Linear Transformations

The Punch Line: Matrix multiplication defines a special kind of function, known as a linear transformation.

Warm-Up: What do each of these situations mean (geometrically, algebraically, in an application, and/or otherwise)?

(a) The product of the matrix
$$\begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}$$
 and the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ is $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$

(b) The vector
$$\begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 is in the span of $\left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix}, \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$.

(c) The equation
$$\begin{bmatrix} 1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$
 has a solution

(d) The set of vectors \vec{x} such that the matrix equation $A\vec{x} = \vec{b}$ is satisfied forms a plane in \mathbb{R}^3 .

(e) The set of vectors \vec{b} such that the matrix equation $A\vec{x} = \vec{b}$ is satisfied forms a line in \mathbb{R}^2 .

(f) For two particular vectors \vec{x} and \vec{b} , and a matrix *A*, the matrix equation $A\vec{x} = \vec{b}$ is satisfied.

You might have more answers (and I would love to talk about them in office hours!), but here are some helpful ones:

- (a) The matrix rotates the vector $\begin{bmatrix} 1 \\ 2 \end{bmatrix}$ by 90° (or $\frac{\pi}{2}$ radians) counterclockwise to the vector $\begin{bmatrix} -2 \\ 1 \end{bmatrix}$. In fact, the matrix rotates *any* vector by that angle, as you can check.
- (b) There is a way to take a linear combination of the three vectors that yields the all-ones vector.
- (c) There is a vector \vec{x} that the matrix sends to (or transforms into) the all-ones vector.
- (d) There are multiple linear combinations of the columns of A that yield \vec{b} , and A sends (infinitely) many vectors in \mathbb{R}^3 to \vec{b} .
- (e) The span of the columns of A is a line, and A transforms any vector it multiplies into a multiple of some particular vector.
- (f) The matrix A transforms the vector \vec{x} into \vec{b} .

What They Are: A *linear transformation* is a mapping *T* that obeys two rules:

- (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u} and \vec{v} in its domain,
- (b) $T(c\vec{u}) = cT(\vec{u})$ for all scalars *c* and \vec{u} in its domain.

These rules lead to the rule $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$ for *c*, *d* scalars and \vec{u}, \vec{v} in the domain of *T*, and in fact $T(c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n) = c_1T(\vec{v}_1) + c_2T(\vec{v}_2) + \dots + c_nT(\vec{v}_n)$. That is, the transformation of a linear combination of vectors is a linear combination of the transformations of the vectors (with the same coefficients).

- 1 Are each of these operations linear transformations? Why or why not?
 - (a) $T(\vec{x}) = 4\vec{x}$
 - (b) $T(\vec{x}) = A\vec{x}$ for some matrix A (with the right number of columns)
 - (c) $T(\vec{x}) = \vec{0}$
 - (d) $T(\vec{x}) = \vec{b}$ for some nonzero \vec{b}
 - (e) $T(\vec{x}) = \vec{x} + \vec{b}$ for some nonzero \vec{b}
 - (f) $T(\vec{x})$ takes a vector in \mathbb{R}^2 and rotates it by 45° ($\frac{\pi}{4}$ radians) counter-clockwise in the plane
- (a) Yes, because $4(\vec{u} + \vec{v}) = 4\vec{u} + 4\vec{v}$ by the distributive property, and $4(c\vec{u}) = 4c\vec{u} = c(4\vec{u})$ by the associative and commutative properties of scalar multiplication.
- (b) Yes, the two properties of linear transformations are properties of matrix multiplication.
- (c) Yes, because $T(\vec{u} + \vec{v}) = \vec{0} = \vec{0} + \vec{0} = T(\vec{u}) + T(\vec{v})$ and $T(c\vec{u}) = \vec{0} = c\vec{0} = cT(\vec{u})$. Note that we can find a matrix *O* (all of whose entries are zero) such that $O\vec{x} = \vec{0}$.
- (d) No, because $T(c\vec{u}) = \vec{b}$, and $cT(\vec{u}) = c\vec{b}$, but $\vec{b} \neq c\vec{b}$ if $c \neq 1$ and $\vec{b} \neq \vec{0}$.
- (e) No, because $T(\vec{u} + \vec{v}) = (\vec{u} + \vec{v}) + \vec{b} = \vec{u} + \vec{v} + \vec{b}$, but $T(\vec{u}) + T(\vec{v}) = (\vec{u} + \vec{b}) + (\vec{v} + \vec{b}) = \vec{u} + \vec{v} + 2\vec{b}$, which is different for $\vec{b} \neq \vec{0}$.
- (f) Yes. It's pretty clear the $T(c\vec{x}) = cT(\vec{x})$, because rotating a vector doesn't change its length, so if the input was a multiple of \vec{x} , the output will be that same multiple of $T(\vec{x})$. It's probably easiest to convince yourself that the vector addition property works with a sketch, but the gist is that rotating both vectors by the same amount doesn't change the *relative* angle between them, so laying them tail-to-head after the rotation looks essentially the same except for the initial angle. As it turns out, there's a matrix that accomplishes this linear transformation as well:

$$T(\vec{x}) = \begin{bmatrix} \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix} \vec{x}$$

It's not necessary to find this, but it does prove it's linear (by part (b)), and it's suggestive of things that will happen further along in the course...

What They Do: Linear transformations convert between two different spaces, such as \mathbb{R}^n and \mathbb{R}^m . If n = m, then we can also think of them moving around the vectors inside \mathbb{R}^n (e.g., by rotation or stretching).

2 What do the linear transformations corresponding to multiplication by these matrices do, geometrically? (Try applying the matrix to a vector composed of variables, then examining the result, or multiplying by a few simple vectors and sketching what happens.)

(a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(c) $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(e) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
(b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	$(\mathbf{d}) \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(f) $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$

- (a) This matrix does not change vectors it multiplies against.
- (b) This matrix switches the coordinates of vectors it multiplies against, which reflects them about the line y = x.
- (c) This rotates the x and y components by 90° (or $\frac{\pi}{2}$ radians), while leaving z alone.
- (d) This "projects" a vector onto the *z* axis (it gives the vector that matches the input in height, but doesn't have any *x* or *y* components).
- (e) This doubles the length of the vector.
- (f) This quadruples the y coordinate while leaving x unchanged (this is sometimes called a shear transformation).