda_1^2}{\sqrt{m}} \left( \sqrt{\log(2N)} + \frac{1}{2} \sqrt{\frac{\log \frac{1}{\delta}}{2}} \right)$$

### **Optimization Problem:**

$$\min_{\mathbf{w},b} F(\mathbf{w},b) = \lambda \|\mathbf{w}\|_1 + \sum_{i=1}^m (\mathbf{w} \cdot \mathbf{x}_i + b - y_i)^2$$

### **Equivalent Problem I:**

$$\min_{\mathbf{w},b} \sum_{i=1}^{m} (\mathbf{w} \cdot \mathbf{x}_i + b - y_i)^2 \quad \text{subject to: } \|\mathbf{w}\|_1 \le \Lambda_1$$

objective function solution

L2-regularization function

L1-regularization function

**Kernelization trick not available for L1** so would need to compute inner-products in new feature space.

High-dimensional regression problems especially useful to promote sparsity.

### **Computed Tomography (CT) and Radon Transform:**

$$egin{split} (x(z),y(z)) &= \Big((z\sinlpha+s\coslpha),(-z\coslpha+s\sinlpha)\Big) \ Rf(lpha,s) &= \int_{-\infty}^{\infty} f(x(z),y(z))\,dz \end{split}$$

**Inverse Problem:** Reconstruct density f(x,y) based on projection data Rf.

**Optimization Problem:** Over the hypothesis class  $\mathcal{H}$  of images  $h(x_i, y_i)$  minimize error in matching projection data

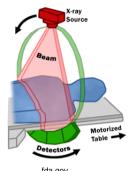
$$min_{h \in \mathcal{H}} \lambda \|h\|_1 + \|Rf - Rh\|_2^2$$

Sparse solutions desirable to reduce ghost artifacts.

**Sparse density maps** inherent in many cases (scientific imaging, engineering characterization, industrial applications).

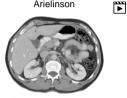
L1-regularization  $\rightarrow$  sparse reconstructions  $\rightarrow$  compressed sensing.





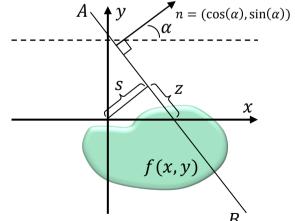


Arielinson



fda.gov

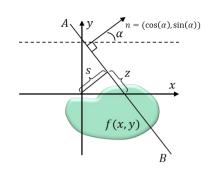


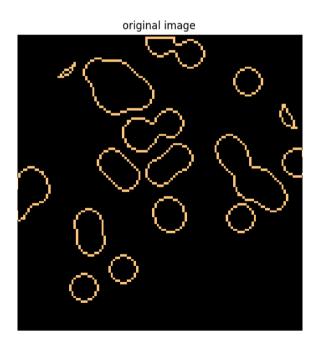


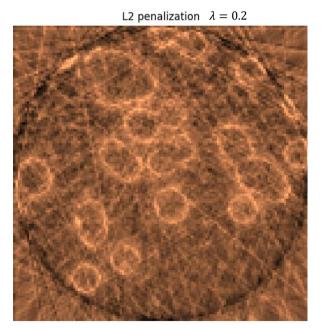
**Example:** Consider 2D density with data from 1D projections. (N = 36 angles).

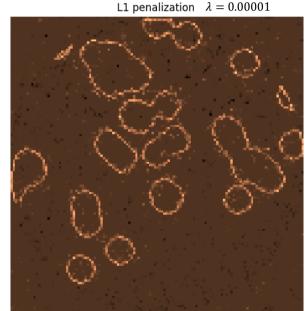
Density sparsely localized only on boundaries.

Task: Reconstruct the density map from the projection data. Compare KRR vs LASSO.





