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1. (Kernel-Ridge Regression) Consider the problem of constructing a model that approximates
the relation y = f(z) from samples obscured by noise y; = f(x;) + &;, where §; is Gaussian.
As discussed in lecture when using Bayesian methods with a Gaussian prior this leads to the
optimization problem

(wT¢(xi) — yi)2 + 1'waw.

min J(w), where J(w)= 5
i=1
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(a) Show that the solution weight vector w always can be expressed in the form w =
S, aip(x;). Hint: Compute the gradient Vy,J = 0.

(b) Consider the design matrix ® = [¢(x1),...,(Xm)]’ defined by the data so we can
express w = ® a. Substitute this into the optimization problem to obtain the dual
formulation in terms of minimizing over a function J(a). Express this in terms of the
design matrix ® and Gram matrix K, where K;; = k(x;,%;) = ¢(x;)T ¢(x;).

(c) Compute the gradient V4J = 0 to derive equations for the solution of the optimization
problem. Express the linear equations for the solution « in terms of the Gram matrix
K.

(d) Explain briefly the importance of the term 7 and role it plays in the solution.

(e) Suppose we consider the regression problem to be over all functions f € H in some
Reproducing Kernel Hilbert Space (RKHS) #H with kernel k and use regularization || f||3,.
This corresponds to the optimization problem

m

min 7], with J{f] = 23" (F6e) — 0 + 1A

feu i=1

Show the solution to this optimization problem yields the same result as in the formu-
lation above using «. Hint: Use the representation results we discussed in lecture for
objective functions of the form J[f] = L(f(z1),..., f(xm)) + G| flln)-

2. Consider kernel regression in the case when k(x,z) = exp (—c|[x — z|?). Compute the kernel-
ridge regression for f(z) = sin(z) in the specific case of y; = sin(x;) with z; = 27(i — 1)/m
for i = 1,2,...,m. Study the Lg-error (least-squares error) €., = 027r (qub(z) — f(z))de
when estimated by €., = QW” Zévzl (WT¢(Zi) - f(zi))2. To try to approximate the integral
well take z; = 27(i — 1)/N with large N > m, say N = 10°. Use this to construct a log-log
plot of &,, vs m when m varies over the range, say 10,10 x 2,10 x 22,...10 x 2°. Plot on
the same figure the errors €., vs m for a few different choices of the hyperparameter ¢, say
¢ = 100,10,1,0.1,0.01. For f(z) = sin(z) for which ¢ values do you get the best accuracy?
Explain briefly for what choice of ¢ you would expect for the model to generalize the best
under a data distribution for x; that is uniform on [0, 27].



3. (L1 vs Ly Regularization) Consider the optimization problem

min J(w), with J(w) = %(w —q)T(w—q) + R(w).
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Consider values w where Vy,J = 0 or the gradient does not exist.

(b) Find the solution w € R* when R(w) = v|lwl|j; with q = (1,1,1,4) and v = 1. Hint:
Consider values w where Vy,J = 0 or the gradient does not exist.

(a) Find the solution w € R* when R(w) = v3||lw|3 with q = (1,1,1,4) and v = 1. Hint:

(c¢) For which solution are most of the components of w zero. Briefly explain why one might
expect one of the regularizations to do better in pushing solutions close to the coordinate
axes to promote sparsity.



