Math 4A Worksheet 2.3 Lecture 10/25/17

Characterizing Invertible Matrices

The Punch Line: There are many equivalent conditions to determine if a matrix is invertible, and describe properties of ones that we know are invertible.

Warm-Up: How big is the solution set of the homogeneous equation with these matrices (is it finite or infinite? what is its dimension?)? How about the span of their columns?

(a) $\begin{bmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{bmatrix}$ (b)	$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}$	0 1 0 0	$-1 \\ -2 \\ 1 \\ 0$	$\begin{bmatrix} 0\\0\\0\\0\end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 \\ 1 & -1 \\ -1 & -1 \\ -1 & 1 \end{bmatrix}$	1 1 -1 -1	$ \begin{bmatrix} 1 \\ -1 \\ -1 \\ 1 \end{bmatrix} $	
---	--	------------------	----------------------	---	--	--------------------	--	--

Matrix Conditions: Our first definition for invertible matrices states that *A* is invertible if some other matrix *C* makes the equations $AC = I_n$ and $CA = I_n$ simultaneously true. We can show that if *A* is invertible, so is A^T , that the inverse of A^T is C^T , and that if either one of the two equations in the definition is true, the other one must be as well, by playing around with transposing the equations.

- 1 Can each of these things happen? Do they have to be true?
 - (a) *A* is invertible and the matrix *C* with $AC = I_n$ is also invertible
 - (b) *C* is an inverse to both *A* and A^T (that is, $CA = I_n$ and $CA^T = I_n$)

(c) $CA = I_n$ and $AD = I_n$, but $C \neq D$

(d) $ABCD = I_n$, but $AB \neq I_n$ and $CD \neq I_n$

Equation Conditions: We also have conditions based on the homogeneous and inhomogeneous equations involving the matrix. We know *A* is invertible if it is square $(n \times n)$ and its columns span \mathbb{R}^n or are linearly independent (for square matrices these are equivalent, though not in general). That is, it has *n* pivots (so its EF's have pivots in every column, and its REF is I_n) or no free variables. That is, the equation $A\vec{x} = \vec{b}$ has a solution for all \vec{b} (which will turn out to be unique) or $A\vec{x} = \vec{0}$ has *only* the trivial solution.

2 Are these matrices	invertible?		
(a) $\begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$	(b) $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 1 \\ 3 & 4 & 1 & 2 \\ 4 & 1 & 2 & 3 \end{bmatrix}$	(c) $\begin{bmatrix} 1 & 1 & 3 \\ 0 & 2 & 2 \\ -1 & 1 & -1 \end{bmatrix}$	(d) $\begin{bmatrix} 2 & 3 & 1 & -4 \\ 0 & 1 & -1 & 2 \\ 1 & 0 & -2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$

Why do the columns have to be linearly independent and span all of \mathbb{R}^n ? If they were not linearly independent, there would be multiple solutions to $A\vec{x} = \vec{b}$, so we couldn't define $A^{-1}\vec{b} = \vec{x}$ —we wouldn't know which to choose! And if they did not span \mathbb{R}^n , then there would be some \vec{b} outside their span where we couldn't find any \vec{x} so that $A\vec{x} = \vec{b}$ —we'd again have a problem defining the inverse, but this time instead of having to many possible answers \vec{x} , we wouldn't have any!