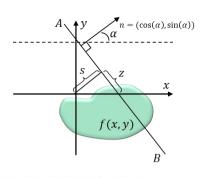


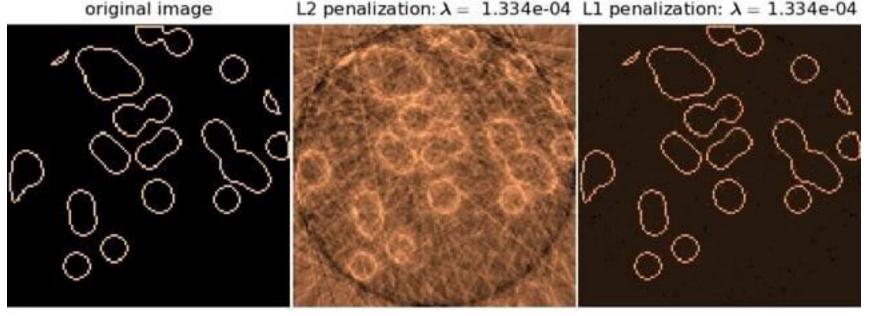


Gouillart 2018

**Example:** Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.

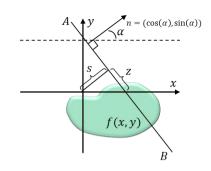


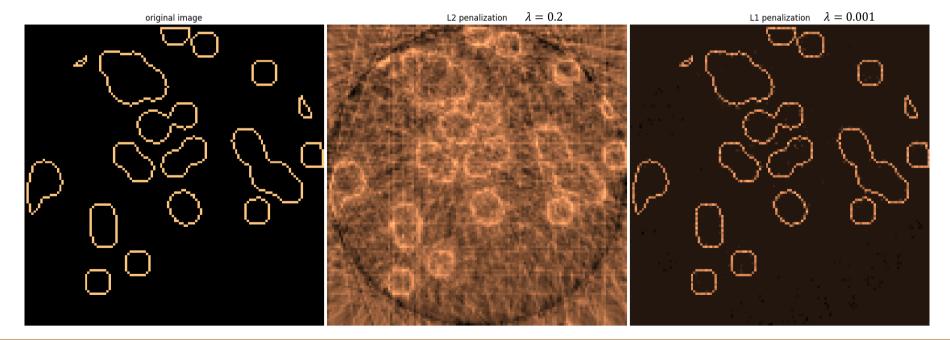




**Example:** Consider 2D density with data from 1D projections. (N = 36 angles).

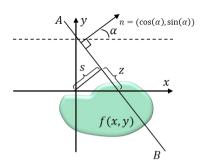
Density sparsely localized only on boundaries.

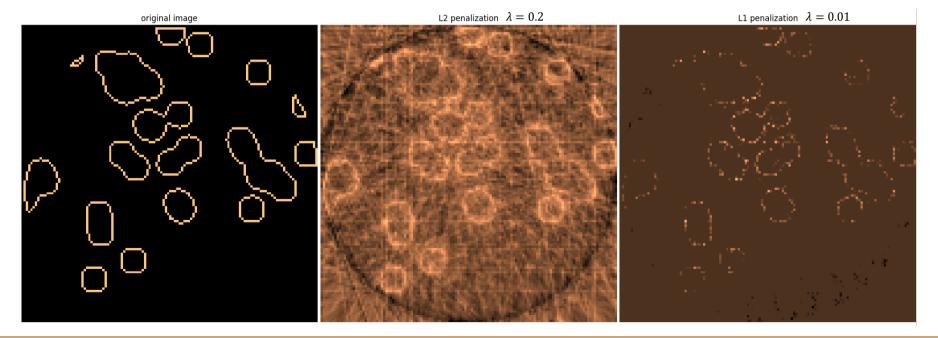




**Example:** Consider 2D density with data from 1D projections. (N = 36 angles).

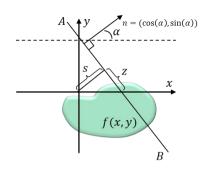
Density sparsely localized only on boundaries.

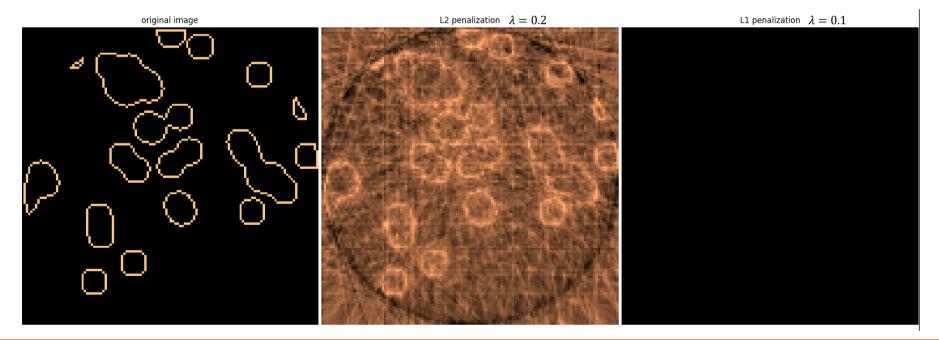




**Example:** Consider 2D density with data from 1D projections. (N = 36 angles).

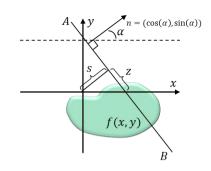
Density sparsely localized only on boundaries.

