Functions

Collaborators:

As you transition to higher mathematics, you will see that math is often the study of functions. It is perhaps time, then, to define the word. Let S and T be sets. A function (or a map) $f: S \rightarrow T$ is a rule that assigns to each element $s \in S$ exactly one element $f(s) \in T$.
The element $f(s) \in T$ is called the image of s under f. It is common say " f sends s to $f(s)$ " or " f maps s to $f(s)$ " and to write $s \mapsto f(s)$.
The set S is called the domain of f, and the set T is called the codomain of f. The set $f(S)=\{f(s) \mid s \in S\}$, the set of all possible values of $f(s)$ with $s \in S$, is called the image (or the range) of f.

Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by $f(x)=x^{2}$. Identify the domain, codomain, and image of f.

Notice that, in general, the range of f is a subset of the codomain of f. For some functions, the range will actually be the entire codomain. A function $f: S \rightarrow T$ is called onto (or surjective) if $f(S)=T$. That is, f is onto if for all $t \in T$, there exists $s \in S$ such that $f(s)=t$.
A function $f: S \rightarrow T$ is called one-to-one (or 1-1 or injective) if no two elements of S are mapped to the same element of T. That is, f is one-to-one if $f\left(s_{1}\right)=f\left(s_{2}\right)$ implies $s_{1}=s_{2}$.
We say that f is bijective (or a bijection) if f is both onto and one-to-one.

Examples.

(a) Consider the function $f: \mathbb{N} \times \mathbb{N} \times \mathbb{N} \rightarrow \mathbb{N}$ defined by $f(m, n, r)=2^{m} 3^{n} 6^{r}$. Is f onto? Is f 1-1?
(b) Find an onto function from \mathbb{N} to \mathbb{Z}.

Given a function $f: S \rightarrow T$ and an element $s \in S$, we may map s to $f(s)$. Since $f(s)$ is simply some element of T, it is perhaps natural to consider mapping it again to some other set. If we have a function $g: T \rightarrow U$, we can apply f and then g to map $s \mapsto f(s) \mapsto g(f(s))$. The composition of f and g is the function $g \circ f: S \rightarrow U$ defined by

$$
(g \circ f)(s)=g(f(s))
$$

Exercise. Let S, T, U be sets and let $f: S \rightarrow T, g: T \rightarrow U$ be functions. Though they can be found in the textbook, it is a good exercise to prove the following facts by yourself.
(i) If f and g are both one-to-one, then so is $g \circ f$.
(ii) If f and g are both onto, then so is $g \circ f$.
(iii) If f and g are both bijective, then so is $g \circ f$.

