
Math 4A
Worksheet 1.4 Key

Lecture 10/6/17

Matrix-Vector Products
The Punch Line: We can use even more compact notation than vector equations by introducing matrices. This

will allow us to study systems of linear equations by studying matrices.

Warm-Up: Write the following systems of linear equations as vector equations:

(a) The system with variables z1
and z2

z1 + 2z2 = 6

2z1 − 5z2 = 3.

(b) The system with variables x,
y, and z

x = x0

y = y0

z = z0.

(c) The system with variables x1,
x2, and x3

x1 + x2 + x3 = 3

x1 − 2x2 + x3 = 0

x1 − x3 = 0.

(a) z1

[
1
2

]
+ z2

[
2
−5

]
=

[
6
3

]

(b) x

10
0

+ y

01
0

+ z

00
1

 =

x0
y0
z0


(c) x1

11
1

+ x2

 1
−2
0

+ x3

 1
1
−1

 =

30
0
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The Technique: The linear combination x1~a1 + x2~a2 + · · ·+ xn~an is represented by the matrix-vector product

A~x =
[
~a1 ~a2 · · · ~an

]
x1
x2
...
xn

 .
This means that to compute a matrix-vector product, we can just write it back out as a linear combination of
the columns of the matrix. This means that matrix-vector products only work when there are precisely as many
columns in the matrix as there are entries in the vector.

1 Compute the following matrix-vector products:

(a)
[
1 2
2 −5

][
4
1

]

(b)

1 0 0
0 1 0
0 0 1


xy
z



(c)

1 1
1 −1
2 0


[
3
1

]

(d)
[
1 2 3
1 4 9

]−1
0
2



(a) We write this as [
1 2
2 −5

][
4
1

]
= 4

[
1
2

]
+ 1

[
2
−5

]
=

[
4(1) + 1(2)

4(2) + 1(−5)

]
=

[
6
3

]
.

(b) This is

xy
z

.
(c) This is

42
6

.
(d) This is

[
5

17

]
.

2



Applications: The matrix equation A~x =~b can be rephrased as the assertion that~b is in the span of the columns
of A. This gives us a geometric interpretation of systems of linear equations when we write them in matrix form—
an equation being true means a particular vector, ~b, is in the span of the collection of vectors

{
~a1,~a2, . . . ,~an

}
that

make up the matrix A. In this case, the vector ~x is the collection of weights in a linear combination that proves ~b
is in the span of the columns of A.

2 If possible, find at least one solution to each of these matrix equations (if not, explain why it is impossible):

(a)
[
1 2
2 −5

][
z1
z2

]
=

[
6
3

]

(b)

1 1 1
1 −2 1
1 0 −1


xy
z

 =

30
0



(c)

1 1
1 −1
2 0


[
x1
x2

]
=

b1
b2
b3


(d)

[
1 2 3
1 4 9

]x1
x2
x3

 =
[
0
0

]

(a) We have seen that
[
4
1

]
is a solution. To verify (and find any others), we write the augmented matrix

[
1 2 6
2 −5 3

]
.

This has Reduced Echelon Form
[
1 0 4
0 1 1

]
. From this, we can see that

[
4
1

]
is the unique solution (and, if we

hadn’t already done the multiplication from the previous problem, we have derived it from just the equa-
tions).

(b) We start with the augmented matrix

1 1 1 3
1 −2 1 0
1 0 −1 0

. This has REF

1 0 0 1
0 1 0 1
0 0 1 1

, so we see the unique

solution is

xy
z

 =

11
1

.
(c) The augmented matrix here is

1 1 b1
1 −1 b2
2 0 b3

. We work just with the left columns of the augmented matrix,

and find that in REF, it looks like

1 0 ∗
0 1 ∗
0 0 ∗

. This only works for some values that we could put into the ∗s,

but not in general. This means that this matrix equation is inconsistent for (most) ~b (and, therefore, that the
columns of the matrix do not span R3).

(d) Here, the REF of the augmented matrix is
[
1 0 −3 0
0 1 3 0

]
. We have a free variable in this, so there are

infinitely many solutions. We can choose a value for x3 to get a particular solution—choosing x3 = 0 gives

the solution

00
0

, while choosing x3 = 1 yields

 3
−3
1

. In fact, the set of all solutions can be represented as

~x = t

 3
−3
1

, which forms a line (more on this in the next section of the book).

Under the Hood: Given any vector ~b, the equation A~x = ~b means that ~b is in the span of the columns of A. This means that the span of the columns of A is

related to the set of all possible matrix equations that could be solved with A~x as the left hand side—there’s one for each ~b in the span!
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