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1. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates
the relation y = f(x) from samples obscured by noise yi = f(xi) + ξi, where ξi is Gaussian.
As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the
optimization problem

min
w

J(w), where J(w) =
1

2

m∑
i=1

(
wTφ(xi)− yi

)2
+

1

2
γwTw.

(a) Show that the solution weight vector w always can be expressed in the form w =∑m
i=1 αiφ(xi). Hint: Compute the gradient ∇wJ = 0.

(b) Consider the design matrix Φ = [φ(x1), . . . , φ(xm)]T defined by the data so we can
express w = ΦTα. Substitute this into the optimization problem to obtain the dual
formulation in terms of minimizing over a function J(α). Express this in terms of the
design matrix Φ and Gram matrix K, where Kij = k(xi,xj) = φ(xi)

Tφ(xj).

(c) Compute the gradient ∇αJ = 0 to derive equations for the solution of the optimization
problem. Express the linear equations for the solution α in terms of the Gram matrix
K.

(d) Explain briefly the importance of the term γ and role it plays in the solution.

(e) Suppose we consider the regression problem to be over all functions f ∈ H in some
Reproducing Kernel Hilbert Space (RKHS)H with kernel k and use regularization ‖f‖2H.
This corresponds to the optimization problem

min
f∈H

J [f ], with J [f ] =
1

2

m∑
i=1

(f(xi)− yi)2 +
1

2
‖f‖2H.

Show the solution to this optimization problem yields the same result as in the formu-
lation above using α. Hint: Use the representation results we discussed in lecture for
objective functions of the form J [f ] = L(f(x1), . . . , f(xm)) +G(‖f‖H).

2. Consider kernel regression in the case when k(x, z) = exp
(
−c‖x− z‖2

)
. Compute the kernel-

ridge regression for f(x) = sin(x) in the specific case of yi = sin(xi) with xi = 2π(i − 1)/m

for i = 1, 2, . . . ,m. Study the L2-error (least-squares error) εerr =
∫ 2π
0

(
wTφ(z)− f(z)

)2
dz

when estimated by ε̃err = 2π
N

∑N
`=1

(
wTφ(zi)− f(zi)

)2
. To try to approximate the integral

well take zi = 2π(i− 1)/N with large N � m, say N = 105. Use this to construct a log-log
plot of ε̃err vs m when m varies over the range, say 10, 10 × 21, 10 × 22, . . . 10 × 29. Plot on
the same figure the errors ε̃err vs m for a few different choices of the hyperparameter c, say
c = 100, 10, 1, 0.1, 0.01. For f(x) = sin(x) for which c values do you get the best accuracy?
Explain briefly for what choice of c you would expect for the model to generalize the best
under a data distribution for xi that is uniform on [0, 2π].
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3. (L1 vs L2 Regularization) Consider the optimization problem

min
w

J(w), with J(w) =
1

2
(w − q)T (w − q) +R(w).

(a) Find the solution w ∈ R4 when R(w) = γ 1
2‖w‖

2
2 with q = (1, 1, 1, 4) and γ = 1. Hint:

Consider values w where ∇wJ = 0 or the gradient does not exist.

(b) Find the solution w ∈ R4 when R(w) = γ‖w‖1 with q = (1, 1, 1, 4) and γ = 1. Hint:
Consider values w where ∇wJ = 0 or the gradient does not exist.

(c) For which solution are most of the components of w zero. Briefly explain why one might
expect one of the regularizations to do better in pushing solutions close to the coordinate
axes to promote sparsity.
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