Linear Transformations

The Punch Line: Matrix multiplication defines a special kind of function, known as a *linear transformation*.

Warm-Up: What do each of these situations mean (geometrically, algebraically, in an application, and/or otherwise)?

What They Are: A *linear transformation* is a mapping *T* that obeys two rules:

- (a) $T(\vec{u} + \vec{v}) = T(\vec{u}) + T(\vec{v})$ for all \vec{u} and \vec{v} in its domain,
- (b) $T(c\vec{u}) = cT(\vec{u})$ for all scalars *c* and \vec{u} in its domain.

These rules lead to the rule $T(c\vec{u} + d\vec{v}) = cT(\vec{u}) + dT(\vec{v})$ for c, d scalars and \vec{u}, \vec{v} in the domain of T, and in fact $T(c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_n\vec{v}_n) = c_1T(\vec{v}_1) + c_2T(\vec{v}_2) + \dots + c_nT(\vec{v}_n)$. That is, the transformation of a linear combination of vectors is a linear combination of the transformations of the vectors (with the same coefficients).

- 1 Are each of these operations linear transformations? Why or why not?
 - (a) $T(\vec{x}) = 4\vec{x}$
 - (b) $T(\vec{x}) = A\vec{x}$ for some matrix A (with the right number of columns)
 - (c) $T(\vec{x}) = \vec{0}$
 - (d) $T(\vec{x}) = \vec{b}$ for some nonzero \vec{b}
 - (e) $T(\vec{x}) = \vec{x} + \vec{b}$ for some nonzero \vec{b}
 - (f) $T(\vec{x})$ takes a vector in \mathbb{R}^2 and rotates it by 45° ($\frac{\pi}{4}$ radians) counter-clockwise in the plane

What They Do: Linear transformations convert between two different spaces, such as \mathbb{R}^n and \mathbb{R}^m . If n = m, then we can also think of them moving around the vectors inside \mathbb{R}^n (e.g., by rotation or stretching).

2 What do the linear transformations corresponding to multiplication by these matrices do, geometrically? (Try applying the matrix to a vector composed of variables, then examining the result, or multiplying by a few simple vectors and sketching what happens.)

(a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(c) $\begin{bmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(e) $\begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}$
(b) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$	(d) $\begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix}$	(f) $\begin{bmatrix} 1 & 0 \\ 0 & 4 \end{bmatrix}$