
Math 4A
Key 1.8

Linear Transformations
The Punch Line: Matrix multiplication defines a special kind of function, known as a linear transformation.

Warm-Up: What do each of these situations mean (geometrically, algebraically, in an application, and/or
otherwise)?

(a) The product of the matrix
[
0 −1
1 0

]
and the vector

[
1
2

]
is
[
−2
1

]
.

(b) The vector

11
1

 is in the span of


11
0

 ,
10
1

 ,
01
1


.

(c) The equation

1 1 0
1 0 1
0 1 1

~x =

11
1

 has a solution.

(d) The set of vectors ~x such that the matrix equation A~x =~b is satisfied forms a plane in R3.

(e) The set of vectors ~b such that the matrix equation A~x =~b is satisfied forms a line in R2.

(f) For two particular vectors ~x and ~b, and a matrix A, the matrix equation A~x =~b is satisfied.

You might have more answers (and I would love to talk about them in office hours!), but here are some helpful
ones:

(a) The matrix rotates the vector
[
1
2

]
by 90◦ (or π

2 radians) counterclockwise to the vector
[
−2
1

]
. In fact, the

matrix rotates any vector by that angle, as you can check.

(b) There is a way to take a linear combination of the three vectors that yields the all-ones vector.

(c) There is a vector ~x that the matrix sends to (or transforms into) the all-ones vector.

(d) There are multiple linear combinations of the columns ofA that yield~b, andA sends (infinitely) many vectors
in R3 to ~b.

(e) The span of the columns of A is a line, and A transforms any vector it multiplies into a multiple of some
particular vector.

(f) The matrix A transforms the vector ~x into ~b.

1



What They Are: A linear transformation is a mapping T that obeys two rules:

(a) T (~u + ~v) = T (~u) + T (~v) for all ~u and ~v in its domain,

(b) T (c~u) = cT (~u) for all scalars c and ~u in its domain.

These rules lead to the rule T (c~u + d~v) = cT (~u) + dT (~v) for c,d scalars and ~u,~v in the domain of T , and in fact
T (c1~v1 + c2~v2 + · · ·+ cn~vn) = c1T (~v1) + c2T (~v2) + · · ·+ cnT (~vn). That is, the transformation of a linear combination of
vectors is a linear combination of the transformations of the vectors (with the same coefficients).

1 Are each of these operations linear transformations? Why or why not?

(a) T (~x) = 4~x

(b) T (~x) = A~x for some matrix A (with the right number of columns)

(c) T (~x) = ~0

(d) T (~x) =~b for some nonzero ~b

(e) T (~x) = ~x+~b for some nonzero ~b

(f) T (~x) takes a vector in R2 and rotates it by 45◦ (π4 radians) counter-clockwise in the plane

(a) Yes, because 4(~u + ~v) = 4~u + 4~v by the distributive property, and 4(c~u) = 4c~u = c(4~u) by the associative and
commutative properties of scalar multiplication.

(b) Yes, the two properties of linear transformations are properties of matrix multiplication.

(c) Yes, because T (~u + ~v) = ~0 = ~0 +~0 = T (~u) + T (~v) and T (c~u) = ~0 = c~0 = cT (~u). Note that we can find a matrix O
(all of whose entries are zero) such that O~x = ~0.

(d) No, because T (c~u) =~b, and cT (~u) = c~b, but ~b , c~b if c , 1 and ~b , ~0.

(e) No, because T (~u + ~v) = (~u + ~v) +~b = ~u + ~v +~b, but T (~u) + T (~v) = (~u +~b) + (~v +~b) = ~u + ~v + 2~b, which is different
for ~b , ~0.

(f) Yes. It’s pretty clear the T (c~x) = cT (~x), because rotating a vector doesn’t change its length, so if the input
was a multiple of ~x, the output will be that same multiple of T (~x). It’s probably easiest to convince yourself
that the vector addition property works with a sketch, but the gist is that rotating both vectors by the same
amount doesn’t change the relative angle between them, so laying them tail-to-head after the rotation looks
essentially the same except for the initial angle. As it turns out, there’s a matrix that accomplishes this linear
transformation as well:

T (~x) =

 1√
2

−1√
2

1√
2

1√
2

~x.
It’s not necessary to find this, but it does prove it’s linear (by part (b)), and it’s suggestive of things that will
happen further along in the course...
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What They Do: Linear transformations convert between two different spaces, such as Rn and Rm. If n = m,
then we can also think of them moving around the vectors inside Rn (e.g., by rotation or stretching).

2 What do the linear transformations corresponding to multiplication by these matrices do, geometrically?
(Try applying the matrix to a vector composed of variables, then examining the result, or multiplying by a
few simple vectors and sketching what happens.)

(a)
[
1 0
0 1

]

(b)
[
0 1
1 0

]
(c)

0 −1 0
1 0 0
0 0 1


(d)

0 0 0
0 0 0
0 0 1



(e)
[
2 0
0 2

]

(f)
[
1 0
0 4

]

(a) This matrix does not change vectors it multiplies against.

(b) This matrix switches the coordinates of vectors it multiplies against, which reflects them about the line y = x.

(c) This rotates the x and y components by 90◦ (or π
2 radians), while leaving z alone.

(d) This “projects” a vector onto the z axis (it gives the vector that matches the input in height, but doesn’t have
any x or y components).

(e) This doubles the length of the vector.

(f) This quadruples the y coordinate while leaving x unchanged (this is sometimes called a shear transforma-
tion).
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