Math 8
Worksheet
Week 1, Thursday
Implication and Proof

## Collaborators:

Often, we wish to show that some conditional statement is or is not true. Suppose we have statments $P$ and $Q$. We may introduce the conditional statement

$$
P \Longrightarrow Q
$$

read " $P$ implies $Q$ ". As it sounds, this statement asserts "if $P$, then $Q$ ". That is, if the statement $P$ is true, then the statement $Q$ must also be true. It is left to us to then evaluate whether this implication is valid or not.

The converse of a conditional statement $P \Longrightarrow Q$ is the conditional statement $Q \Longrightarrow P$. If $P \Longrightarrow Q$ and $Q \Longrightarrow P$, then we write $P \Longleftrightarrow Q$ and say " $P$ if and only if $Q$ ".

We may also consider the opposite of a statement, referred to as the negation.

The contrapositive of a conditional statement $P \Longrightarrow Q$ is the conditional statement $\bar{Q} \Longrightarrow \bar{P}$.

Prove the following or give a counterexample.
a) If $n$ is an even integer, then $n^{2}$ is an even integer.
b) If $n$ is an integer such that $n^{2}$ is even, then $n$ is even.
c) If $n$ is an integer such that $n^{2}+3$ is odd, then $n$ is odd.
d) If $n=m^{3}-m$ for some integer $m$, then $n$ is a multiple of 6 .

## Scratch Work

Proof.

One way to show $P \Longrightarrow Q$ is to assume both $P$ and $\bar{Q}$. If we reach a contradiction, a statement that is clearly false, we see that we cannot simultaneously have $P$ and $\bar{Q}$. Thus, if we have $P$, then we must have $Q$ as well.
Prove by contradiction that a real number that is less than every positive real number cannot be positive.

## Scratch Work

Proof.

Homework problem: Write down a careful proof of the following statement:

$$
\sqrt{6}-\sqrt{2}>1 .
$$

## Scratch Work

Proof.

