Exercises

Machine Learning: Foundations and Applications MATH 260J

Paul J. Atzberger http://atzberger.org/

1. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates the relation y = f(x) from samples obscured by noise $y_i = f(\mathbf{x}_i) + \xi_i$, where ξ_i is Gaussian. As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w}), \text{ where } J(\mathbf{w}) = \frac{1}{2} \sum_{i=1}^{m} \left(\mathbf{w}^{T} \phi(\mathbf{x}_{i}) - y_{i} \right)^{2} + \frac{1}{2} \gamma \mathbf{w}^{T} \mathbf{w}.$$

- (a) Show that the solution weight vector \mathbf{w} always can be expressed in the form $\mathbf{w} = \sum_{i=1}^{m} \alpha_i \phi(\mathbf{x}_i)$. Hint: Compute the gradient $\nabla_{\mathbf{w}} J = 0$.
- (b) Consider the design matrix $\mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_m)]^T$ defined by the data so we can express $\mathbf{w} = \mathbf{\Phi}^T \boldsymbol{\alpha}$. Substitute this into the optimization problem to obtain the dual formulation in terms of minimizing over a function $J(\boldsymbol{\alpha})$. Express this in terms of the design matrix $\mathbf{\Phi}$ and Gram matrix K, where $K_{ij} = k(\mathbf{x}_i, \mathbf{x}_j) = \phi(\mathbf{x}_i)^T \phi(\mathbf{x}_j)$.
- (c) Compute the gradient $\nabla_{\alpha} J = 0$ to derive equations for the solution of the optimization problem. Express the linear equations for the solution α in terms of the Gram matrix K.
- (d) Explain briefly the importance of the term γ and role it plays in the solution.
- (e) Suppose we consider the regression problem to be over all functions $f \in \mathcal{H}$ in some Reproducing Kernel Hilbert Space (RKHS) \mathcal{H} with kernel k and use regularization $||f||_{\mathcal{H}}^2$. This corresponds to the optimization problem

$$\min_{f \in \mathcal{H}} J[f], \text{ with } J[f] = \frac{1}{2} \sum_{i=1}^{m} \left(f(\mathbf{x}_i) - y_i \right)^2 + \frac{1}{2} \|f\|_{\mathcal{H}}^2.$$

Show the solution to this optimization problem yields the same result as in the formulation above using α . Hint: Use the representation results we discussed in lecture for objective functions of the form $J[f] = L(f(x_1), \ldots, f(x_m)) + G(||f||_{\mathcal{H}})$.

2. Consider kernel regression in the case when $k(\mathbf{x}, \mathbf{z}) = \exp\left(-c \|\mathbf{x} - \mathbf{z}\|^2\right)$. Compute the kernelridge regression for $f(x) = \sin(x)$ in the specific case of $y_i = \sin(x_i)$ with $x_i = 2\pi(i-1)/m$ for i = 1, 2, ..., m. Study the L_2 -error (least-squares error) $\epsilon_{\text{err}} = \int_0^{2\pi} \left(\mathbf{w}^T \phi(z) - f(z)\right)^2 dz$ when estimated by $\tilde{\epsilon}_{\text{err}} = \frac{2\pi}{N} \sum_{\ell=1}^N \left(\mathbf{w}^T \phi(z_i) - f(z_i)\right)^2$. To try to approximate the integral well take $z_i = 2\pi(i-1)/N$ with large $N \gg m$, say $N = 10^5$. Use this to construct a log-log plot of $\tilde{\epsilon}_{\text{err}}$ vs m when m varies over the range, say $10, 10 \times 2^1, 10 \times 2^2, \ldots 10 \times 2^9$. Plot on the same figure the errors $\tilde{\epsilon}_{\text{err}}$ vs m for a few different choices of the hyperparameter c, say c = 100, 10, 1, 0.1, 0.01. For $f(x) = \sin(x)$ for which c values do you get the best accuracy? Explain briefly for what choice of c you would expect for the model to generalize the best under a data distribution for x_i that is uniform on $[0, 2\pi]$. 3. $(L_1 \text{ vs } L_2 \text{ Regularization})$ Consider the optimization problem

$$\min_{\mathbf{w}} J(\mathbf{w}), \text{ with } J(\mathbf{w}) = \frac{1}{2} (\mathbf{w} - \mathbf{q})^T (\mathbf{w} - \mathbf{q}) + R(\mathbf{w}).$$

- (a) Find the solution $\mathbf{w} \in \mathbb{R}^4$ when $R(\mathbf{w}) = \gamma \frac{1}{2} \|\mathbf{w}\|_2^2$ with $\mathbf{q} = (1, 1, 1, 4)$ and $\gamma = 1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J = 0$ or the gradient does not exist.
- (b) Find the solution $\mathbf{w} \in \mathbb{R}^4$ when $R(\mathbf{w}) = \gamma ||\mathbf{w}||_1$ with $\mathbf{q} = (1, 1, 1, 4)$ and $\gamma = 1$. Hint: Consider values \mathbf{w} where $\nabla_{\mathbf{w}} J = 0$ or the gradient does not exist.
- (c) For which solution are most of the components of \mathbf{w} zero. Briefly explain why one might expect one of the regularizations to do better in pushing solutions close to the coordinate axes to promote sparsity.