The Inverse of a Matrix

The Punch Line: Undoing a linear transformation given by a matrix corresponds to a particular matrix operation known as inverse.

Warm-Up: Are the following vector operations reversible/invertible?
(a) $T(\vec{x})=4 \vec{x}$
(d) $T(\vec{x})=\vec{x}+\vec{b}$
(b) $T(\vec{x})$ is counterclockwise rotation in the plane by 45° ($\frac{\pi}{4}$ radians)
(e) $T(\vec{x})=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \vec{x}$
(c) $T(\vec{x})=\overrightarrow{0}$
(f) $T(\vec{x})=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right] \vec{x}$
(a) Yes, with inverse $T^{-1}(\vec{x})=\frac{1}{4} \vec{x}$.
(b) Yes, with an inverse given by clockwise 45° rotation.
(c) No, because we can't tell what the input was if everything goes to the same place.
(d) Yes, with inverse $T^{-1}(\vec{x})=\vec{x}-\vec{b}$; note that this is not a linear transformation unless $\vec{b}=\overrightarrow{0}$.
(e) Yes, by multiplying by the same matrix again (switching components twice puts them back where they began).
(f) No, because $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ and $\left[\begin{array}{c}2 \\ -2\end{array}\right]$ are both sent to $\overrightarrow{0}$, so you can't tell which you started with by looking at the result.

The Inverse: The inverse of an $n \times n$ matrix A is another matrix B that satisfies the two matrix equations $A B=I_{n}$ and $B A=I_{n}$, where the identity matrix I_{n} has ones on the diagonal and zeroes everywhere else. We use the notation A^{-1} to refer to such a B (which, if it exists, is unique).

We can find the inverse of a matrix by applying row operations to the augmented matrix $\left[\begin{array}{ll}A & I_{n}\end{array}\right]$ (which is augmented with the n columns of the identity matrix, rather than a single vector). If the left part of the augmented matrix can be transformed by row operations to I_{n}, then the right part will be transformed by those row operations to A^{-1}. If the system is inconsistent, the matrix A is not invertible (and we may call it singular).

1 Find the inverse of these matrices (you may want to check your results by multiplying the result with the original matrix):
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(c) $\left[\begin{array}{ll}3 & -1 \\ 7 & -2\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
(a) We find the REF of the augmented matrix $\left[\begin{array}{llll}0 & 1 & 1 & 0 \\ 1 & 0 & 0 & 1\end{array}\right]$, which is $\left[\begin{array}{llll}1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 0\end{array}\right]$, so the inverse of the matrix is $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$. Indeed, $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$. Compare to the argument in part e) of the Warm-Up.
(b) This is $\left[\begin{array}{ll}\frac{1}{2} & 0 \\ 0 & \frac{1}{3}\end{array}\right]$.
(c) This is $\left[\begin{array}{ll}-2 & 1 \\ -7 & 3\end{array}\right]$.
(d) This is $\left[\begin{array}{ccc}-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]$.

Relevance to Matrix Equations: The inverse of a matrix allows you to "reverse engineer" a matrix equation, in the sense that if $A \vec{x}=\vec{b}$ and A is invertible, then $\vec{x}=A^{-1} \vec{b}$ is a solution to the original equation. In fact, it is the unique solution to the equation!

2 Use the inverses computed previously to solve these matrix equations:
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right] \vec{x}=\left[\begin{array}{c}1 \\ -1\end{array}\right]$
(c) $\left[\begin{array}{ll}3 & -1 \\ 7 & -2\end{array}\right] \vec{x}=\left[\begin{array}{c}a \\ a+1\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & 3\end{array}\right] \vec{x}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$
(d) $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right] \vec{x}=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$
(a) We use the inverse calculated previously to get $\left[\begin{array}{c}-1 \\ 1\end{array}\right]$.
(b) Here we get $\left[\begin{array}{l}\frac{1}{2} \\ 0\end{array}\right]$.
(c) We use the matrix as follows: $\left[\begin{array}{cc}-2 & 1 \\ -7 & 3\end{array}\right]\left[\begin{array}{c}a \\ a+1\end{array}\right]=\left[\begin{array}{c}1-a \\ 3-4 a\end{array}\right]$.
(d) Similarly, $\left[\begin{array}{ccc}-\frac{1}{2} & \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} & -\frac{1}{2}\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{c}\frac{-a+b+c}{-2} \\ \frac{a-b+c}{2} \\ \frac{a+b-c}{2}\end{array}\right]$.

