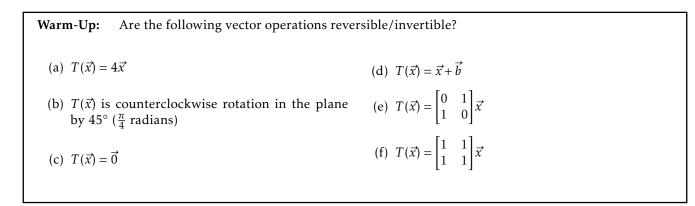
The Inverse of a Matrix

The Punch Line: Undoing a linear transformation given by a matrix corresponds to a particular matrix operation known as *inverse*.



The Inverse: The *inverse* of an $n \times n$ matrix A is another matrix B that satisfies the two matrix equations $AB = I_n$ and $BA = I_n$, where the *identity matrix* I_n has ones on the diagonal and zeroes everywhere else. We use the notation A^{-1} to refer to such a B (which, if it exists, is unique).

We can find the inverse of a matrix by applying row operations to the augmented matrix $\begin{bmatrix} A & I_n \end{bmatrix}$ (which is augmented with the *n* columns of the identity matrix, rather than a single vector). If the left part of the augmented matrix can be transformed by row operations to I_n , then the right part will be transformed by those row operations to A^{-1} . If the system is inconsistent, the matrix *A* is not invertible (and we may call it *singular*).

1 Find the inverse of these matrices (you may want to check your results by multiplying the result with the original matrix):

(a)
$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

(b) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix}$
(c) $\begin{bmatrix} 3 & -1 \\ 7 & -2 \end{bmatrix}$
(c) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$

Relevance to Matrix Equations: The inverse of a matrix allows you to "reverse engineer" a matrix equation, in the sense that if $A\vec{x} = \vec{b}$ and A is invertible, then $\vec{x} = A^{-1}\vec{b}$ is a solution to the original equation. In fact, it is the unique solution to the equation!

2 Use the inverses computed previously to solve these matrix equations:	
(a) $\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ -1 \end{bmatrix}$	(c) $\begin{bmatrix} 3 & -1 \\ 7 & -2 \end{bmatrix} \vec{x} = \begin{bmatrix} a \\ a+1 \end{bmatrix}$
(b) $\begin{bmatrix} 2 & 0 \\ 0 & 3 \end{bmatrix} \vec{x} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	(d) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix} \vec{x} = \begin{bmatrix} a \\ b \\ c \end{bmatrix}$

Computing the inverse of a matrix reveals the structure of how to invert the linear transformation it represents. As the book notes, it can be faster to simply perform row operations to find a solution to any particular matrix equation. However, looking at the inverse matrix can give a more geometric idea of what undoing some particular operation is—to undo a rotation and shear requiring a different shear and rotation in the opposite direction, for example.