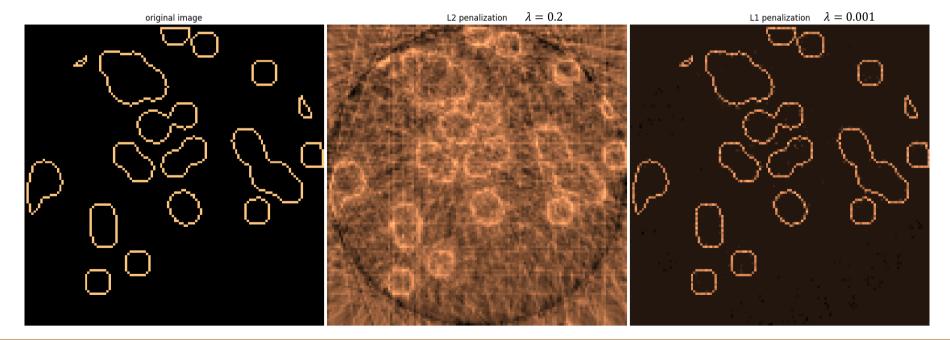




**Example:** Consider 2D density with data from 1D projections. (N = 36 angles).

Density sparsely localized only on boundaries.





# Curse of Dimensionality and Regression

### Curse of Dimensionality

**Sampling on Unit Cube:** Consider samples  $X, X_1, X_2, \ldots, X_n \in [0, 1]^d$  (*d*-dimensional hypercube).

**Minimum Sample Distance:** For n samples, denote the minimum distance between X and nearest sample  $X_i$  by

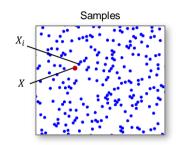
$$d_{\infty}(d,n) = \mathbb{E}\left[\min_{i \in [1,n]} \|X - X_i\|_{\infty}\right]$$

We can express in terms of probability as

$$d_{\infty}(d,n) = \int_{0}^{\infty} \Pr\{\min_{i \in [1,n]} \|X - X_i\|_{\infty} > t\} dt = \int_{0}^{\infty} 1 - \Pr\{\min_{i \in [1,n]} \|X - X_i\|_{\infty} \le t\} dt.$$

The probability of being at most t apart in  $\|\cdot\|_{\infty}$ -norm is

$$\Pr\{\min_{i\in[1,n]} \|X-X_i\|_{\infty} \leq t\} \leq n(2t)^d.$$



**Lower Bound on Distance:** 
$$d_{\infty}(d,n) \geq \int_{0}^{1/2n^{1/d}} 1 - n(2t)^{d} dt = \frac{d}{2(d+1)} \frac{1}{n^{1/d}} \sim n^{-1/d}$$

| samples:           | $n = 10^2$ | $n = 10^3$ | $n = 10^4$ | $n = 10^5$  |
|--------------------|------------|------------|------------|-------------|
| $d_{\infty}(1,n)$  | ≥ 0.0025   | ≥ 0.00025  | ≥ 0.000025 | ≥ 0.0000025 |
| $d_{\infty}(10,n)$ | ≥ 0.28     | ≥ 0.22     | ≥ 0.18     | ≥ 0.14      |
| $d_{\infty}(20,n)$ | ≥ 0.37     | ≥ 0.34     | ≥ 0.30     | ≥ 0.26      |
|                    |            |            |            | Györfi 2002 |

**Consequence:** Shows for n samples, the minimum distance decreases very slowly for large d,  $d_{\infty} \sim n^{-1/d}$ .

**Regression:** Without using assumed structure, regression requires many samples to ensure accuracy.

### Curse of Dimensionality and Generalization Bounds for Regression

**Regression Task:** From data samples  $S = \{(x_i, y_i)\}_{i=1}^n$  find model  $f \in \mathcal{F}$  so that  $y \sim f(x)$ .

$$\hat{R}(f) = \frac{1}{n} \sum_{i=1}^{n} \ell(y_i, f(x_i)), \quad R(f) = \mathbb{E}_{(x,y) \sim \mathcal{D}} \left[ \ell(y, f(x)) \right], \quad \ell(y, f(x)) = \frac{1}{2} (y - f(x))^2.$$

Approach: Regularized Loss Minimization (RLM),  $\tilde{f} = \arg\min_{f \in \mathcal{F}} \left( \hat{R}(f) + \lambda \gamma(f) \right)$ .

$$\gamma(f) = \inf_{\mu \in \mathcal{M}_f} |\mu|(\mathcal{V}), \quad \mathcal{M}_f = \{\mu \mid f(x) = \int_{\mathcal{V}} \phi_v(x) d\mu(v)\}, \quad \mathcal{V} \text{ compact}, \quad \mu \text{ Radon measure}.$$

$$|\mu|(\mathcal{V}) = \sup_{g \in \mathcal{G}} \int_{\mathcal{V}} g(v) d\mu(v), \quad \mathcal{G} = \{g \mid g \text{ continuous}, g(x) \in [-1,1]\}.$$

related to:  $\tilde{f} = \arg\min_{f \in \mathcal{F}^{\delta}} \hat{R}(f), \ \mathcal{F}^{\delta}\{f \in \mathcal{F} \mid \gamma(f) \leq \delta\}$  (appropriate choice of  $\delta$ ).

