Diagonalization

The Punch Line: Eigenvalues and -vectors can be used to factor a matrix in a way that makes computation easier.

Warm-Up What are the eigenvalues of these matrices? What are their eigenspaces?
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
(e) $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$
(f) $\left[\begin{array}{ccc}-1 & -2 & 1 \\ -2 & 2 & -2 \\ 1 & -2 & -1\end{array}\right]$
(a) This has eigenvalues $\lambda=1,2,3$, with eigenspaces Span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{l}0 \\ 1 \\ 0\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{l}0 \\ 0 \\ 1\end{array}\right]\right\}$, respectively.
(b) This has eigenvalue $\lambda=1,2,3$, with eigenspaces Span $\left\{\left[\begin{array}{l}1 \\ 0 \\ 0\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{c}9 / 2 \\ 3 \\ 1\end{array}\right]\right\}$, respectively.
(c) This has eigenvalues $\lambda=-1$, 1, with eigenspaces Span $\left\{\left[\begin{array}{l}1 \\ 1\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{c}1 \\ -1\end{array}\right]\right\}$, respectively.
(d) The characteristic equation here is

$$
\left|\begin{array}{cc}
1-\lambda & 2 \\
3 & 6-\lambda
\end{array}\right|=(1-\lambda)(6-\lambda)-6=\lambda^{2}-7 \lambda=0
$$

Thus, the eigenvalues are $\lambda=0,7$, with eigenspaces $\operatorname{Span}\left\{\left[\begin{array}{c}-2 \\ 1\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{l}1 \\ 3\end{array}\right]\right\}$, respectively.
(e) This has only the eigenvalue $\lambda=3$, with eigenspace Span $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$.
(f) We find the characteristic equation

$$
\left|\begin{array}{ccc}
-1-\lambda & -2 & 1 \\
-2 & 2-\lambda & -2 \\
1 & -2 & -1-\lambda
\end{array}\right|=(-1-\lambda)\left|\begin{array}{cc}
2-\lambda & -2 \\
-2 & -1-\lambda
\end{array}\right|-(-2)\left|\begin{array}{cc}
-2 & 1 \\
-2 & -1-\lambda
\end{array}\right|+\left|\begin{array}{cc}
-2 & 1 \\
2-\lambda & -2
\end{array}\right|=16+12 \lambda-\lambda^{3}=0
$$

We can factor this polynomial as $(4-\lambda)(2+\lambda)^{2}=0$, so our eigenvalues are $\lambda=-2,4$. Checking their eigenspaces yields Span $\left\{\left[\begin{array}{l}2 \\ 1 \\ 0\end{array}\right],\left[\begin{array}{c}-1 \\ 0 \\ 1\end{array}\right]\right\}$, Span $\left\{\left[\begin{array}{c}1 \\ -2 \\ 1\end{array}\right]\right\}$, respectively.

Diagonalizing: If the matrix A has eigenvalues $\left\{\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}\right\}$ and eigenvectors $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}\right\}$ corresponding to them, then we write $P=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}\end{array}\right]$ for the matrix whose columns are the eigenvectors and D for the matrix with the eigenvalues down the diagonal and zeroes elsewhere. Then

$$
A P=A\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} \vec{v}_{1} & \lambda_{2} \vec{v}_{2} & \cdots & \lambda_{n} \vec{v}_{n}
\end{array}\right]=\left[\begin{array}{llll}
\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{cccc}
\lambda_{1} & 0 & \cdots & 0 \\
0 & \lambda_{2} & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & \lambda_{n}
\end{array}\right]=P D .
$$

If the eigenvectors are linearly independent, then P is invertible, and $A=P D P^{-1}$.

