
Math 4A
Supplement 2

Numerical Methods: Jacobi
and Gauss-Seidel Iteration

We can use row operations to compute a Reduced Echelon Form matrix row-equivalent to the augmented
matrix of a linear system, in order to solve it exactly. For many simple systems (with few variables and integer
coefficients, for example) this is an effective approach. However, for systems that come from physical situations
that are interesting, it’s quite likely that the resulting matrices would be too unwieldy to solve like this, with even
computers prone to calculation errors.

To cope with this situation, mathematicians have developed approximation techniques that trade out the ability
to solve a system exactly for the ability to get approximate solutions quickly and with low chances of error. The
Jacobi and Gauss-Seidel Iteration techniques are two important examples, which are fairly simple to describe and
carry out. As iteration techniques, the idea is to find a procedure for computing several “rounds” of approxima-
tions, each better than the last.

1 Equation Formulation

We can write out a linear system of m equations in m variables in the following way:
a11x1 + a12x2 + · · ·+ a1mxm = b1,

a21x1 + a22x2 + · · ·+ a2mxm = b2,
...

...

am1x1 + am2x2 + · · ·+ ammxn = bm.

We will re-write this system by solving the kth equation for xk (assuming that the coefficient akk isn’t zero—we
could re-order the equations to try to avoid this). This gives us the (equivalent) system of equations

x1 = 1
a11

(b1 − a12x2 − · · · − a1nxn) ,

x2 = 1
a22

(b2 − a21x1 − a23x3 − · · · − a2mxm) ,
...

...

xm = 1
amm

(
bm − am1x1 − am(m−1)xm−1

)
.

That is, variable xk is equal to 1
akk

(its coefficient in the kth equation) times bk (the constant from the kth equation)
minus all of the other coefficient-and-variable terms from the kth equation.

It’s good to take a moment to note that all we’ve done so far is find a set of equations that is equivalent to the
original ones we had. This new form has the benefit that, if we were missing just one of the values in the solution,
we could figure it out from the others directly (and exactly). From here, we must choose how to approximate the
solution.

1.1 Jacobi Iteration

For Jacobi Iteration, we choose (through a guess or simply with a standard value) a starting value for each of x1
through xm, and call it the n = 0 value. Then, we use the right hand side of the equations we just found to compute
the n = 1 value of each variable on the left hand side. That is, we think of n as the “stage” each variable is in, and
imagine the left hand side of the equations as living in a higher “stage” than the right. For each n after 1, we use
the previous “stage’s” values (so we plug the n = 1 values into the right hand side to get the n = 2 values on the
left, and so on).

1



1.2 Gauss-Seidel Iteration

For Gauss-Seidel Iteration, we do roughly the same thing as in Jacobi Iteration. However, we notice that when
computing the variables in stage n = i and for all the variables before xk (x1 through xk−1), we have already
computed a (theoretically) better approximation than the stage (i −1) value: we already have the stage i value! So,
in Gauss-Seidel Iteration, when computing stage n = i we use the stage i values for all of the previous variables,
and the stage (i −1) values only for the following variables. Where Jacobi Iteration follows the simple rule of using
each stage to compute the next, Gauss-Seidel Iteration improves on it by using the new approximations as soon as
they are available.

1.3 Example

Suppose we had the system x1 + x2 = 4,
x1 − 2x2 = 1.

Rewriting it to the form used by the two iteration techniques, we get the equivalent systemx1 = 4− x2,

x2 = −1
2 (1− x1) .

For the Jacobi Iteration method, we choose x1 = x2 = 0 as our starting (n = 0) value. Then, for n = 1, we get the
new x1 as 4−0 = 4, and the new x2 as −1

2 (1− 0) = −0.5 (plugging in the stage 0 values to the right hand sides of the
equations). For n = 2, we get the new x1 as 4− (−0.5) = 4.5, and the new x2 as −1

2 (1− 4) = 1.5. Going a little further,
we get the following table:

n x1 x2
0 0 0
1 4 -0.5
2 4.5 1.5
3 2.5 1.75
4 2.25 0.75
5 3.25 0.625
6 3.375 1.125

For the Gauss-Seidel Iteration, we again start with x1 = x2 = 0 as the n = 0 value. Then for n = 1, we get the
new x1 as 4 again. The new x2, on the other hand, depends on x1, which we have already computed as 4 rather
than 0, so we get the new x2 as −1

2 (1− 4) = 1.5. For n = 2, we get the new x1 as 4 − (1.5) = 2.5, and the new x2 as
−1
2 (1− 2.5) = 0.75. Going further, we get the table:

n x1 x2
0 0 0
1 4 1.5
2 2.5 0.75
3 3.25 1.125
4 2.875 0.9375
5 3.0625 1.03125
6 2.96875 0.984375

Since this is a system we can quickly solve exactly, we can check this against the true solution, x1 = 3 and
x2 = 1. We can see that both appear to be approaching this, and Gauss-Seidel is somewhat faster.

It’s worth noting that under certain circumstances, these approximation techniques can diverge; that is, fail to
settle down and approach a single value. Sometimes rearranging the equations before solving for each variable
can help, but other times the problem is intractable. Also, of course, neither technique can detect a solution if
none exists.

2



2 Matrix Formulation

[If you’re unfamiliar with matrix operations, feel free to skip this section (and perhaps return after it’s covered later in the course.)]

The original system could be written as the matrix equation A~x =~b. If we decompose A as A = D −U −L, where
D matches the main diagonal and has zeroes elsewhere, U matches the (negative of) the upper triangular part
(above the diagonal), and L matches the (negative of) the lower triangular part (the negative signs and negated
upper and lower triangular parts are just to conform to a particular, common convention).

Using this, Jacobi Iteration amounts to writing the equation as D~x = (U +L)~x+~b, then using the inverse matrix
D−1 to solve for ~x = D−1(U + L)~x +D−1~b. From here, we again treat the ~x on the left hand side as in the next stage
we want to compute, and on the right hand side as in the stage already computed.

Gauss-Seidel Iteration amounts to writing the equation as (D −L)~x = U~x+~b, then inverting (D −L) to solve for
~x = (D − L)−1U~x + (D − L)−1~b. Again, the left ~x lives in the stage we are computing, and the right ~x lives in the
previous stage. This description of the method has the slight advantage that it is expressed only as an operation
on the previously computed stage, rather than appealing to what progress has been made towards the next one;
however, it is really the same as before, because the actual operation simply duplicates the change done to that
variable each time it occurs.

The matrix approach has the advantage of being more compact to express, although for the same reason it can
be somewhat more difficult to follow what’s going on. Working out the matrices involved will reveal the same
equations, though. Ultimately, what’s going on is the same, and either way of phrasing the procedure will yield
the same results.

3


