## Math 6A

Name: $\qquad$
$\qquad$
Complete the following problems, making sure to SHOW ALL WORK. If you're stuck on something, CLEARLY EXPLAINING what you do know will get you partial credit!

1. Compute the derivatives $D f$ and $D g$ for the following functions. Note that both of these derivatives are Jacobians, but only one is a gradient.
(a) $f(x, y, z)=x e^{x y}+\sin (y)$
(b) $g(x, y)=\left\langle x y+2 y, 2 x y^{2}, \frac{x^{2}}{y^{2}}\right\rangle$
(a) This is a real valued function, so we compute a gradient

$$
\begin{aligned}
D f(x, y, z) & =\nabla f(x, y, z) \\
& =\left\langle\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial f}{\partial z}\right\rangle \\
& =\left\langle e^{x y}+x y e^{x y}, x^{2} e^{x y}+\cos (y), 0\right\rangle .
\end{aligned}
$$

(b) This function is vector valued, so we compute its Jacobian:

$$
\begin{aligned}
D g(x, y) & =\left[\begin{array}{ll}
\frac{\partial g_{1}}{\partial x} & \frac{\partial g_{1}}{\partial y} \\
\frac{\partial g_{2}}{\partial x} & \frac{\partial g_{2}}{\partial y} \\
\frac{\partial g_{3}}{\partial x} & \frac{\partial g_{3}}{\partial y}
\end{array}\right] \\
& =\left[\begin{array}{cc}
y & x+2 \\
2 y^{2} & 4 x y \\
\frac{2 x}{y^{2}} & \frac{-2 x^{2}}{y^{3}}
\end{array}\right] .
\end{aligned}
$$

2. Find the derivative $D_{\vec{u}} f(x, y, z)$ of the function $f$ in the previous problem in the direction of the vector $\vec{u}=\langle-1,0,3\rangle$.

As always, we begin computing the directional derivative by finding a unit vector in the direction of $\vec{u}$. To do this, we first need the length of $\vec{u}$, which we find to be

$$
\|\vec{u}\|=\sqrt{(-1)^{2}+0^{2}+3^{2}}=\sqrt{10} .
$$

So, our unit vector is

$$
\vec{u}^{\prime}=\frac{\vec{u}}{\sqrt{10}}=\left\langle-\frac{1}{\sqrt{10}}, 0, \frac{3}{\sqrt{10}}\right\rangle .
$$

Now, we compute the directional derivative as

$$
\begin{aligned}
D_{\vec{u}} f(x, y, z) & =\nabla f \cdot \vec{u}^{\prime} \\
& =\left\langle e^{x y}+x y e^{x y}, x^{2} e^{x y}+\cos (y), 0\right\rangle \cdot\left\langle-\frac{1}{\sqrt{10}}, 0, \frac{3}{\sqrt{10}}\right\rangle \\
& =-\frac{e^{x y}+x y e^{x y}}{\sqrt{10}} .
\end{aligned}
$$

