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Abstract

An interacting particle model is described and applied to the Icelandic
capelin stock (Mallotus villosus). Using available temperature data and
approximated currents, and without using artificial forcing terms or a
homing instinct, the model was able to reproduce the observed spawn-
ing migration routes for three different years, successfully predicting the
route for 2008. By means of a sensitivity analysis the oceanic tempera-
ture and the balance between the influence of interaction among particles
and the particles’ response to temperature are identified as the control
parameters most significant in determining the migration route. One
significant contribution of the simulations is the inclusion of orders of
magnitude more particles than similar models, which affects the global
behavior of the model by propagating information about surrounding
temperature through the school more efficiently. In order to maintain
the same dynamics between different simulations, we argue a linear rela-
tionship between the time step, radii of interactions, and the spatial res-
olution, and we argue that these scale as N−1/2, where N is the number
of particles. In order to investigate this argument, several measures are
presented and in turn analyzed, e.g. global and local order parameters,
average number of neighbors and relaxation times to equilibrium. Simu-
lations are performed on a torus without environmental factors in order
to examine the behavior of these measures. The scaling arguments are
shown to maintain the average number of neighbors. Another interesting
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result is that the local relaxation time of the system is much shorter than
the global relaxation time, tr ¿ tR, and that the ratio n̄E/n̄U remains
constant for a spectrum of simulations. The temporal resolution of the
system is discussed, as well as its effect on the behavior of the system.

In order to capture the inner dynamics of capelin such as roe produc-
tion and fat content, a Dynamic Energy Budget (DEB) model is devel-
oped for the Icelandic capelin. A new state variable is introduced to the
DEB model to capture the roe production of individual fish. Species-
specific coefficients are found for the capelin such as the shape coefficient
and the Arrhenius temperature. Shown is how to link the DEB model
to measurable quantities such as weight, length, fat, and roe content.
Data on measured three year old female capelin from the 1999-2000 sea-
son from the Marine Research Institute of Iceland (MRI) and Matis,
an Icelandic Food and Biotech R&D, is used. Plausible parameter val-
ues for the DEB model are found by fitting the output of the model to
these data. Good fits are obtained between theory and observations, and
the DEB model successfully reproduces weight, length, fat percentage
and roe percentage of capelin. The effect of maturity on the spawning
route of capelin is then emphasized; temperature preference and speed
of individual fish are known to be affected by the state of maturity of
the individual fish. Described is how the DEB model can be integrated
with the interacting particle model, by letting the speed and preferred
temperature range depend on the roe content of individuals.



Ágrip (in Icelandic)

Eindalíkani er lýst og því beitt á hinn íslenska loðnustofn (Mallotus vill-
osus). Líkanið notast við tiltæk gögn um sjávarhitastig og nálgun á
straumum og tekst þannig að framkalla hrygningargöngu loðnunnar fyrir
þrjár mismunandi vertíðir. Sér í lagi spáði líkanið rétt fyrir um hrygning-
argöngu ársins 2008. Líkanið notast ekki við neina utanaðkomandi krafta
til að stýra eindum að hrygningarslóðum. Framkvæmd var næmnigrein-
ing sem sýnir fram á að sjávarhitastig ásamt samspili samskipta milli
einda og næmni þeirra gagnvart hitastigi eru þeir stikar sem ráði að mestu
leyti leið hrygningargöngunnar. Í hermununum er fjöldi einda mun meiri
en áður hefur tíðkast í sambærilegum líkönum. Hinn mikli fjöldi hefur
áhrif á víðfeðma hegðun kerfisins og sökum samskipta milli einda berast
upplýsingar um hitastig mun skilvirkar og hraðar. Við höldum því fram
að til þess að viðhalda hegðun kerfisins milli hermana þurfi línulega sköl-
un milli tímaskrefs og samskiptageisla. Sett er fram skölunin N−1/2, þar
sem N er fjöldi einda. Til þess að rannsaka hegðun kerfisins með tilliti
til þessarar skölunar eru settar fram nokkrar kennistærðir og þær rann-
sakaðar. Kennistærðirnar eru meðal annars víðfeðmur og staðbundinn
reglustiki, meðalfjöldi nágranna og tími sem tekur kerfið að ná jafnvægi.
Hermanir eru gerðar á kleinuhring án umhverfisþátta til þess að rann-
saka hegðan kerfisins með tilliti til kennistærðanna. Sýnt er fram á að
skölun milli stika viðheldur meðalfjölda nágranna. Einnig er áhugavert
að í öllum hermununum nær kerfið staðbundnu jafnvægi mun fyrr heldur
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en það nær víðfeðmu jafnvægi, tr ¿ tR. Einnig kemur í ljós að meðal-
fjöldi nágranna í jafnvægisástandi er hærri en búist er við og er hlutfallið
n̄E/n̄U fast í hermununum. Við ræðum hlutverk tímaskrefs og áhrif þess
á hegðun kerfisins.

