Matrix-Vector Products

The Punch Line: We can use even more compact notation than vector equations by introducing matrices. This will allow us to study systems of linear equations by studying matrices.

Warm-Up: Write the following systems of linear equations as vector equations:
(a) The system with variables z_{1} and z_{2}
(b) The system with variables x, y, and z
(c) The system with variables x_{1}, x_{2}, and x_{3}

$$
\begin{array}{r}
z_{1}+2 z_{2}=6 \\
2 z_{1}-5 z_{2}=3 .
\end{array}
$$

$$
\begin{aligned}
& x=x_{0} \\
& y=y_{0} \\
& z=z_{0}
\end{aligned}
$$

$$
\begin{aligned}
x_{1}+x_{2}+x_{3} & =3 \\
x_{1}-2 x_{2}+x_{3} & =0 \\
x_{1}-x_{3} & =0
\end{aligned}
$$

The Technique: The linear combination $x_{1} \vec{a}_{1}+x_{2} \vec{a}_{2}+\cdots+x_{n} \vec{a}_{n}$ is represented by the matrix-vector product

$$
A \vec{x}=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \cdots & \vec{a}_{n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right] .
$$

This means that to compute a matrix-vector product, we can just write it back out as a linear combination of the columns of the matrix. This means that matrix-vector products only work when there are precisely as many columns in the matrix as there are entries in the vector.

1 Compute the following matrix-vector products:
(a) $\left[\begin{array}{cc}1 & 2 \\ 2 & -5\end{array}\right]\left[\begin{array}{l}4 \\ 1\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 2 & 0\end{array}\right]\left[\begin{array}{l}3 \\ 1\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right]\left[\begin{array}{c}-1 \\ 0 \\ 2\end{array}\right]$

Applications: The matrix equation $A \vec{x}=\vec{b}$ can be rephrased as the assertion that \vec{b} is in the span of the columns of A. This gives us a geometric interpretation of systems of linear equations when we write them in matrix forman equation being true means a particular vector, \vec{b}, is in the span of the collection of vectors $\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\}$ that make up the matrix A. In this case, the vector \vec{x} is the collection of weights in a linear combination that proves \vec{b} is in the span of the columns of A.

2 If possible, find at least one solution to each of these matrix equations (if not, explain why it is impossible):
(a) $\left[\begin{array}{cc}1 & 2 \\ 2 & -5\end{array}\right]\left[\begin{array}{l}z_{1} \\ z_{2}\end{array}\right]=\left[\begin{array}{l}6 \\ 3\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 1 \\ 1 & -1 \\ 2 & 0\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
(b) $\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 0 & -1\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}3 \\ 0 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 2 & 3 \\ 1 & 4 & 9\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$

Under the Hood: Given any vector \vec{b}, the equation $A \vec{x}=\vec{b}$ means that \vec{b} is in the span of the columns of A. This means that the span of the columns of A is related to the set of all possible matrix equations that could be solved with $A \vec{x}$ as the left hand side一there's one for each \vec{b} in the span!