1 Are these matrices diagonalizable? If so, what are P and D ?
(a) $\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$
(c) $\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$
(e) $\left[\begin{array}{ll}3 & 1 \\ 0 & 3\end{array}\right]$
(b) $\left[\begin{array}{lll}1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 2 \\ 3 & 6\end{array}\right]$
(f) $\left[\begin{array}{ccc}-1 & -2 & 1 \\ -2 & 2 & -2 \\ 1 & -2 & -1\end{array}\right]$
(a) Yes, it is already diagonal! Here $P=I_{3}$ and D is the original matrix.
(b) Yes-we've found the eigenvalues and vectors in the warm-up, so $P=\left[\begin{array}{ccc}1 & 2 & 9 / 2 \\ 0 & 1 & 3 \\ 0 & 0 & 1\end{array}\right]$ and $D=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 3\end{array}\right]$.
(c) Yes- $P=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]$ and $D=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$. Of course, we could also have chosen $P=\left[\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right]$ and $D=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$-the order doesn't matter so long as the same order is used for the eigenvectors and -values.
(d) Yes again. Here $P=\left[\begin{array}{cc}-2 & 1 \\ 1 & 3\end{array}\right]$ and $D=\left[\begin{array}{ll}0 & 0 \\ 0 & 7\end{array}\right]$. Note that P is invertible, while D and our original matrix are not. Diagonalizability is a different condition from invertibility-non-invertible matrices like this one can be diagonalizable, and invertible matrices can be non-diagonalizable!
(e) This matrix is not diagonalizable-there is only one eigenvector, so we can't make an invertible matrix P out of eigenvectors! Note that this matrix is invertible-the inverse is $\frac{1}{9}\left[\begin{array}{cc}3 & -1 \\ 0 & 3\end{array}\right]$-which shows off a sort of essential form of non-diagonalizable matrices (ask me if you're curious about this, there's some interesting stuff going on, but it's outside the scope of this course).
(f) This is diagonalizable! We have $P=\left[\begin{array}{ccc}2 & -1 & 1 \\ 1 & 0 & -2 \\ 0 & 1 & 1\end{array}\right]$ and $D=\left[\begin{array}{ccc}-2 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & 4\end{array}\right]$. Again, we could have chosen P and D differently-in this case, it's worth noting that we could have chosen $P=\left[\begin{array}{ccc}1 & 3 & 1 \\ 1 & 4 & -2 \\ 1 & 5 & 1\end{array}\right]$ with the same D, because we can take any two linearly independent eigenvectors from the two-dimensional eigenspace E_{-2}.

Using the Diagonalization: If we have written $A=P D P^{-1}$ with D a diagonal matrix, then we can easily compute the k th power of A as $A^{k}=P D^{k} P^{-1}$ (adjacent P and P^{-1} matrices will cancel, putting all of the D matrices together and just leaving the ones on the end).

2 The Fibonacci numbers are a very famous sequence of numbers. The first one is $F_{1}=0$, the second is $F_{2}=1$, and from then on out, each number is the sum of the previous two $F_{n}=F_{n-1}+F_{n-2}$ (this is sometimes used as a simple model for population growth—although it assumes immortality). Since it's annoying to compute F_{n} if n is very large (we'd have to do a lot of backtracking to get to known values), it would be nice to have a closed form for F_{n}. We can derive one with the linear algebra we already know!
(a) Since the equation defining F_{n} in terms of F_{n-1} and F_{n-2} is linear, we can use a matrix equation to represent the situation. In particular, we want a matrix A such that

$$
A\left[\begin{array}{l}
F_{n-1} \\
F_{n-2}
\end{array}\right]=\left[\begin{array}{c}
F_{n} \\
F_{n-1}
\end{array}\right],
$$

so that we can keep applying A to get further along in the sequence. What is this A ?
(b) Since $\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=A\left[\begin{array}{l}F_{n-1} \\ F_{n-2}\end{array}\right]=A^{2}\left[\begin{array}{l}F_{n-2} \\ F_{n-3}\end{array}\right]=\cdots$, we can find F_{n} by computing $A^{n-2}\left[\begin{array}{l}F_{2} \\ F_{1}\end{array}\right]=A^{n-2}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (we only need to advance by $n-2$ steps, because the top entry starts at 2). It's easier to raise matrices to powers after we diagonalize them, so find an invertible P and diagonal D so that $A=P D P^{-1}$ (the numbers are a little gross, so don't be alarmed).
(a) We want $A\left[\begin{array}{c}F_{n-1} \\ F_{n-2}\end{array}\right]=\left[\begin{array}{c}F_{n} \\ F_{n-1}\end{array}\right]=\left[\begin{array}{c}F_{n-1}+F_{n-2} \\ F_{n-1}\end{array}\right]$, so we can find the matrix of the linear transformation

$$
A=\left[\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right]
$$

(b) The characteristic equation of A is

$$
\left|\begin{array}{cc}
1-\lambda & 1 \\
1 & -\lambda
\end{array}\right|=(1-\lambda)(-\lambda)-1=\lambda^{2}-\lambda-1=0
$$

