Vector Equations

The Punch Line: Vector equations allow us to think about systems of linear equations as geometric objects, and are an efficient notation to work with.

Warm-Up:	Sketch the following vectors in \mathbb{R}^2 :	
$(a) \begin{bmatrix} 1\\ 0 \end{bmatrix}$ $(b) \begin{bmatrix} 0\\ 1 \end{bmatrix}$	(c) $\begin{bmatrix} 1\\1 \end{bmatrix}$ (d) $\begin{bmatrix} -1\\-1 \end{bmatrix}$	(e) $\begin{bmatrix} 2\\3 \end{bmatrix}$ (f) $\begin{bmatrix} 3\\2 \end{bmatrix}$

	٠	٠	٠	•		•	٠	۰	٠	
	٠	٠	٠				٠		•	
	٠	٠	٠	•		۰	٠	۰	٠	
	٠	٠	٠	0			٠		•	
+			-		+	-	-			\rightarrow
	•	•	•	•	- 1	•	•	•		
	•	•	•	•		•	•	•	•	
	•	0	•	•		•	•	•	•	
	•	•	•	•		•	•	•	•	
	•	•	•	•		•	•	•	•	

Linear Combinations: A *linear combination* of the vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$ with *weights* w_1, w_2, \dots, w_n is the vector \mathbf{y} defined by

$$\mathbf{y} = w_1 \mathbf{v}_1 + w_2 \mathbf{v}_2 + \dots + w_n \mathbf{v}_n.$$

That is, it's a sum of multiples of the vectors. Geometrically, it corresponds to stretching each vector \mathbf{v}_i (where *i* is one of 1, 2, ..., *n*) by the weight w_i , then laying them end to end and drawing \mathbf{y} to the endpoint of the last vector.

1 Compute the followin	g linear combinations:		
(a) $\begin{bmatrix} 1\\0 \end{bmatrix} + \begin{bmatrix} 0\\1 \end{bmatrix}$	(c) $\begin{bmatrix} 2\\3 \end{bmatrix} - \begin{bmatrix} 3\\2 \end{bmatrix}$	(e) $\begin{bmatrix} 1\\2 \end{bmatrix} + \begin{bmatrix} 1\\0 \end{bmatrix} - \begin{bmatrix} 1\\1 \end{bmatrix}$	
(b) $(-1)\begin{bmatrix}1\\1\end{bmatrix}$	(d) $\begin{bmatrix} 1\\2\\3 \end{bmatrix} - 2 \begin{bmatrix} 1\\1\\1 \end{bmatrix} + \begin{bmatrix} 1\\0\\-1 \end{bmatrix}$	(f) $4\begin{bmatrix}1\\\frac{1}{2}\end{bmatrix} - 2\begin{bmatrix}\frac{1}{3}\\1\end{bmatrix} + 3\begin{bmatrix}\frac{2}{9}\\2\end{bmatrix}$	

Think about what each of these linear combinations mean geometrically (try sketching them).

Span: The *span* of the vectors $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ is the set of all linear combinations of them. If \mathbf{x} is in Span { $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$ }, then we will be able to find some weights $w_1, w_2, ..., w_n$ to make the linear combination using those weights result in \mathbf{x} :

$$w_1\mathbf{v}_1 + w_2\mathbf{v}_2 + \dots + w_n\mathbf{v}_n = \mathbf{x}_n$$

Often, we are interested in determining if a given vector is in the span of some set of other vectors. In particular, a system of linear equations has a solution precisely when the rightmost column of the augmented matrix is in the span of the columns to the left of it. This means a system of linear equations is equivalent to a single vector equation.

2 Determine if x is in the span of the given vectors:
(a) $\mathbf{x} = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} -2 \\ 0 \\ 2 \end{bmatrix}$
(b) $\mathbf{x} = \begin{bmatrix} 12\\14 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1\\1 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1\\-1 \end{bmatrix}$
(c) $\mathbf{x} = \begin{bmatrix} 1 \\ -4 \end{bmatrix}; \mathbf{v}_1 = \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$

Under the Hood: The span of a collection of vectors is essentially the set of all vectors that can be constructed using the members of the collection as components. This means that if a vector is *not* in the span of the collection, it has some additional component that's different from everything in the collection.