Vector Equations

The Punch Line: Vector equations allow us to think about systems of linear equations as geometric objects, and are an efficient notation to work with.

Warm-Up: \quad Sketch the following vectors in \mathbb{R}^{2} :
(a) $\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(c) $\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(e) $\left[\begin{array}{l}2 \\ 3\end{array}\right]$
(b) $\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}-1 \\ -1\end{array}\right]$
(f) $\left[\begin{array}{l}3 \\ 2\end{array}\right]$

Linear Combinations: A linear combination of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ with weights $w_{1}, w_{2}, \ldots, w_{n}$ is the vector y defined by

$$
\mathbf{y}=w_{1} \mathbf{v}_{1}+w_{2} \mathbf{v}_{2}+\cdots+w_{n} \mathbf{v}_{n}
$$

That is, it's a sum of multiples of the vectors. Geometrically, it corresponds to stretching each vector \mathbf{v}_{i} (where i is one of $1,2, \ldots, n)$ by the weight w_{i}, then laying them end to end and drawing \mathbf{y} to the endpoint of the last vector.

1 Compute the following linear combinations:
(a) $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{l}2 \\ 3\end{array}\right]-\left[\begin{array}{l}3 \\ 2\end{array}\right]$
(e) $\left[\begin{array}{l}1 \\ 2\end{array}\right]+\left[\begin{array}{l}1 \\ 0\end{array}\right]-\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(b) $(-1)\left[\begin{array}{l}1 \\ 1\end{array}\right]$
(d) $\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]-2\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]+\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]$
(f) $4\left[\begin{array}{l}1 \\ \frac{1}{2}\end{array}\right]-2\left[\begin{array}{c}\frac{1}{3} \\ 1\end{array}\right]+3\left[\begin{array}{c}\frac{2}{9} \\ 2\end{array}\right]$

Think about what each of these linear combinations mean geometrically (try sketching them).
(a) Addition of vectors is componentwise, so this linear combination yields $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(b) Multiplication of a number and a vector (called scalar multiplication because the number is acting to scale the vector) is also componentwise, so this is $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
(c) Applying the rules in sequence, we get $\left[\begin{array}{l}2 \\ 3\end{array}\right]-\left[\begin{array}{l}3 \\ 2\end{array}\right]=\left[\begin{array}{l}2 \\ 3\end{array}\right]+\left[\begin{array}{l}-3 \\ -2\end{array}\right]=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$.
(d) The answer here is $\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$.
(e) This one is $\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(f) Finally, $\left[\begin{array}{l}4 \\ 6\end{array}\right]$.

Span: The span of the vectors $\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}$ is the set of all linear combinations of them. If \mathbf{x} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}, \ldots, \mathbf{v}_{n}\right\}$, then we will be able to find some weights $w_{1}, w_{2}, \ldots, w_{n}$ to make the linear combination using those weights result in x :

$$
w_{1} \mathbf{v}_{1}+w_{2} \mathbf{v}_{2}+\cdots+w_{n} \mathbf{v}_{n}=\mathbf{x} .
$$

Often, we are interested in determining if a given vector is in the span of some set of other vectors. In particular, a system of linear equations has a solution precisely when the rightmost column of the augmented matrix is in the span of the columns to the left of it. This means a system of linear equations is equivalent to a single vector equation.

2 Determine if \mathbf{x} is in the span of the given vectors:
(a) $\mathbf{x}=\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}-2 \\ 0 \\ 2\end{array}\right]$
(b) $\mathbf{x}=\left[\begin{array}{l}12 \\ 14\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(c) $\mathbf{x}=\left[\begin{array}{c}1 \\ -4\end{array}\right] ; \mathbf{v}_{1}=\left[\begin{array}{l}1 \\ 0\end{array}\right], \mathbf{v}_{2}=\left[\begin{array}{l}1 \\ 1\end{array}\right], \mathbf{v}_{3}=\left[\begin{array}{l}1 \\ 2\end{array}\right]$

If it is, describe the linear combination that yields it.
(a) To check this, we write down the vector equation

$$
a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}=\mathbf{x},
$$

which says "the linear combination with weights a_{1} and a_{2} of vectors \mathbf{v}_{1} and \mathbf{v}_{2} is \mathbf{x}^{\prime}. If \mathbf{x} is in $\operatorname{Span}\left\{\mathbf{v}_{1}, \mathbf{v}_{2}\right\}$, then this equation will have a solution. We can write it out in components to see that this is equivalent to the system of linear equations

$$
\begin{aligned}
a_{1}-2 a_{2} & =1 \\
a_{1} & =1 \\
a_{1}+2 a_{2} & =1 .
\end{aligned}
$$

By computing the Reduced Echelon Form of the augmented matrix of this system, we can identify any solutions, if they exist. However, the REF is $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$. Since the last column has a pivot entry, we can see that this system is inconsistent. This means that the system of linear equations, and therefore the vector equation, does not have a solution. This means no linear combination of \mathbf{v}_{1} and \mathbf{v}_{2} yields \mathbf{x}, so it is not in their span.
(b) By following the above procedure, we can find that \mathbf{x} is in the span of \mathbf{v}_{1} and \mathbf{v}_{2}, with weights $a_{1}=13$ and $a_{2}=-1$.
(c) Similarly, we find here that \mathbf{x} is in the span of $\mathbf{v}_{1}, \mathbf{v}_{2}$, and \mathbf{v}_{3}. Our REF is $\left[\begin{array}{cccc}1 & 0 & -1 & 5 \\ 0 & 1 & 2 & -4\end{array}\right]$, so we see that we have a free variable x_{3}, so there are infinitely many linear combinations that give \mathbf{x}. In particular, if $a_{1}=5+a_{3}$ and $a_{2}=-4-2 a_{3}$ (and a_{3} is anything) we have $a_{1} \mathbf{v}_{1}+a_{2} \mathbf{v}_{2}+a_{3} \mathbf{v}_{3}=\mathbf{x}$.

