Characterizing Invertible Matrices

The Punch Line: There are many equivalent conditions to determine if a matrix is invertible, and describe properties of ones that we know are invertible.

Warm-Up: How big is the solution set of the homogeneous equation with these matrices (is it finite or infinite? what is its dimension?)? How about the span of their columns?
(a) $\left[\begin{array}{lll}0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -2 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0\end{array}\right]$
(c) $\left[\begin{array}{cccc}1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ -1 & -1 & -1 & -1 \\ -1 & 1 & -1 & 1\end{array}\right]$

Matrix Conditions: Our first definition for invertible matrices states that A is invertible if some other matrix C makes the equations $A C=I_{n}$ and $C A=I_{n}$ simultaneously true. We can show that if A is invertible, so is A^{T}, that the inverse of A^{T} is C^{T}, and that if either one of the two equations in the definition is true, the other one must be as well, by playing around with transposing the equations.

1 Can each of these things happen? Do they have to be true?
(a) A is invertible and the matrix C with $A C=I_{n}$ is also invertible
(b) C is an inverse to both A and A^{T} (that is, $C A=I_{n}$ and $C A^{T}=I_{n}$)
(c) $C A=I_{n}$ and $A D=I_{n}$, but $C \neq D$
(d) $A B C D=I_{n}$, but $A B \neq I_{n}$ and $C D \neq I_{n}$

Equation Conditions: We also have conditions based on the homogeneous and inhomogeneous equations involving the matrix. We know A is invertible if it is square $(n \times n)$ and its columns span \mathbb{R}^{n} or are linearly independent (for square matrices these are equivalent, though not in general). That is, it has n pivots (so its EF's have pivots in every column, and its REF is I_{n}) or no free variables. That is, the equation $A \vec{x}=\vec{b}$ has a solution for all \vec{b} (which will turn out to be unique) or $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.

2 Are these matrices invertible?
(a) $\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$
(b) $\left[\begin{array}{llll}1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3\end{array}\right]$
(c) $\left[\begin{array}{ccc}1 & 1 & 3 \\ 0 & 2 & 2 \\ -1 & 1 & -1\end{array}\right]$
(d) $\left[\begin{array}{cccc}2 & 3 & 1 & -4 \\ 0 & 1 & -1 & 2 \\ 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0\end{array}\right]$

Why do the columns have to be linearly independent and span all of \mathbb{R}^{n} ? If they were not linearly independent, there would be multiple solutions to $A \vec{x}=\vec{b}$, so we couldn't define $A^{-1} \vec{b}=\vec{x}$ —we wouldn't know which to choose! And if they did not span \mathbb{R}^{n}, then there would be some \vec{b} outside their span where we couldn't find any \vec{x} so that $A \vec{x}=\vec{b}$-we'd again have a problem defining the inverse, but this time instead of having to many possible answers \vec{x}, we wouldn't have any!

