Math 8
Worksheet
Week 7, Tuesday

Modular Arithmetic

Collaborators:

We continue our study of the integers using a tool called modular arithemetic. If $a, b \in \mathbb{Z}$ and $m \in \mathbb{Z}^{+}$, we say

$$
a \equiv b(\bmod m),
$$

read " a is congruent to b modulo m ", if $n \mid a-b$.

Example.

(a) Find the set of all integers congruent to 0 modulo 5.
(b) Find the set of all integers congruent to 5 modulo 5.
(c) Modulo 5 , how many sets does \mathbb{Z} decompose into? What are they?

Let $a, b, c, d \in \mathbb{Z}$ and $m, n \in \mathbb{Z}^{+}$. Some useful facts:
(a) Modulo m, every integer is congruent to exactly one of $0,1, \ldots, m-1$.
(b) $a \equiv a(\bmod m)$
(c) If $a \equiv b(\bmod m)$, then $b \equiv a(\bmod m)$.
(d) If $a \equiv b(\bmod m)$ and $b \equiv c(\bmod m)$, then $a \equiv c(\bmod m)$.
(e) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a+c \equiv b+d(\bmod m)$.
(f) If $a \equiv b(\bmod m)$ and $c \equiv d(\bmod m)$, then $a c \equiv b d(\bmod m)$.
(g) If $a \equiv b(\bmod m)$, then $a^{n} \equiv b^{n}(\bmod m)$.
(h) If a and m are coprime and $b a \equiv c a(\bmod m)$, then $b \equiv c(\bmod m)$.

Example. Liebeck Ch 13.

(a) Show that every square is congruent to 0,1 , or -1 modulo 5 .
(b) Let p be prime. Show that if x is an integer such that $x^{2} \equiv x(\bmod p)$, then $x \equiv 0$ or $x \equiv 1$ $(\bmod p)$.

Homework. Liebeck Ch 13.

(a) Find r with $0 \leq r \leq 10$ such that $7^{137} \equiv r(\bmod 11)$.
(b) Prove the "rule of 9 ": an integer is divisible by 9 if and only if the sum of its digits is divisible by 9 .

