Subspaces of \mathbb{R}^{n}

The Punch Line: Some parts of \mathbb{R}^{n} behave exactly like copies of \mathbb{R}^{m} (where m is smaller than n) that are sitting inside of the larger space.

Warm-Up

(a) In \mathbb{R}^{3}, if you add two vectors in the $y=0$ plane, is the result guaranteed to be in the $y=0$ plane?
(b) Is the answer the same or different for the $y=1$ plane?
(c) In \mathbb{R}^{2} if you take two vectors with x component greater than 1 and add them, is the result guaranteed to have an x component greater than 1 ?
(d) In \mathbb{R}^{2}, if you have a vector with x component greater than 1 and take a scalar multiple of it, is the result guaranteed to have an x component greater than 1 ?
(e) In \mathbb{R}^{2}, if you have two vectors that each lie on one of the axes, is their sum guaranteed to lie on an axis?
(f) In \mathbb{R}^{2}, if a vector lies on one of the axes and you take a scalar multiple of it, is the result guaranteed to be on one of the axes?

The Definition: A subspace of \mathbb{R}^{n} is a subset ${ }^{1} H$ that satisfies the following three properties:
i) H contains the vector $\overrightarrow{0}$
ii) If the vectors \vec{u} and \vec{v} are both in H, then so is $\vec{u}+\vec{v}$
iii) If the vector \vec{u} is in H, then for any real number c the vector $c \vec{u}$ is in H

If we want to test if a subset H is a subspace, we just have to see if these properties hold for it.

1 Are these things subspaces?
(a) The subset $\{\overrightarrow{0}\}$ in any \mathbb{R}^{n}
(f) The set of solutions to the matrix equation $A \vec{x}=\overrightarrow{0}$
(b) The $y=0$ plane in \mathbb{R}^{3}
(c) The $y=1$ plane in \mathbb{R}^{3}
(d) The vectors $\left[\begin{array}{l}x \\ y\end{array}\right]$ in \mathbb{R}^{2} with $x \geq 1$
(e) The axes in \mathbb{R}^{2}
(g) The set of solutions to the matrix equation $A \vec{x}=\vec{b}($ where $\vec{b} \neq \overrightarrow{0})$
(h) The span of the columns of the matrix A (for any matrix; for concreteness, feel free to think about 3×3 matrices in particular, although it is true for $m \times n$ matrices for any m and n)

[^0]A Basis: A basis for a subspace is a linearly independent set whose span is precisely that subspace. To check if a collection of vectors is a basis for a subspace H, we can put the vectors as the columns of a matrix B. Then the requirement that it is linearly independent is satisfied precisely if every column is a pivot column (equivalently, there are no free variables), and the requirement that the span is H is satisfied if the equation $B \vec{x}=\vec{b}$ has a solution precisely when $\vec{b} \in H$. In the special case that H is all of \mathbb{R}^{n}, these conditions are equivalent to B being invertible.

2 Are the following sets of vectors bases for the specified subspaces? (You may assume that it is indeed a subspace.)
(a) The set $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$ for the subspace $\left\{\left[\begin{array}{l}0 \\ 0\end{array}\right]\right\}$
(b) The set $\left\{\left[\begin{array}{l}1 \\ 2\end{array}\right],\left[\begin{array}{l}2 \\ 1\end{array}\right]\right\}$ for the "subspace" \mathbb{R}^{2}
(c) The set $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ for the subspace Span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$
(d) The set $\left\{\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right],\left[\begin{array}{c}-1 \\ 2 \\ -1\end{array}\right]\right\}$ for the subspace of \mathbb{R}^{3} consisting of all vectors whose components sum to zero.
(e) The set $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$ for the subspace Span $\left\{\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right],\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right]\right\}$

What's special about a subspace? It "looks like" \mathbb{R}^{m} living inside \mathbb{R}^{n}. Eventually, we want to capitalize on this to break complicated descriptions into simpler ones. For example, we might be excited to discover that for a part of \mathbb{R}^{37} that looks like \mathbb{R}^{2}, a particularly nasty linear transformation works just like rotation (even if it's hard to describe elsewhere). Subspaces are precisely the parts of \mathbb{R}^{n} that work nicely with things like linear equations and transformations.

[^0]: ${ }^{1}$ A subset of \mathbb{R}^{n} is just some collection of vectors in \mathbb{R}^{n}.

