Subspaces of \mathbb{R}^{n}

The Punch Line: Some parts of \mathbb{R}^{n} behave exactly like copies of \mathbb{R}^{m} (where m is smaller than n) that are sitting inside of the larger space.

Warm-Up

(a) In \mathbb{R}^{3}, if you add two vectors in the $y=0$ plane, is the result guaranteed to be in the $y=0$ plane?
(b) Is the answer the same or different for the $y=1$ plane?
(c) In \mathbb{R}^{2} if you take two vectors with x component greater than 1 and add them, is the result guaranteed to have an x component greater than 1 ?
(d) In \mathbb{R}^{2}, if you have a vector with x component greater than 1 and take a scalar multiple of it, is the result guaranteed to have an x component greater than 1 ?
(e) In \mathbb{R}^{2}, if you have two vectors that each lie on one of the axes, is their sum guaranteed to lie on an axis?
(f) In \mathbb{R}^{2}, if a vector lies on one of the axes and you take a scalar multiple of it, is the result guaranteed to be on one of the axes?
(a) Yes-since the y component of each vector is zero, the y component of their sum is $0+0=0$, so the sum in in the $y=0$ plane.
(b) No-in fact, it never does, as the y component of each vector is 1 , so the y component of their sum is $1+1=2$, so the sum is on the $y=2$ plane rather than the $y=1$ plane.
(c) Yes-the x component of the sum will be the sum of the x components, and the sum of two numbers greater than one is greater than one.
(d) No-the vector $\left[\begin{array}{l}2 \\ 0\end{array}\right]$ has x component greater than 1 , but $\frac{1}{4}\left[\begin{array}{l}2 \\ 0\end{array}\right]=\left[\begin{array}{c}1 / 2 \\ 0\end{array}\right]$ does not.
(e) No-the vectors $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ lie on the x and y axes, respectively, but their sum is on neither axis.
(f) Yes-scaling just changes the length, not the direction, of a vector, so one that started on an axis will stay on that same axis after scaling.

The Definition: A subspace of \mathbb{R}^{n} is a subset ${ }^{1} H$ that satisfies the following three properties:
i) H contains the vector $\overrightarrow{0}$
ii) If the vectors \vec{u} and \vec{v} are both in H, then so is $\vec{u}+\vec{v}$
iii) If the vector \vec{u} is in H, then for any real number c the vector $c \vec{u}$ is in H

If we want to test if a subset H is a subspace, we just have to see if these properties hold for it.

1 Are these things subspaces?
(a) The subset $\{\overrightarrow{0}\}$ in any \mathbb{R}^{n}
(f) The set of solutions to the matrix equation $A \vec{x}=\overrightarrow{0}$
(b) The $y=0$ plane in \mathbb{R}^{3}
(c) The $y=1$ plane in \mathbb{R}^{3}
(d) The vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} with $x \geq 1$
(e) The axes in \mathbb{R}^{2}
(g) The set of solutions to the matrix equation $A \vec{x}=\vec{b}($ where $\vec{b} \neq \overrightarrow{0})$
(h) The span of the columns of the matrix A (for any matrix; for concreteness, feel free to think about 3×3 matrices in particular, although it is true for $m \times n$ matrices for any m and n)
(a) Yes—adding only the zero vector and scaling the zero vector don't do anything to it, and obviously $\overrightarrow{0}$ is in $\{\overrightarrow{0}\}$ —it's the only thing in it!
(b) Yes- $\overrightarrow{0}$ is in the $y=0$ plane, we saw that property ii) held in the warm-up, and scaling a vector with y component zero won't make the y component nonzero, so property iii) holds as well. Since all the properties are true, the $y=0$ plane is a subspace of \mathbb{R}^{2}.
(c) No—in the warm-up we saw that property ii) doesn't work, but also iii) fails (scaling by anything but 1 changes the y component), and in fact $\overrightarrow{0}$ isn't in the $y=1$ plane so i) fails as well! Of course, as soon as we notice that any of these properties failed, we knew that the $y=1$ plane is not a subspace.
(d) No-in the warm-up we saw that property iii) fails, and of course so does i). In this case, property ii) does not fail, even though it is not a subspace.
(e) No-in the warm-up we saw property ii) fails, so this is not a subspace. In this case, property i) and iii) are both true, so it's important to check all three properties.
(f) Yes-this is actually a very important subspace, called the null space of A. We know that $\overrightarrow{0}$ is a solution to the equation $A \vec{x}=\overrightarrow{0}$ because the product of any matrix with the zero vector is the zero vector. Since multiplication by a matrix is a linear transformation, if we know $A \vec{u}=\overrightarrow{0}$ and $A \vec{v}=\overrightarrow{0}$, then we also know $A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}=\overrightarrow{0}+\overrightarrow{0}=\overrightarrow{0}$, and similarly $A(c \vec{u})=c A \vec{u}=\overrightarrow{0}$, so properties ii) and iii) hold as well.
(g) No—the quickest way to see this is to consider that $A \overrightarrow{0}=\overrightarrow{0} \neq \vec{b}$, but in fact properties ii) and iii) fail as well.
(h) Yes—this is another very important subspace, known as the column space of A. The vector $\overrightarrow{0}$ is a linear combination of the columns of any matrix A (just use all weights zero), so i) holds. If \vec{u} and \vec{v} are linear combinations of the columns of a matrix A, then so is $\vec{u}+\vec{v}$ (use the sum of the weight from \vec{u} and the one from \vec{v} on each column), and so is $c \vec{u}$ (use c times the weights from \vec{u}). This shows that this is a subspace.