Using the quadratic formula on this, we see that the eigenvalues are $\lambda=\frac{1 \pm \sqrt{5}}{2}$ (the positive root is the Golden Ratio φ, while the negative root is sometimes denoted $\bar{\varphi}$). Looking at $A-\varphi I_{2}=\left[\begin{array}{cc}-\frac{\sqrt{5}}{2} & 1 \\ 1 & \frac{-1-\sqrt{5}}{2}\end{array}\right]$, we see it has eigenvector $\left[\begin{array}{c}\sqrt{5} \\ 2\end{array}\right]$. Similarly, an eigenvector for $\bar{\varphi}$ is $\left[\begin{array}{c}-\sqrt{5} \\ 2\end{array}\right]$. Thus, we can write

$$
A=\left[\begin{array}{cc}
\sqrt{5} & -\sqrt{5} \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
\frac{1+\sqrt{5}}{2} & 0 \\
0 & \frac{1-\sqrt{5}}{2}
\end{array}\right] \frac{1}{20}\left[\begin{array}{cc}
2 & \sqrt{5} \\
-2 & \sqrt{5}
\end{array}\right]
$$

2 cont.

(c) Since $A^{k}=P D^{k} P^{-1}$, we can write out F_{n} as the first component of $P D^{n-2} P^{-1}\left[\begin{array}{l}F_{2} \\ F_{1}\end{array}\right]=P D^{n-2} P^{-1}\left[\begin{array}{l}1 \\ 0\end{array}\right]$ (if we wanted to be clever, we could write this as

$$
F_{n}=\left[\begin{array}{ll}
1 & 0
\end{array}\right] P D^{n-2} P^{-1}\left[\begin{array}{l}
1 \\
0
\end{array}\right],
$$

as the row vector picks out the first component). Use this to write down a formula for F_{n} (don't worry about multiplying out powers of any terms involving square roots, just leave them as whatever they are)! Nifty!!!
(c) Since $P^{-1}\left[\begin{array}{l}1 \\ 0\end{array}\right]=\frac{1}{20}\left[\begin{array}{c}2 \\ -2\end{array}\right]=\left[\begin{array}{c}1 / 10 \\ -1 / 10\end{array}\right]$ and $D^{n-2}=\left[\begin{array}{cc}\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} & 0 \\ 0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}\end{array}\right]$, we get

$$
F_{n}=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{5} & -\sqrt{5} \\
2 & 2
\end{array}\right]\left[\begin{array}{cc}
\left(\frac{1+\sqrt{5}}{2}\right)^{n-2} & 0 \\
0 & \left(\frac{1-\sqrt{5}}{2}\right)^{n-2}
\end{array}\right]\left[\begin{array}{c}
1 / 10 \\
-1 / 10
\end{array}\right]=\left[\begin{array}{ll}
1 & 0
\end{array}\right]\left[\begin{array}{c}
\frac{\sqrt{5}}{10}\left(\varphi^{n-2}+\bar{\varphi}^{n-2}\right) \\
\frac{2}{10}\left(\varphi^{n-2}-\bar{\varphi}^{n-2}\right)
\end{array}\right]=\frac{\varphi^{n-2}+\bar{\varphi}^{n-2}}{2 \sqrt{5}}
$$

[^0]
[^0]: Under the Hood: The right way to think about the matrices P and P^{-1} is as change-of-coordinates matrices to an eigenbasis-then the requirement for diagonalizability is that the eigenvectors of A form a basis for the space they're in. Essentially, what we're doing is choosing a clever basis so that A looks like a diagonal matrix in that basis.

