Linear Transformations

The Punch Line: Matrix multiplication defines a special kind of function, known as a linear transformation.

Warm-Up: What do each of these situations mean (geometrically, algebraically, in an application, and/or otherwise)?
(a) The product of the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
(b) The vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in the span of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.
(c) The equation $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ has a solution.
(d) The set of vectors \vec{x} such that the matrix equation $A \vec{x}=\vec{b}$ is satisfied forms a plane in \mathbb{R}^{3}.
(e) The set of vectors \vec{b} such that the matrix equation $A \vec{x}=\vec{b}$ is satisfied forms a line in \mathbb{R}^{2}.
(f) For two particular vectors \vec{x} and \vec{b}, and a matrix A, the matrix equation $A \vec{x}=\vec{b}$ is satisfied.

You might have more answers (and I would love to talk about them in office hours!), but here are some helpful ones:
(a) The matrix rotates the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ by 90° (or $\frac{\pi}{2}$ radians) counterclockwise to the vector $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$. In fact, the matrix rotates any vector by that angle, as you can check.
(b) There is a way to take a linear combination of the three vectors that yields the all-ones vector.
(c) There is a vector \vec{x} that the matrix sends to (or transforms into) the all-ones vector.
(d) There are multiple linear combinations of the columns of A that yield \vec{b}, and A sends (infinitely) many vectors in \mathbb{R}^{3} to \vec{b}.
(e) The span of the columns of A is a line, and A transforms any vector it multiplies into a multiple of some particular vector.
(f) The matrix A transforms the vector \vec{x} into \vec{b}.

What They Are: A linear transformation is a mapping T that obeys two rules:
(a) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u} and \vec{v} in its domain,
(b) $T(c \vec{u})=c T(\vec{u})$ for all scalars c and \vec{u} in its domain.

These rules lead to the rule $T(c \vec{u}+d \vec{v})=c T(\vec{u})+d T(\vec{v})$ for c, d scalars and \vec{u}, \vec{v} in the domain of T, and in fact $T\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right)=c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{2}\right)+\cdots+c_{n} T\left(\vec{v}_{n}\right)$. That is, the transformation of a linear combination of vectors is a linear combination of the transformations of the vectors (with the same coefficients).

1 Are each of these operations linear transformations? Why or why not?
(a) $T(\vec{x})=4 \vec{x}$
(b) $T(\vec{x})=A \vec{x}$ for some matrix A (with the right number of columns)
(c) $T(\vec{x})=\overrightarrow{0}$
(d) $T(\vec{x})=\vec{b}$ for some nonzero \vec{b}
(e) $T(\vec{x})=\vec{x}+\vec{b}$ for some nonzero \vec{b}
(f) $T(\vec{x})$ takes a vector in \mathbb{R}^{2} and rotates it by $45^{\circ}\left(\frac{\pi}{4}\right.$ radians) counter-clockwise in the plane
(a) Yes, because $4(\vec{u}+\vec{v})=4 \vec{u}+4 \vec{v}$ by the distributive property, and $4(c \vec{u})=4 c \vec{u}=c(4 \vec{u})$ by the associative and commutative properties of scalar multiplication.
(b) Yes, the two properties of linear transformations are properties of matrix multiplication.
(c) Yes, because $T(\vec{u}+\vec{v})=\overrightarrow{0}=\overrightarrow{0}+\overrightarrow{0}=T(\vec{u})+T(\vec{v})$ and $T(c \vec{u})=\overrightarrow{0}=c \overrightarrow{0}=c T(\vec{u})$. Note that we can find a matrix O (all of whose entries are zero) such that $O \vec{x}=\overrightarrow{0}$.
(d) No, because $T(c \vec{u})=\vec{b}$, and $c T(\vec{u})=c \vec{b}$, but $\vec{b} \neq c \vec{b}$ if $c \neq 1$ and $\vec{b} \neq \overrightarrow{0}$.
(e) No, because $T(\vec{u}+\vec{v})=(\vec{u}+\vec{v})+\vec{b}=\vec{u}+\vec{v}+\vec{b}$, but $T(\vec{u})+T(\vec{v})=(\vec{u}+\vec{b})+(\vec{v}+\vec{b})=\vec{u}+\vec{v}+2 \vec{b}$, which is different for $\vec{b} \neq \overrightarrow{0}$.
(f) Yes. It's pretty clear the $T(c \vec{x})=c T(\vec{x})$, because rotating a vector doesn't change its length, so if the input was a multiple of \vec{x}, the output will be that same multiple of $T(\vec{x})$. It's probably easiest to convince yourself that the vector addition property works with a sketch, but the gist is that rotating both vectors by the same amount doesn't change the relative angle between them, so laying them tail-to-head after the rotation looks essentially the same except for the initial angle. As it turns out, there's a matrix that accomplishes this linear transformation as well:

$$
T(\vec{x})=\left[\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}}
\end{array}\right] \vec{x}
$$

It's not necessary to find this, but it does prove it's linear (by part (b)), and it's suggestive of things that will happen further along in the course...

What They Do: Linear transformations convert between two different spaces, such as \mathbb{R}^{n} and \mathbb{R}^{m}. If $n=m$, then we can also think of them moving around the vectors inside \mathbb{R}^{n} (e.g., by rotation or stretching).

2 What do the linear transformations corresponding to multiplication by these matrices do, geometrically? (Try applying the matrix to a vector composed of variables, then examining the result, or multiplying by a few simple vectors and sketching what happens.)
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(e) $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$
(a) This matrix does not change vectors it multiplies against.
(b) This matrix switches the coordinates of vectors it multiplies against, which reflects them about the line $y=x$.
(c) This rotates the x and y components by 90° (or $\frac{\pi}{2}$ radians), while leaving z alone.
(d) This "projects" a vector onto the z axis (it gives the vector that matches the input in height, but doesn't have any x or y components).
(e) This doubles the length of the vector.
(f) This quadruples the y coordinate while leaving x unchanged (this is sometimes called a shear transformation).

