Subspaces of \mathbb{R}^n

The Punch Line: Some parts of \mathbb{R}^n behave exactly like copies of \mathbb{R}^m (where *m* is smaller than *n*) that are sitting inside of the larger space.

Warm-Up

- (a) In \mathbb{R}^3 , if you add two vectors in the y = 0 plane, is the result guaranteed to be in the y = 0 plane?
- (b) Is the answer the same or different for the y = 1 plane?
- (c) In \mathbb{R}^2 if you take two vectors with *x* component greater than 1 and add them, is the result guaranteed to have an *x* component greater than 1?
- (d) In \mathbb{R}^2 , if you have a vector with *x* component greater than 1 and take a scalar multiple of it, is the result guaranteed to have an *x* component greater than 1?
- (e) In \mathbb{R}^2 , if you have two vectors that each lie on one of the axes, is their sum guaranteed to lie on an axis?
- (f) In \mathbb{R}^2 , if a vector lies on one of the axes and you take a scalar multiple of it, is the result guaranteed to be on one of the axes?
- (a) Yes—since the *y* component of each vector is zero, the *y* component of their sum is 0 + 0 = 0, so the sum is in the y = 0 plane.
- (b) No—in fact, it never does, as the *y* component of each vector is 1, so the *y* component of their sum is 1+1=2, so the sum is on the y = 2 plane rather than the y = 1 plane.
- (c) Yes—the *x* component of the sum will be the sum of the *x* components, and the sum of two numbers greater than one is greater than one.
- (d) No—the vector $\begin{bmatrix} 2 \\ 0 \end{bmatrix}$ has *x* component greater than 1, but $\frac{1}{4} \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 1/2 \\ 0 \end{bmatrix}$ does not.
- (e) No—the vectors $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ lie on the *x* and *y* axes, respectively, but their sum is on neither axis.
- (f) Yes—scaling just changes the length, not the direction, of a vector, so one that started on an axis will stay on that same axis after scaling.

The Definition: A *subspace* of \mathbb{R}^n is a subset¹ *H* that satisfies the following three properties:

- i) *H* contains the vector $\vec{0}$
- ii) If the vectors \vec{u} and \vec{v} are both in *H*, then so is $\vec{u} + \vec{v}$
- iii) If the vector \vec{u} is in *H*, then for any real number *c* the vector $c\vec{u}$ is in *H*

If we want to test if a subset *H* is a subspace, we just have to see if these properties hold for it.

1 Are these things subspaces?	
(a) The subset $\{\vec{0}\}$ in any \mathbb{R}^n	(f) The set of solutions to the matrix equation $A\vec{x} = \vec{0}$
(b) The $y = 0$ plane in \mathbb{R}^3	(g) The set of solutions to the matrix equation
(c) The $y = 1$ plane in \mathbb{R}^3	$A\vec{x} = \vec{b} \text{ (where } \vec{b} \neq \vec{0} \text{)}$
(d) The vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 with $x \ge 1$	(h) The span of the columns of the matrix A (for any matrix; for concreteness, feel free to think about 3×3 matrices in particular, although it is
(e) The axes in \mathbb{R}^2	true for $m \times n$ matrices for any m and n)

