The Matrix of a Linear Transformation

The Punch Line: Linear transformations from \mathbb{R}^{n} to \mathbb{R}^{m} are all equivalent to matrix transformations, even when they are described in other ways.

Warm-Up: What does the linear transformation corresponding to multiplication by each of these matrices do geometrically (don't worry too much about the exact values for things like rotation or scaling)?
(a) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(c) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right]$
(a) This is a reflection about the x-axis-the y coordinate of each point is negated, so vectors above the axis are moved an equal distance below it, without changing in x.
(b) This is both a rotation by $45^{\circ}\left(\frac{\pi}{4}\right.$ radians), and a scaling by $\sqrt{2}$.
(c) This is a projection to the $x y$-plane-the z coordinate collapses down to zero while the other coordinates remain unchanged.
(d) This maps a vector in \mathbb{R}^{3} to the vector in \mathbb{R}^{2} that looks like its projection in the $x y$ plane. While this is a very similar transformation to the previous one, it's important to note that this time, the result is in a different space (honest-to-goodness \mathbb{R}^{2}, rather than a plane in \mathbb{R}^{3}).

Getting the Matrix: We can write down a matrix that accomplishes any linear transformation from \mathbb{R}^{n} to \mathbb{R}^{m} by writing down what the transformation does to the vectors corresponding to each component (these have a single 1 and the rest of their entries as zeros, and make up the columns of the $n \times n$ identity matrix, which has ones down the diagonal and zeros elsewhere).

1 Write down a matrix for each of these linear transformations.
(a) In \mathbb{R}^{2}, rotation by 180° (π radians) counterclockwise.
(b) In \mathbb{R}^{3}, rotation by 180° (π radians) counterclockwise in the $x z$ plane.
(c) In \mathbb{R}^{2}, stretching the x direction by a factor of 2 then reflecting about the line $y=x$.
(d) In \mathbb{R}^{3}, the transformation that looks like a "vertical" (that is, the z direction is the one which moves) shear in both the $x z$ and $y z$ planes, each with a "shear factor" (the amount the corner of the unit square moves) of 2 .
[Note: Don't worry too much if this one's harder than the rest, shear transformations are hard to describe. If you get stuck, it might be a good idea to work on Problem 2 rather than sink in too much time here.]
(a) We see that $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ is sent to $\left[\begin{array}{c}-1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ is sent to $\left[\begin{array}{c}0 \\ -1\end{array}\right]$. Putting these together, we get the matrix $\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]$.
(b) Here we get $\left[\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & -1\end{array}\right]$.
(c) Here $\left[\begin{array}{ll}0 & 2 \\ 1 & 0\end{array}\right]$.
(d) Here $\left[\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 2 \\ 0 & 0 & 1\end{array}\right]$ (ask me if you want to talk about why).

One to One and Onto: When describing a linear transformation T from \mathbb{R}^{n} to \mathbb{R}^{m}, we say T is one to one if each vector in \mathbb{R}^{m} is the image of at most one vector in \mathbb{R}^{n} (it can fail to be the image of any vector, it just can't be the image of two different ones). We say T is onto if each vector in \mathbb{R}^{m} is the image of at least one vector in \mathbb{R}^{n} (it can be the image of more than one).

We can test these conditions with ideas we already know: T is one-to-one if and only if the columns of its matrix are linearly independent, and onto if and only if they span \mathbb{R}^{m}. An equivalent test for T being one-to-one is that the equation $A \vec{x}=\overrightarrow{0}$ (where A is the matrix of T) has only the trivial solution if and only if T is one-to-one. An equivalent test for onto is that $A \vec{x}=\vec{b}$ is consistent for all \vec{b} in \mathbb{R}^{m}.

2 Determine if the linear transformations with the following matrices are one-to-one, onto, both, or neither.
(a) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
(c) $\left[\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 1 & 0\end{array}\right]$
(e) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0\end{array}\right]$
(b) $\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$
(d) $\left[\begin{array}{lll}1 & 0 & 1 \\ 0 & 1 & 1\end{array}\right]$
(f) $\left[\begin{array}{ccc}2 & 1 & 0 \\ 6 & -3 & 12 \\ 5 & 2 & 1\end{array}\right]$
(a) This is both, as $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ both spans \mathbb{R}^{2} and is linearly independent.
(b) This is also both.
(c) This is one-to-one but not onto, as $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]\right\}$ is linearly independent, but does not span \mathbb{R}^{3} (in particular, $\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right]$ is not in their span).
(d) This is onto but not one-to-one, as $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$ spans \mathbb{R}^{2}, but is not linearly independent (in particular, $\left[\begin{array}{l}1 \\ 0\end{array}\right]+\left[\begin{array}{l}0 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$.
(e) This is neither, as $A\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]=\overrightarrow{0}$ and $\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]$ (for example) is not in the span of the columns.
(f) This is also neither, as the columns are linearly dependent and do not span \mathbb{R}^{3}.

[^0]
[^0]: Why does the $A \vec{x}=\overrightarrow{0}$ test work? If $A \vec{x}=A \vec{y}$, then $A(\vec{x}-\vec{y})=\overrightarrow{0}$. If x and y weren't the same to begin with, then their difference is mapped to $\overrightarrow{0}$ by A as a consequence of them having the same value for the product. Similarly, if $A \vec{z}=\overrightarrow{0}$ for a nonzero \vec{z}, then $A(\vec{x}+\vec{z})=A \vec{x}+A \vec{z}=A \vec{x}$, even though $\vec{x} \neq \vec{x}+\vec{z}$.