Til þess að lýsa innri breytistærðum loðnu, eins og hrognafyllingu
og fituhlutfalli, er líkan kviks orkubúskaps (DEB) þróað fyrir íslensku
loðnuna. Innleidd er ný breytistærð fyrir hrognamyndun einstakra fiska.
Fundnir eru stikar, sem eru háðir lífverunni, eins og stærðarstuðull og
Arrheniusarhitastig. Sýnt er hvernig fá má út frá DEB líkninu mælan-
legar stærðir eins og þyngd, lengd, fitu- og hrognahlutfall. Notast er
við gögn frá þriggja ára gamalli kvenkyns loðnu frá 1999-2000 vertíðinni
frá Hafrannsóknarstofnuninni og Matís. Fundnir eru trúverðug stikagildi
með því að fella líkanið að mælingum. Gott samræmi fæst milli DEB
líkansins og mælinga á þyngd, lengd, fitu- og hrognahlutfalli loðnunnar.
Bent er á mikilvæg áhrif þroska á hrygningargönguna; þekkt er að kjör-
hitastig og hraði einstakra fiska taka mið af þroskastigi. Lýst er hvernig
DEB líkanið verður tengt við hreyfilíkanið þannig að hraði og kjörhitastig
einda muni ráðast af hrognahlutfalli einstaklingsins.
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1
Introduction

1.1 Background

During the summer of 2004 I started working for Kjartan G. Magnússon,
professor of mathematics, and Sven Þ. Sigurðsson, professor of compu-
tational science, programming an interacting particle model with ap-
plications to the Icelandic capelin stock [48]. This was my first taste of
research, and gave me invaluable programming experience. Furthermore,
it sparked my interest in such models, which have proved to be an endless
source of fascination.

I have continued on this path of working with interacting particle
models to describe the migratory behavior of the Icelandic capelin [3].
The model has been analyzed with scaling arguments on the interacting
particle model.

At UC Santa Barbara, where I stayed during 2006-2009 with Björn
Birnir, professor of mathematics, I participated in the Theoretical Ecol-
ogy Seminars, where I learned about a Dynamic Energy Budget (DEB)
model. The previous migration models all lacked the effect of maturation.
I have to that end tailored the DEB model to the Icelandic capelin [18]

1



2 Chapter 1 Introduction

to capture e.g. the roe production and fat content of the capelin. I hope
to continue along these lines, by combining the two models.

Working on such a diverse problem, spanning several disciplines, has
allowed me to not only work with mathematicians, but also with biolo-
gists, chemical engineers, oceanographers, and even fishermen. Not only
do I enjoy working with other people but I think that the outcome of
collaboration is often greater than the sum of its parts.

1.2 Outline of thesis

This thesis is divided into two parts. Part I describes an interacting par-
ticle model (or Individual Based Model, IBM). We describe how it has
been used to model the spawning migration of the Icelandic capelin [3].
In chapter 2 we describe in detail the mathematical model and equations
of motion. An introduction to the model’s background is also given, with
references to various papers and other similar models. We discuss various
aspects of the model, such as the link between the time step and reaction
times to certain behavior. We also show how information of the envi-
ronment, involving oceanic currents and temperature, is integrated into
the model. In particular, we model the capelin’s reaction to temperature
with a temperature reaction function.

