Math 8
Worksheet
Week 3, Thursday

Inequalities

Collaborators:

We are familiar with equalities such as $x+2=4$ and $(x+y)^{2}=x^{2}+2 x y+y^{2}$. Quite often in mathematics, we are less certain of the values we are working with. In these cases, we may use inequalities. An inequality is a statment about the order of two objects.
In \mathbb{R}, there is a natural order given by our usual sense of which numbers are bigger than others. For example, the statement $2<3$ is the statement that the number 2 is less than the number 3 . We can also write $2 \leq 2$ to mean that 2 is less than or equal to 2 . There are also the statements $3>2$ and $2 \geq 2$, which indicate "greater than" instead of "less than".

Exercise: Consider the inequality $x+3 \geq \pi$. Find all $x \in \mathbb{R}$ for which this inequality is satisfied. Prove your assertion.

Scratch Work

Proof.

Some properties of inequalities of real numbers:
a) If $x \in \mathbb{R}$, then exactly one of the following is true: $x>0$ or $x<0$ or $x=0$.
b) If $x>y$, then $-x<-y$.
c) If $x>y$ and $c \in \mathbb{R}$, then $x+c>y+c$.
d) If $x>0$ and $y>0$, then $x y>0$.
e) If $x>y$ and $y>z$, then $x>z$.

Exercise: Show that if $x>0$ and $y<0$, then $x y<0$.

Scratch Work

Proof.

Exercise: Find all $x \in \mathbb{R}$ such that $-3 x^{2}+4 x \geq 1$.

Scratch Work

Writeup:

We define the modulus or absolute value of a real number x as

$$
|x|=\left\{\begin{array}{ll}
x & \text { if } x \geq 0 \\
-x & \text { if } x<0
\end{array} .\right.
$$

Exercise: Find all $x \in \mathbb{R}$ such that $|x+5| \geq 1$.

Scratch Work

Writeup:

One incredibly important inequality is the Triangle Inequality, which states that for all real numbers $x, y \in \mathbb{R}$, we have

$$
|x+y| \leq|x|+|y| .
$$

Exercise: Use the Triangle Inequality to prove the Reverse Triangle Inequality: for all $x, y \in \mathbb{R}$,

$$
|x-y| \geq||x|-|y|| .
$$

Scratch Work

Proof.

