Matrix-Vector Products

The Punch Line: We can use even more compact notation than vector equations by introducing matrices. This will allow us to study systems of linear equations by studying matrices.

Warm-Up: Write the following systems of linear equations as vector equations:		
(a) The system with variables z_1 and z_2	(b) The system with variables <i>x</i> , <i>y</i> , and <i>z</i>	(c) The system with variables x_1 , x_2 , and x_3
$z_1 + 2z_2 = 6$ $2z_1 - 5z_2 = 3.$	$\begin{aligned} x &= x_0 \\ y &= y_0 \\ z &= z_0. \end{aligned}$	$x_1 + x_2 + x_3 = 3$ $x_1 - 2x_2 + x_3 = 0$ $x_1 - x_3 = 0.$

The Technique: The linear combination $x_1\vec{a}_1 + x_2\vec{a}_2 + \cdots + x_n\vec{a}_n$ is represented by the matrix-vector product

$$A\vec{x} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \cdots & \vec{a}_n \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}.$$

This means that to compute a matrix-vector product, we can just write it back out as a linear combination of the columns of the matrix. This means that matrix-vector products only work when there are precisely as many columns in the matrix as there are entries in the vector.

1 Compute the following matrix-vector products:	
(a) $\begin{bmatrix} 1 & 2 \\ 2 & -5 \end{bmatrix} \begin{bmatrix} 4 \\ 1 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix}$
(b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \begin{bmatrix} -1 \\ 0 \\ 2 \end{bmatrix}$

Applications: The matrix equation $A\vec{x} = \vec{b}$ can be rephrased as the assertion that \vec{b} is in the span of the columns of A. This gives us a geometric interpretation of systems of linear equations when we write them in matrix form an equation being true means a particular vector, \vec{b} , is in the span of the collection of vectors $\{\vec{a}_1, \vec{a}_2, ..., \vec{a}_n\}$ that make up the matrix A. In this case, the vector \vec{x} is the collection of weights in a linear combination that proves \vec{b} is in the span of the columns of A.

2 If possible, find at least one solution to each of these matrix equations (if not, explain why it is impossible):		
(a) $\begin{bmatrix} 1 & 2\\ 2 & -5 \end{bmatrix} \begin{bmatrix} z_1\\ z_2 \end{bmatrix} = \begin{bmatrix} 6\\ 3 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$	
(b) $\begin{bmatrix} 1 & 1 & 1 \\ 1 & -2 & 1 \\ 1 & 0 & -1 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ 0 \\ 0 \end{bmatrix}$	(d) $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 4 & 9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$	

Under the Hood: Given any vector \vec{b} , the equation $A\vec{x} = \vec{b}$ means that \vec{b} is in the span of the columns of *A*. This means that the span of the columns of *A* is related to the set of all possible matrix equations that could be solved with $A\vec{x}$ as the left hand side—there's one for each \vec{b} in the span!