Math 8
Worksheet
Week 5, Thursday
Fundamental Theorem of Arithmetic

Collaborators:

Here we restrict our attention to the integers. Given integers a and b, we say " a divides b " or " b is divisible by a ", and we write $a \mid b$, if there exists another integer c such that $a c=b$. An integer p is called prime if $a \mid p$ implies $a= \pm 1$ or $a= \pm p$. Since negative numbers do not significantly add anything interesting to the theory of divisibility, we typically restrict our attention further to nonnegative integers.

HW: Liebeck Chapter 10, Problem 4(b) Suppose a, b are integers such that $a \mid b$ and $b \mid a$. Prove that $a= \pm b$.

Theorem (Fundamental Theorem of Arithmetic). Let $n \geq 2$ be an integer.
(a) Then n is equal to a product of prime numbers,

$$
n=p_{1} \cdots p_{k}
$$

where p_{1}, \ldots, p_{k} are prime and $p_{1} \leq p_{2} \leq \cdots \leq p_{k}$.
(b) This prime factorization is unique. That is, if

$$
n=p_{1} \cdots p_{k}=q_{1} \cdots q_{\ell}
$$

with p_{i}, q_{i} prime as in part (a), then $k=\ell$ and $p_{i}=q_{i}$ for all i.

Let $n=p_{1}^{a_{1}} \cdots p_{k}^{a_{k}}$, where the p_{i} are prime with $p_{1}<\cdots<p_{k}$ and the a_{i} are positive integers. Show that if $m \mid n$, then

$$
m=p_{1}^{b_{1}} \cdots p_{k}^{b_{k}}
$$

with $0 \leq b_{i} \leq a_{i}$ for all i.

