Note: The best way to start a volume problem is to draw pictures.

Volume Formulae	Explanation
Volume $=\int_{a}^{b} A(x) d x$	General rule for finding volume of a solid with respect to x. $A(x)$ is the area of the cross section (at position x).
Volume $=\int_{c}^{d} A(y) d y$	General rule for finding volume of a solid with respect to y. $A(y)$ is the area of the cross section (at position y).

How to Find $A(x)$	Explanation
$A(x)=\pi\left(R^{2}-r^{2}\right)$	If the cross sections are disks or washers.
	$R=$ outer radius
$r=$ inner radius	

1. Let R be the region bounded by the graphs of $f(x)=2-2 x^{2}$ and $g(x)=0$.
(a) Sketch the region bounded by $f(x)$ and $g(x)$ on the same coordinate plane, and label the region S. Find the intersection points.

Solution:

The intersection points are just at the roots of f :

$$
2-2 x^{2}=0
$$

gives

$$
x=-1, \quad x=1
$$

(b) Set up an integral to find the volume of the solid formed by revolving the region S about the x-axis. Do not evaluate the integral.

Solution:

$$
\text { Volume }=\pi \int_{-1}^{1}\left(2-2 x^{2}\right)^{2} d x
$$

(c) Set up an integral to find the volume of the solid formed by revolving the region S about the line $y=5$. Do not evaluate the integral.

Solution:

$$
\text { Volume }=\int_{-1}^{1} \pi 5^{2}-\pi\left[5-\left(2-2 x^{2}\right)\right]^{2} d x=\pi \int_{-1}^{1} 25-\left(3+2 x^{2}\right)^{2} d x
$$

(d) Set up an integral to find the volume of the solid formed by revolving the region S about the line $x=-2$. Do not evaluate the integral. (Hint: Cylinders)

Solution:

Volume $=\int_{-1}^{1} 2 \pi(x-(-2))\left(2-2 x^{2}\right) d x=2 \pi \int_{-1}^{1}(x+2)\left(2-2 x^{2}\right) d x$
2. Let S be the region bounded by the graphs of $f(x)=2 x^{2}$ and $g(x)=2 \sqrt{x}$. Solve the following problems.
(a) Sketch the region, and label it S. Find its intersection points

Solution:

We find the intersection points by setting the two equal:

$$
2 x^{2}=2 \sqrt{x}
$$

Solving gives us

$$
x=0, \quad x=1 .
$$

(b) Set up an integral to find the volume of the solid formed by revolving the region S about the y-axis. Do not evaluate the integral.

Solution:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} \pi\left(\sqrt{\frac{y}{2}}\right)^{2}-\pi\left(\left(\frac{y}{2}\right)^{2}\right)^{2} d y=\pi \int_{0}^{2} \frac{y}{2}-\frac{y^{4}}{16} d y \quad \text { (washers) } \\
& =\int_{0}^{1} 2 \pi(x)\left(2 \sqrt{x}-2 x^{2}\right) d x=4 \pi \int_{0}^{1} x^{3 / 2}-x^{3} d x \quad \text { (cylinders) }
\end{aligned}
$$

(c) Set up an integral to find the volume of the solid formed by revolving the region S about the line $x=-1$. Do not evaluate the integral.

Solution:

$$
\begin{aligned}
\text { Volume } & =\int_{0}^{2} \pi\left(\sqrt{\frac{y}{2}}+1\right)^{2}-\pi\left(\left(\frac{y}{2}\right)^{2}+1\right)^{2} d y \\
& =\int_{0}^{1} 2 \pi(x+1)\left(2 \sqrt{x}-2 x^{2}\right) d x
\end{aligned}
$$

3. Sketch the region S bounded by the curves $y=4-x^{2}$ and $y=x^{2}-4$. Find the volume of the solid obtained by rotating R about the line $x=2$.
