The Matrix of a Linear Transformation

The Punch Line: Linear transformations from \mathbb{R}^n to \mathbb{R}^m are *all* equivalent to matrix transformations, even when they are described in other ways.

Warm-Up: What does the linear transformation corresponding to multiplication by each of these matrices do geometrically (don't worry too much about the exact values for things like rotation or scaling)?

(a)
$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$
(c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ (b) $\begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$

Getting the Matrix: We can write down a matrix that accomplishes any linear transformation from \mathbb{R}^n to \mathbb{R}^m by writing down what the transformation does to the vectors corresponding to each component (these have a single 1 and the rest of their entries as zeros, and make up the columns of the $n \times n$ identity matrix, which has ones down the diagonal and zeros elsewhere).

1 Write down a matrix for each of these linear transformations.		
(a) In \mathbb{R}^2 , rotation by 180° (π radians) counter- clockwise.	(d) In \mathbb{R}^3 , the transformation that looks like a "vertical" (that is, the <i>z</i> direction is the one which moves) shear in both the <i>xz</i> and <i>yz</i> planes, each	
(b) In \mathbb{R}^3 , rotation by 180° (π radians) counter- clockwise in the <i>xz</i> plane.	with a "shear factor" (the amount the corner of the unit square moves) of 2.	
	[Note: Don't worry too much if this one's harder than the rest, shear transformations are hard to describe.	
(c) In \mathbb{R}^2 , stretching the <i>x</i> direction by a factor of 2 then reflecting about the line $v = x$.	If you get stuck, it might be a good idea to work on Problem 2 rather than sink in too much time here.]	

One to One and Onto: When describing a linear transformation T from \mathbb{R}^n to \mathbb{R}^m , we say T is *one to one* if each vector in \mathbb{R}^m is the image of at most one vector in \mathbb{R}^n (it can fail to be the image of any vector, it just can't be the image of two different ones). We say T is *onto* if each vector in \mathbb{R}^m is the image of at least one vector in \mathbb{R}^n (it can be the image of at least one vector in \mathbb{R}^n (it can be the image of more than one).

We can test these conditions with ideas we already know: *T* is one-to-one if and only if the columns of its matrix are linearly independent, and onto if and only if they span \mathbb{R}^m . An equivalent test for *T* being one-to-one is that the equation $A\vec{x} = \vec{0}$ (where *A* is the matrix of *T*) has only the trivial solution if and only if *T* is one-to-one. An equivalent test for onto is that $A\vec{x} = \vec{b}$ is consistent for all \vec{b} in \mathbb{R}^m .

2 Determine if the linear transformations with the following matrices are one-to-one, onto, both, or neither.		
(a) $\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 \\ 1 & 1 \\ 1 & 0 \end{bmatrix}$	$(e) \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$
(b) $\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}$	$(d) \begin{bmatrix} 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$	(f) $\begin{bmatrix} 2 & 1 & 0 \\ 6 & -3 & 12 \\ 5 & 2 & 1 \end{bmatrix}$

Why does the $A\vec{x} = \vec{0}$ test work? If $A\vec{x} = A\vec{y}$, then $A(\vec{x} - \vec{y}) = \vec{0}$. If x and y weren't the same to begin with, then their difference is mapped to $\vec{0}$ by A as a consequence of them having the same value for the product. Similarly, if $A\vec{z} = \vec{0}$ for a nonzero \vec{z} , then $A(\vec{x} + \vec{z}) = A\vec{x} + A\vec{z} = A\vec{x}$, even though $\vec{x} \neq \vec{x} + \vec{z}$.