
Math 4A
Key 6.2

Lecture 12/01/17

Orthogonal Sets
The Punch Line: With an inner product, we can find especially nice bases called orthonormal sets.

Warm-Up What are the inner products and lengths of the following pairs of vectors?

(a)

 1
−2
1

 and

 1
0
−1


(b)

 1
−2
1

 and

11
1



(c)

 1
0
−1

 and

11
1


(d)

[
1
1

]
and

[
1
−1

]
(e)

10
0

 and

11
0


(f)

11
0

 and

11
1



(a) Here we have an inner product
[
1 −2 1

] 1
0
−1

 = (1)(1) + (−2)(0) + (1)(−1) = 0. The vector lengths are√
(1)2 + (−2)2 + (1)2 =

√
6 and

√
(1)2 + (0)2 + (−1)2 =

√
2.

(b) Here the inner product is 0 and the length of the all-ones vector is
√

3.

(c) The inner product here is again zero.

(d) The inner product is 0 and both vectors have length
√

2.

(e) The inner product here is 1, the first vector has length 1 and the second has length
√

2.

(f) The inner product here is 2, and the second vector has length
√

3.

1



Orthogonal and Orthonormal Sets: If the inner product of every pair of vectors in a set
{
~u1, . . . , ~um

}
is zero, we

call the set orthogonal. In this case, it’s a linearly independent set, and so a basis for its span. If there are n vectors
in the set, it is a basis for Rn.

If in addition to begin orthogonal, every vector in the set is a unit vector (has length 1), we call the set orthonor-
mal. Since an orthogonal set is a basis, there is a unique representation of any vector ~v = c1~u1 + · · ·+cn~vn; as it turns
out the coefficients ci = ~ui ·~v

~ui ·~ui
. If the set is orthonormal, this means the coefficients are just the inner products with

the basis vectors.

1 Are these sets orthogonal? If so, find an orthonormal set by rescaling them.

(a)


 1
−2
1

 ,
 1

0
−1

 ,
11
1




(b)
{[

1
1

]
,

[
1
−1

]}

(c)


10
0

 ,
11
0

 ,
11
1




(d)




3
−1
0
3
1

 ,


0
0
0
4
−12

 ,


3
−11
−7
−6
−2

 ,


1
1
2
−2
1

13

 ,


√
5

1
0
0
−
√

7

 ,

83
18
27
−1
0




(a) We found that the vectors are orthogonal in the warm-up. They aren’t orthonormal, but we can get an

orthonormal set by dividing by their lengths. This yields

 1√
6

 1
−2
1

 , 1√
2

 1
0
−1

 , 1√
3

11
1


.

(b) Again, these vectors are orthogonal but not orthonormal. The orthonormal set is
{

1√
2

[
1
1

]
, 1√

2

[
1
−1

]}
.

(c) We found previously that these vectors are not orthogonal, because they have nonzero inner products with
each other.

(d) Rather than compute the 15 inner products we’d need to check if this set is orthogonal, we can use the
knowledge that an orthogonal set is linearly independent. This set is in R5 and has 6 vectors, so it can’t be
linearly independent, so it isn’t orthogonal. We can also see that the inner product of the second and fifth
vectors is 12

√
7 , 0, which also shows it is not orthogonal.
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Orthogonal Matrices: In an unfortunate twist of terminology, we call a matrix an orthogonal matrix if its
columns are an orthonormal set (not just orthogonal like the name might make you think). These matrices are
precisely those matrices U where UTU = In.

2 Are these matrices orthogonal?

(a)


1/
√

6 1/
√

2 1/
√

3
−2/
√

6 0 1/
√

3
1/
√

6 −1/
√

2 1/
√
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(b)
[
1 1
1 −1

]

(c) 1
3

1 −2
2 −1
2 2



(d) 1
3

[
1 2 2
−2 −1 2

]

(e)

2 0 0
0 2 0
0 0 2


(f) The change-of-coordinates

matrices to and from an or-
thonormal set [Challenge prob-

lem]

(a) Yes, we’ve previously found these to be an orthonormal set.

(b) No, although the columns are orthogonal, they are not orthonormal.

(c) Yes, we can check that 1
3

[
1 2 2
−2 −1 2

]
1
3

1 −2
2 −1
2 2

 = 1
9

[
9 0
0 9

]
= I2.

(d) No, since 1
3

1 −2
2 −1
2 2

 1
3

[
1 2 2
−2 −1 2

]
= 1

9

 5 4 −2
4 5 2
−2 2 8

 , I3. This shows that even though UTU is an identity

matrix, it’s not necessarily true that UUT is if U is not square (if it’s square, the condition means UT = U−1,
so it does commute with U ).

(e) No, since although the columns are clearly orthogonal, they are not unit vectors.

(f) Yes, since one will have the orthonormal set as its columns, and the other will be the inverse of that matrix,
and because for square matrices UTU = In implies UUT = In (by the way inverse matrices work), the inverse
must also be orthonormal.

3



Under the Hood: Orthogonal transformations from Rn to itself are precisely those which do not change inner products (where (U~u) · (U~v) = ~u · ~v for all pairs
of vectors). This means they do not change the geometry involved (lengths, relative angles, or distances), so they are particularly interesting transformations.

This is an example of an incredibly common pattern in mathematics: when there is some kind of structure (like a vector space structure, or geometric
relationships), mathematicians are interested in finding the collection of functions which preserve that structure (linear transformations and transformations by
orthogonal matrices, in those two cases). There are also other classes of linear transformations that preserve things like areas (determinant has absolute value 1),
or orientation (determinant is precisely 1), or just angles and not lengths (columns are orthogonal but not necessarily orthonormal), and many more.
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