### **Generalization Bound:**

$$\underbrace{R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f)}_{\text{generalization error}} \leq \underbrace{\left[\inf_{f \in \mathcal{F}^{\delta}} R(f) - \inf_{f \in \mathcal{F}} R(f)\right]}_{\text{approximation error}} + 2\underbrace{\inf_{f \in \mathcal{F}^{\delta}} |\hat{R}(f) - R(f)|}_{\text{estimation error}} + \underbrace{|\hat{R}(\hat{f}) - \inf_{f \in \mathcal{F}^{\delta}} \hat{R}(f)|}_{\text{optimization error}} \cdot \underbrace{\hat{R}(f) - \inf_{f \in \mathcal{F}$$

### Curse of Dimensionality and Generalization Bounds for Regression

**Regression Task:** From data samples  $S = \{(x_i, y_i)\}_{i=1}^n$  find model  $f \in \mathcal{F}$  so that  $y \sim f(x)$ .

$$ilde{f} = \mathop{\mathsf{arg\,min}}_{f \in \mathcal{F}^\delta} \hat{R}(f), \quad \mathcal{F}^\delta\{f \in \mathcal{F} \mid \gamma(f) \leq \delta\}.$$

### **Generalization Bound:**

$$\underbrace{R(\hat{f}) - \inf_{f \in \mathcal{F}} R(f)}_{\text{generalization error}} \leq \underbrace{\left[\inf_{f \in \mathcal{F}^{\delta}} R(f) - \inf_{f \in \mathcal{F}} R(f)\right]}_{\text{approximation error}} + 2\underbrace{\inf_{f \in \mathcal{F}^{\delta}} |\hat{R}(f) - R(f)|}_{\text{estimation error}} + \underbrace{|\hat{R}(\hat{f}) - \inf_{f \in \mathcal{F}^{\delta}} \hat{R}(f)|}_{\text{optimization error}} \cdot \underbrace{\hat{R}(f) - \inf_{f \in \mathcal{F}$$

**Scaling in** (n, d): When assuming the target function's form,

| Case                          | Functional Form                                                  | L <sub>2</sub> -risk generalization error |
|-------------------------------|------------------------------------------------------------------|-------------------------------------------|
| general                       | _                                                                | $n^{-1/(d+3)}\log(n)$                     |
| affine                        | $w^T x + b$                                                      | $d^{1/2}n^{-1/2}$                         |
| neural network (single layer) | $\sum_{j=1}^k \eta_j (w_j^T x + b_j)_+$                          | $kd^{1/2}n^{-1/2}$                        |
| projection pursuit            | $\sum_{j=1}^k f_j(w_j^T x), \ w_j \in \mathbb{R}^d$              | $kd^{1/2}n^{-1/4}\log(n)$                 |
| subspace projection           | $\sum_{j=1}^{k} f_j(W_j^T x), \ W_j \in \mathbb{R}^{d \times s}$ | $kd^{1/2}n^{-1/(s+3)}\log(n)$             |

Bach 2017

Summary: General case has exponential scaling in d! However, assumed structure → improves to polynomial in d! If target function approximated well by above form → even high dimensional d may be tractable.

In practice: Many functions in ML empirically appear well approximated by above (modest k, s).

Deep architectures (not case above) seem empirically to provide even better representations for many ML tasks.



# **Regression Summary**

**Task:** Find function  $h \in \mathcal{H}$  that models in data the relationship of  $y_i$  to  $x_i$  as  $y_i \sim h(x_i)$ .

Ordinary Least-Squares (OLS): Fits considering only least-squared deviations of  $y_i$  with  $h(x_i)$ . Can become overly sensitive to noise if features  $x_i^a$  and  $x_i^b$  are strongly correlated or co-linear.

**Kernel Ridge Regression (KRR):** Fits using L2-penalty in addition to least-squares loss. The penalty helps "shrink" weights yielding smaller values in directions where features  $x_i^a$  and  $x_i^b$  are strongly correlated or colinear.

**Support Vector Regression (SVR):** Fits using  $\epsilon$ -insensitive least-squares loss ( $\epsilon$ -tube) and L2-penalty. The  $\epsilon$ -tube helps filter localized variations without incurring loss and L2-penalty results in "shrinkage" as in KRR.

Least Absolute Shrinkage and Selection Operator (LASSO): Fits using L1-penalty in addition to least-squares loss. The penalty further helps "shrink" weights in many cases resulting in zero weight components giving a sparse representation (very helpful in high-dimensional regression).

Many other forms of regression: Elastic Net, LARS, Bayesian Regression, Neural-Networks.