
Math 4A
Key 6.1

Lecture 11/29/17

Inner Products, Length, and Orthogonality
The Punch Line: We can compute a real number relating two vectors—or a vector to itself—that gives infor-

mation on both length and angle.

Warm-Up What are the lengths of these vectors, as found geometrically (using things like the Pythagorean
Theorem)?

(a)
[
3
0

]

(b)
[

0
−2

]
(c)

[
1
1

]

(d)
[
3
4

]
(e)

[
−1
2

]

(f)

11
3



(a) This vector is along one of the axes, so we can see that it’s length is 3.

(b) Similarly for this one; although it is in the negative y direction, its length is positive 2.

(c) We can think of the vector as the sum of its x and y components, and because these are perpendicular, we
can use the Pythagorean Theorem to see that the square of the length of the vector is the sum of the squares
of the lengths of the legs. For this vector, it means the square of the length is the sum of 12 + 12 = 2, so the
length itself is

√
2. This should be familiar as the length of the diagonal of a square of side length 1.

(d) Here we get a right triangle formed by the vector and its x and y components. It’s a Pythagorean Triple, so
we see that the length squared is 32 + 42 = 52, or the length is 5.

(e) Here we note that one leg is of length 1 and one of length 2, so the total length is
√

12 + 22 =
√

5. Note again
that we are only using positive lengths.

(f) Here we can work in two stages: the “footprint” in the xy plane is
[
1
1

]
, with length

√
2 as before. This then

forms one leg of the vector, with the other leg being the z component. Then the length is
√(√

2
)2

+ 32 =
√

11.
This is a rather cumbersome way to get the length, so we’d like to find a way to do it all in one step.
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The Inner Product: If we think about a vector ~v ∈ Rn as a n × 1 matrix (a single column), then ~vT is a 1 × n
matrix (a single row, sometimes called a row vector). Then we can multiply ~vT against a vector (on the left) to
get a 1 × 1 matrix, which we can consider a scalar. This is the idea behind the inner product in Rn, also called
the dot product: we take two vectors, ~u and ~v, and define their inner product as ~u · ~v = ~uT ~v. This corresponds to
multiplying together corresponding entries in the vectors, then adding all of the results to get a single number.

1 Find the inner product of the two given vectors:

(a)
[
1
1

]
and

[
2
3

]

(b)
[
1
0

]
and

[
1
1

]
(c)


1
−1
1
−2

 and


3
2
−1
0


(d)

[
1
0

]
and

[
0
1

]
(e)

[
0
0

]
and

[
x
y

]

(f)
[
x
y

]
and

[
−y
x

]

(a) Here we get
[
1
1

]
·
[
2
3

]
=

[
1 1

][2
3

]
= (1)(2) + (1)(3) = 5.

(b) Here we get
[
1 0

][1
1

]
= 1 + 0 = 1.

(c) Here (1)(3) + (−1)(2) + (1)(−1) + (−2)(0) = 3− 2− 1 + 0 = 0.

(d) Here (1)(0) + (0)(1) = 0.

(e) Here (0)(x) + (0)(y) = 0.

(f) Here (x)(y) + (−y)(x) = xy − yx = 0.
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Length and Orthogonality: We observe that in R2, the quantity
√
~v · ~v is the length of ~v as given by the

Pythagorean Theorem. This motivates us to define the length of a vector in any Rn as
∥∥∥~v∥∥∥ =

√
~v · ~v (encouraged that

it also agrees with our idea of length in R1 and R3). Then the distance between ~u and ~v is
∥∥∥~u − ~v∥∥∥, the length of the

vector between them.
We also observe that in R2, if ~u and ~v are perpendicular then ~u ·~v = 0, and vice versa. To generalize this, we say

~u and ~v are orthogonal if ~u · ~v = 0 (and indeed, this matches with perpendicularity in three dimensions as well).

2 What are the lengths of these vectors (computed with inner products)?

(a)
[
3
4

]
(b)


2
−3
1
−1

 (c)

11
1

 (d) The vector of all 1s
in Rn (this is something

of a challenge problem)

(a) Here we get
[
3 4

][3
4

]
= (3)(3) + (4)(4) = 25 as the inner product, so the length is

√
25 = 5.

(b) Here the inner product is (2)2 +(−3)2 +(1)2 +(−1)2 = 4+9+1+1 = 15, so the length is
√

15 ≈ 3.87 (the decimal
expansion isn’t necessary to compute).

(c) Here the inner product is (1)2 + (1)2 + (1)2 = 3(1)2 = 3, so the length is
√

3 ≈ 1.73.

(d) Here the inner product will be n copies of (1)2 summed, which will come out to be n. Thus, the vector will
have length

√
n.
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3 What is the distance between these two vectors? Are they orthogonal?

(a)
[
1
1

]
and

[
1
−1

]
(b)

12
3

 and

 1
2
−3

 (c)
[
2
5

]
and

[
−2
−5

]
(d) Two (different)

standard basis vec-
tors in Rn

(a) The distance between these is the length of
[
1
1

]
−
[

1
−1

]
=

[
0
2

]
. This is

√
(0)2 + (2)2 = 2. Their dot product is[

1 1
][ 1
−1

]
= 0, so they are orthogonal.

(b) The distance here is the length of their difference

00
6

, which is 6. The dot product is
[
1 2 3

] 1
2
−3

 =

1 + 4− 9 = −5 , 0, so they are not orthogonal.

(c) The distance here is the length of
[

4
10

]
, which is

√
16 + 100 =

√
116 = 2

√
29. Note that the length of each

vector is
√

29. Their inner product is
[
2 5

] [
−2 −5

]
= −4− 25 = −29 , 0, so they are not orthogonal.

(d) The distance here is the length of a vector which has two nonzero entries: one 1 and one −1. Thus, it is√
12 + (−1)2 =

√
2. Since the 1 in one standard basis vector will multiply against a 0 in the other, the inner

product will be zero, and thus the standard basis vectors are orthogonal.

Under the Hood: This idea of orthogonality can be used to find the collection of all vectors which are orthogonal to some given ~u. These are the solutions
to the equation ~u · ~v = ~uT ~v = 0. This is just finding the nullspace of the matrix ~uT , but now it has a nice geometric interpretation. The solution set is a subspace,
known as the orthogonal complement of ~u.
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