- (a) Yes—adding only the zero vector and scaling the zero vector don't do anything to it, and obviously $\vec{0}$ is in $\{\vec{0}\}$ —it's the *only* thing in it!
- (b) Yes— $\vec{0}$ is in the y = 0 plane, we saw that property ii) held in the warm-up, and scaling a vector with y component zero won't make the y component nonzero, so property iii) holds as well. Since all the properties are true, the y = 0 plane is a subspace of \mathbb{R}^2 .
- (c) No—in the warm-up we saw that property ii) doesn't work, but also iii) fails (scaling by anything but 1 changes the *y* component), and in fact $\vec{0}$ isn't in the *y* = 1 plane so i) fails as well! Of course, as soon as we notice that *any* of these properties failed, we knew that the *y* = 1 plane is not a subspace.
- (d) No—in the warm-up we saw that property iii) fails, and of course so does i). In this case, property ii) does *not* fail, even though it is not a subspace.
- (e) No—in the warm-up we saw property ii) fails, so this is not a subspace. In this case, property i) and iii) are both true, so it's important to check all three properties.
- (f) Yes—this is actually a very important subspace, called the *null space* of *A*. We know that $\vec{0}$ is a solution to the equation $A\vec{x} = \vec{0}$ because the product of any matrix with the zero vector is the zero vector. Since multiplication by a matrix is a linear transformation, if we know $A\vec{u} = \vec{0}$ and $A\vec{v} = \vec{0}$, then we also know $A(\vec{u} + \vec{v}) = A\vec{u} + A\vec{v} = \vec{0} + \vec{0} = \vec{0}$, and similarly $A(c\vec{u}) = cA\vec{u} = \vec{0}$, so properties ii) and iii) hold as well.
- (g) No—the quickest way to see this is to consider that $A\vec{0} = \vec{0} \neq \vec{b}$, but in fact properties ii) and iii) fail as well.
- (h) Yes—this is another very important subspace, known as the *column space* of *A*. The vector $\vec{0}$ is a linear combination of the columns of any matrix *A* (just use all weights zero), so i) holds. If \vec{u} and \vec{v} are linear combinations of the columns of a matrix *A*, then so is $\vec{u} + \vec{v}$ (use the sum of the weight from \vec{u} and the one from \vec{v} on each column), and so is $c\vec{u}$ (use *c* times the weights from \vec{u}). This shows that this is a subspace.

¹A *subset* of \mathbb{R}^n is just some collection of vectors in \mathbb{R}^n .

A Basis: A *basis* for a subspace is a linearly independent set whose span is precisely that subspace. To check if a collection of vectors is a basis for a subspace H, we can put the vectors as the columns of a matrix B. Then the requirement that it is linearly independent is satisfied precisely if every *column* is a pivot column (equivalently, there are no free variables), and the requirement that the span is H is satisfied if the equation $B\vec{x} = \vec{b}$ has a solution precisely when $\vec{b} \in H$. In the special case that H is all of \mathbb{R}^n , these conditions are equivalent to B being invertible.

2 Are the following sets of vectors bases for the specified subspaces? (You may assume that it is indeed a subspace.)

(a) The set
$$\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$$
 for the subspace $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
(b) The set $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$ for the "subspace" \mathbb{R}^2
(c) The set $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\2\\-1 \end{bmatrix} \right\}$ for the subspace Span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$
(d) The set $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \right\}$ for the subspace of \mathbb{R}^3 consisting of all vectors whose components sum to zero.
(e) The set $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$ for the subspace Span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$

- (a) No-any set containing the zero vector is linearly dependent, but a basis must be linearly independent.
- (b) Yes—they are linearly independent (two vectors are linearly dependent if and only if one is a multiple of the other), and since $B = \begin{bmatrix} 1 & 2 \\ 2 & 1 \end{bmatrix}$ is invertible, the equation $B\vec{x} = \vec{b}$ has a solution for all \vec{b} in \mathbb{R}^2 .
- (c) No—they are linearly independent, but their span is all of \mathbb{R}^2 , while the subspace is not all of \mathbb{R}^2 .
- (d) Yes—the two vectors are linearly independent. The equation $B\vec{x} = \vec{b}$ has the augmented matrix

$$\begin{bmatrix} 1 & -1 & b_1 \\ 0 & 2 & b_2 \\ -1 & -1 & b_3 \end{bmatrix}.$$

When row reducing this, we see that we will get a contradiction unless $b_1 + b_2 + b_3 = 0$ (and that if that equation is true the system is consistent). That is, $B\vec{x} = \vec{b}$ has a solution precisely when the components of \vec{b} sum to zero, as desired.

(e) The matrix

		1	1	1 0
В	=	1	1 2 3	0
		1 1	3	-1
		-		-
	[1	0	2	2]
	1 0 0	0 1 0	_	$\begin{bmatrix} 2 \\ 1 \end{bmatrix}$.
	0	0	(

has REF

This has a free variable, so the set of vectors is not linearly independent, so can't be a basis, even though its span is clearly the subspace in question.

What's special about a subspace? It "looks like" \mathbb{R}^m living inside \mathbb{R}^n . Eventually, we want to capitalize on this to break complicated descriptions into simpler ones. For example, we might be excited to discover that for a part of \mathbb{R}^{37} that looks like \mathbb{R}^2 , a particularly nasty linear transformation works just like rotation (even if it's hard to describe elsewhere). Subspaces are precisely the parts of \mathbb{R}^n that work nicely with things like linear equations and transformations.