Linear Transformations

The Punch Line: Matrix multiplication defines a special kind of function, known as a linear transformation.

Warm-Up: What do each of these situations mean (geometrically, algebraically, in an application, and/or otherwise)?
(a) The product of the matrix $\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ and the vector $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ is $\left[\begin{array}{c}-2 \\ 1\end{array}\right]$.
(b) The vector $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ is in the span of $\left\{\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]\right\}$.
(c) The equation $\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right]$ has a solution.
(d) The set of vectors \vec{x} such that the matrix equation $A \vec{x}=\vec{b}$ is satisfied forms a plane in \mathbb{R}^{3}.
(e) The set of vectors \vec{b} such that the matrix equation $A \vec{x}=\vec{b}$ is satisfied forms a line in \mathbb{R}^{2}.
(f) For two particular vectors \vec{x} and \vec{b}, and a matrix A, the matrix equation $A \vec{x}=\vec{b}$ is satisfied.

What They Are: A linear transformation is a mapping T that obeys two rules:
(a) $T(\vec{u}+\vec{v})=T(\vec{u})+T(\vec{v})$ for all \vec{u} and \vec{v} in its domain,
(b) $T(c \vec{u})=c T(\vec{u})$ for all scalars c and \vec{u} in its domain.

These rules lead to the rule $T(c \vec{u}+d \vec{v})=c T(\vec{u})+d T(\vec{v})$ for c, d scalars and \vec{u}, \vec{v} in the domain of T, and in fact $T\left(c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}\right)=c_{1} T\left(\vec{v}_{1}\right)+c_{2} T\left(\vec{v}_{2}\right)+\cdots+c_{n} T\left(\vec{v}_{n}\right)$. That is, the transformation of a linear combination of vectors is a linear combination of the transformations of the vectors (with the same coefficients).

1 Are each of these operations linear transformations? Why or why not?
(a) $T(\vec{x})=4 \vec{x}$
(b) $T(\vec{x})=A \vec{x}$ for some matrix A (with the right number of columns)
(c) $T(\vec{x})=\overrightarrow{0}$
(d) $T(\vec{x})=\vec{b}$ for some nonzero \vec{b}
(e) $T(\vec{x})=\vec{x}+\vec{b}$ for some nonzero \vec{b}
(f) $T(\vec{x})$ takes a vector in \mathbb{R}^{2} and rotates it by $45^{\circ}\left(\frac{\pi}{4}\right.$ radians) counter-clockwise in the plane

What They Do: Linear transformations convert between two different spaces, such as \mathbb{R}^{n} and \mathbb{R}^{m}. If $n=m$, then we can also think of them moving around the vectors inside \mathbb{R}^{n} (e.g., by rotation or stretching).

2 What do the linear transformations corresponding to multiplication by these matrices do, geometrically? (Try applying the matrix to a vector composed of variables, then examining the result, or multiplying by a few simple vectors and sketching what happens.)
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ccc}0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(e) $\left[\begin{array}{ll}2 & 0 \\ 0 & 2\end{array}\right]$
(b) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1\end{array}\right]$
(f) $\left[\begin{array}{ll}1 & 0 \\ 0 & 4\end{array}\right]$

