Note: The best way to start a volume problem is to draw pictures.

Volume Formulae	Explanation
Volume $=\int_{a}^{b} A(x) d x$	General rule for finding volume of a solid with respect to x. $A(x)$ is the area of the cross section (at position x).
Volume $=\int_{c}^{d} A(y) d y$	General rule for finding volume of a solid with respect to y. $A(y)$ is the area of the cross section (at position y).

How to Find $A(x)$	Explanation
$A(x)=\pi\left(R^{2}-r^{2}\right)$	If the cross sections are disks or washers. $R=$ outer radius $r=$ inner radius
$A(x)=2 \pi r \cdot h$	If the cross sections are cylinders. $r=$ radius of cylinder $h=$ height

1. Let R be the region bounded by the graphs of $f(x)=2-2 x^{2}$ and $g(x)=0$.
(a) Sketch the region bounded by $f(x)$ and $g(x)$ on the same coordinate plane, and label the region S. Find the intersection points.
(b) Set up an integral to find the volume of the solid formed by revolving the region S about the x-axis. Do not evaluate the integral.
(c) Set up an integral to find the volume of the solid formed by revolving the region S about the line $y=5$. Do not evaluate the integral.
(d) Set up an integral to find the volume of the solid formed by revolving the region S about the line $x=-2$. Do not evaluate the integral. (Hint: Cylinders)
2. Let S be the region bounded by the graphs of $f(x)=2 x^{2}$ and $g(x)=2 \sqrt{x}$. Solve the following problems.
(a) Sketch the region, and label it S. Find its intersection points
(b) Set up an integral to find the volume of the solid formed by revolving the region S about the y-axis. Do not evaluate the integral.
(c) Set up an integral to find the volume of the solid formed by revolving the region S about the line $x=-1$. Do not evaluate the integral.
3. Sketch the region S bounded by the curves $y=4-x^{2}$ and $y=x^{2}-4$. Find the volume of the solid obtained by rotating R about the line $x=2$.