[^0]A Basis: A basis for a subspace is a linearly independent set whose span is precisely that subspace. To check if a collection of vectors is a basis for a subspace H, we can put the vectors as the columns of a matrix B. Then the requirement that it is linearly independent is satisfied precisely if every column is a pivot column (equivalently, there are no free variables), and the requirement that the span is H is satisfied if the equation $B \vec{x}=\vec{b}$ has a solution precisely when $\vec{b} \in H$. In the special case that H is all of \mathbb{R}^{n}, these conditions are equivalent to B being invertible.

2 Are the following sets of vectors bases for the specified subspaces? (You may assume that it is indeed a subspace.)
(a) The set $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$ for the subspace $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
(b) The set $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ for the "subspace" \mathbb{R}^{2}
(c) The set $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ for the subspace Span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(d) The set $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]\right\}$ for the subspace of \mathbb{R}^{3} consisting of all vectors whose components sum to zero.
(e) The set $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$ for the subspace Span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$
(a) No-any set containing the zero vector is linearly dependent, but a basis must be linearly independent.
(b) Yes-they are linearly independent (two vectors are linearly dependent if and only if one is a multiple of the other), and since $B=\left[\begin{array}{ll}1 & 2 \\ 2 & 1\end{array}\right]$ is invertible, the equation $B \vec{x}=\vec{b}$ has a solution for all \vec{b} in \mathbb{R}^{2}.
(c) No-they are linearly independent, but their span is all of \mathbb{R}^{2}, while the subspace is not all of \mathbb{R}^{2}.
(d) Yes-the two vectors are linearly independent. The equation $B \vec{x}=\vec{b}$ has the augmented matrix

$$
\left[\begin{array}{cc:c}
1 & -1 & b_{1} \\
0 & 2 & b_{2} \\
-1 & -1 & b_{3}
\end{array}\right] .
$$

When row reducing this, we see that we will get a contradiction unless $b_{1}+b_{2}+b_{3}=0$ (and that if that equation is true the system is consistent). That is, $B \vec{x}=\vec{b}$ has a solution precisely when the components of \vec{b} sum to zero, as desired.
(e) The matrix

$$
B=\left[\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 0 \\
1 & 3 & -1
\end{array}\right]
$$

has REF

$$
\left[\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -1 \\
0 & 0 & 0
\end{array}\right] .
$$

This has a free variable, so the set of vectors is not linearly independent, so can't be a basis, even though its span is clearly the subspace in question.

What's special about a subspace? It "looks like" \mathbb{R}^{m} living inside \mathbb{R}^{n}. Eventually, we want to capitalize on this to break complicated descriptions into simpler ones. For example, we might be excited to discover that for a part of \mathbb{R}^{37} that looks like \mathbb{R}^{2}, a particularly nasty linear transformation works just like rotation (even if it's hard to describe elsewhere). Subspaces are precisely the parts of \mathbb{R}^{n} that work nicely with things like linear equations and transformations.

[^0]: ${ }^{1}$ A subset of \mathbb{R}^{n} is just some collection of vectors in \mathbb{R}^{n}.

