Subspaces of \mathbb{R}^n

The Punch Line: Some parts of \mathbb{R}^n behave exactly like copies of \mathbb{R}^m (where *m* is smaller than *n*) that are sitting inside of the larger space.

Warm-Up

- (a) In \mathbb{R}^3 , if you add two vectors in the y = 0 plane, is the result guaranteed to be in the y = 0 plane?
- (b) Is the answer the same or different for the y = 1 plane?
- (c) In \mathbb{R}^2 if you take two vectors with *x* component greater than 1 and add them, is the result guaranteed to have an *x* component greater than 1?
- (d) In \mathbb{R}^2 , if you have a vector with *x* component greater than 1 and take a scalar multiple of it, is the result guaranteed to have an *x* component greater than 1?
- (e) In \mathbb{R}^2 , if you have two vectors that each lie on one of the axes, is their sum guaranteed to lie on an axis?
- (f) In \mathbb{R}^2 , if a vector lies on one of the axes and you take a scalar multiple of it, is the result guaranteed to be on one of the axes?

The Definition: A *subspace* of \mathbb{R}^n is a subset¹ *H* that satisfies the following three properties:

- i) *H* contains the vector $\vec{0}$
- ii) If the vectors \vec{u} and \vec{v} are both in *H*, then so is $\vec{u} + \vec{v}$
- iii) If the vector \vec{u} is in *H*, then for any real number *c* the vector $c\vec{u}$ is in *H*

If we want to test if a subset *H* is a subspace, we just have to see if these properties hold for it.

1 Are these things subspaces?	
(a) The subset $\{\vec{0}\}$ in any \mathbb{R}^n	(f) The set of solutions to the matrix equation $A\vec{x} = \vec{0}$
(b) The $y = 0$ plane in \mathbb{R}^3	(g) The set of solutions to the matrix equation
(c) The $y = 1$ plane in \mathbb{R}^3	$A\vec{x} = \vec{b} \text{ (where } \vec{b} \neq \vec{0} \text{)}$
(d) The vectors $\begin{bmatrix} x \\ y \end{bmatrix}$ in \mathbb{R}^2 with $x \ge 1$	(h) The span of the columns of the matrix A (for any matrix; for concreteness, feel free to think about 3×3 matrices in particular, although it is
(e) The axes in \mathbb{R}^2	true for $m \times n$ matrices for any m and n)

¹A *subset* of \mathbb{R}^n is just some collection of vectors in \mathbb{R}^n .

A Basis: A *basis* for a subspace is a linearly independent set whose span is precisely that subspace. To check if a collection of vectors is a basis for a subspace H, we can put the vectors as the columns of a matrix B. Then the requirement that it is linearly independent is satisfied precisely if every *column* is a pivot column (equivalently, there are no free variables), and the requirement that the span is H is satisfied if the equation $B\vec{x} = \vec{b}$ has a solution precisely when $\vec{b} \in H$. In the special case that H is all of \mathbb{R}^n , these conditions are equivalent to B being invertible.

2 Are the following sets of vectors bases for the specified subspaces? (You may assume that it is indeed a subspace.)

(a) The set
$$\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$$
 for the subspace $\left\{ \begin{bmatrix} 0\\0 \end{bmatrix} \right\}$
(b) The set $\left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} 2\\1 \end{bmatrix} \right\}$ for the "subspace" \mathbb{R}^2
(c) The set $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix} \right\}$ for the subspace Span $\left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$
(d) The set $\left\{ \begin{bmatrix} 1\\0\\-1 \end{bmatrix}, \begin{bmatrix} -1\\2\\-1 \end{bmatrix} \right\}$ for the subspace of \mathbb{R}^3 consisting of all vectors whose components sum to zero.
(e) The set $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$ for the subspace Span $\left\{ \begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\2\\3 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}$

What's special about a subspace? It "looks like" \mathbb{R}^m living inside \mathbb{R}^n . Eventually, we want to capitalize on this to break complicated descriptions into simpler ones. For example, we might be excited to discover that for a part of \mathbb{R}^{37} that looks like \mathbb{R}^2 , a particularly nasty linear transformation works just like rotation (even if it's hard to describe elsewhere). Subspaces are precisely the parts of \mathbb{R}^n that work nicely with things like linear equations and transformations.