Math 4A Worksheet 4.4 Lecture 11/13/17

Coordinates

The Punch Line: If we have a basis of *n* vectors for any vector space, we can describe (and work with) any vector from the space or equation in it as if it were in \mathbb{R}^n all along!

Coordinate Vectors: If we have an *ordered* basis $\mathcal{B} = {\vec{v_1}, \vec{v_2}, ..., \vec{v_n}}$ for vector space *V*, then any vector $v \in V$ has a unique representation

$$\vec{v} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \dots + c_n \vec{v}_n$$

where each c_i is a real number. Then we can write the *coordinate vector* $[\vec{v}]_{\mathcal{B}} = \begin{bmatrix} c_1 \\ c_2 \\ \vdots \end{bmatrix}$.

1 Find the representation of the given vector \vec{v} with respect to the ordered basis \mathcal{B} .	
(a) $\mathcal{B} = \left\{ \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \vec{v} = \begin{bmatrix} 8\\0\\5 \end{bmatrix}$	(d) $\mathcal{B} = \left\{ \begin{bmatrix} 1\\-2\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\-1 \end{bmatrix} \right\}, \vec{v} = \begin{bmatrix} 1\\1\\-2 \end{bmatrix}$
(b) $\mathcal{B} = \{1, t, t^2, t^3\}, \vec{v} = t^3 - 2t^2 + t$	(e) $\mathcal{B} = \left\{ \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}, \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\},$
(c) $\mathcal{B} = \{1, (t-1), (t-1)^2, (t-1)^3\}, \ \vec{v} = t^3 - 2t^2 + t$	$\vec{v} = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$

Change of Coordinates in \mathbb{R}^n : If we have a basis $\mathcal{B} = {\vec{v_1}, \vec{v_2}, ..., \vec{v_n}}$ for \mathbb{R}^n , we can recover the standard representation by using the matrix *P* whose columns are the (ordered) basis elements represented in the standard basis:

$$P = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \cdots & \vec{v}_n \end{bmatrix}.$$

The matrix P^{-1} takes vectors in the standard encoding and represents them with respect to \mathcal{B} . Thus, if \mathcal{C} is another basis for the same space and Q is the matrix bringing representations with respect to \mathcal{C} to the standard basis, then $Q^{-1}P$ is a matrix which takes a vector encoded with respect to \mathcal{B} and returns its encoding with respect to \mathcal{C} . That is,

$$[\vec{v}]_{\mathcal{C}} = Q^{-1} P[\vec{v}]_{\mathcal{B}}$$

2 Compute the change of basis matrices for the following bases (into and from the standard basis). (a) $\left\{ \begin{bmatrix} 0\\0\\1\\1\\0\end{bmatrix}, \begin{bmatrix} 0\\1\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\0\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\1\\1\\1\\0\end{bmatrix} \right\}$ (c) $\left\{ \begin{bmatrix} 1\\1\\1\\-1\\0\end{bmatrix} \right\}$ (d) $\left\{ \begin{bmatrix} 2\\5\\5\\0\\0\end{bmatrix}, \begin{bmatrix} 1\\3\\0\\0\end{bmatrix} \right\}$ Compute the change of basis matrices between the two bases:

(a)
$$\mathcal{B} = \left\{ \begin{bmatrix} 0\\0\\1 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\0\\0 \end{bmatrix} \right\}, \mathcal{C} = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\0 \end{bmatrix}, \begin{bmatrix} 1\\1\\1 \end{bmatrix} \right\}$$
(b)
$$\mathcal{B} = \left\{ \begin{bmatrix} 1\\1\\1 \end{bmatrix}, \begin{bmatrix} 1\\-1 \end{bmatrix} \right\}, \mathcal{C} = \left\{ \begin{bmatrix} 2\\5 \end{bmatrix}, \begin{bmatrix} 1\\3 \end{bmatrix} \right\}$$