With the model described in Chapter 2 we reproduced the spawning
migration of the Icelandic capelin for three different years in [3]. Chapter
3 describes the simulations and in detail the simulation of the 2007-2008
season. That simulation, described in Section 3.2.3, predicted the spawn-
ing migration route of the capelin, and serves as a reference simulation
for the sensitivity analysis presented in [3]. We give in Section 3.3 the
sensitivity analysis, which explores the simulations’ sensitivity to certain
parameters. An interesting result is that the sensitivity analysis elicits
the temperature reaction and neighbor interactions to be the parameters
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most significant in reproducing the migration paths. Chapter 4 describes
and derives scaling arguments from [3]. We apply the scaling arguments
to the parameters in the 2008 spawning migration, obtaining biologically
plausible values.

In order to quantify the behavior of the system of particles, and inves-
tigate the scaling arguments, we confine the model to a torus as further
explained in Section 4.2. Several measures are introduced and analyzed
in Section 4.4, such as global and local order parameters, as well as each
particle’s number of neighbors. We note that the simulations reach an
equilibrium state with respect to these measures, and we describe how to
find relaxation times to the equilibrium state. Scenarios are simulated,
and the resulting measures and relaxation times found. An interesting
result is how quickly the system reaches a local consensus, compared to
the global consensus.

Part II describes a Dynamic Energy Budget (DEB) theory. The model
of Part I did not take into account the effect of maturity, which observa-
tion have shown to play an important role in the migration. In Chapter
5 we describe the DEB model and tailor it to the Icelandic capelin. We
estimate several of the species-specific parameters of the model, and show
results from [18]. We introduce a new variable to capture the roe produc-
tion, since the DEB theory does not specifically treat the energy transfer
to roe. In that chapter we finally propose how to infer measurable quanti-
ties such as weight, length, fat content and roe content from the variables
of the DEB model. Comparison to data show good fits between the DEB
theory and observations.

In Chapter 6 we describe how we integrate the DEB model with
the interacting particle model described in Part I. The DEB model will
determine several triggers for the behavior of individuals of the IBM
and we propose how the speed and preferred temperature range of each
individual depend on its roe content. We conclude the thesis in Chapter
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7 with a broad discussion on the role of models for oceanic currents and
temperature, their applications, and future research.

A general description of the life cycle of the Icelandic capelin is given
below, in Section 1.3. Appendix A derives the equations used in the DEB
model. Appendix B describes how von Bertalanffy growth equations can
be obtained from the DEB model.

1.3 The Icelandic capelin

Capelin (Mallotus villosus) is a pelagic species which, like the herring
(Clupea harengus), covers several hundred kilometers in its migration be-
tween feeding and spawning grounds [49,64,65,67]. We focus on the stock
inhabiting the Iceland Sea, hereafter referred to as the Icelandic capelin.
Its role in the ecosystem of the Icelandic waters is highly significant,
bringing large amounts of biomass from the Arctic to more southerly
latitudes.

A separate capelin stock resides in the Barents Sea, north of the coast
of Norway and Russia. That stock has been widely studied and exhibits
similar migration patterns between feeding and spawning grounds [23,24].
Much effort has been put into modeling this stock [19, 31–33, 46, 57, 58].
However, the Barents Sea migration route differs significantly from the
Icelandic one, because it contains no islands or other obstacles.

Capelin is a vital part of the diet of fish species such as cod (Gadus
morhua) [44,45]. Capelin catches are exported or processed into fishmeal
and oils, and in recent years the Icelandic fishing industry has relied on
its value. However, the size of the stock has been diminishing and much
research effort has been put into stock estimation [26,65]. It is therefore
of importance to be able to model the whereabouts of Icelandic capelin
in order to control catches. A brief account will be given of pertinent
details of this species here, but the interested reader is referred to [64],
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where extensive details of the stock and its life cycle are provided.
Icelandic capelin spends the first 2-3 years of its life in waters north

of Iceland, along the edge of the continental shelf. When it approaches
maturity, usually either during the spring of its second or third year,
it undertakes an extensive migration, herein referred to as the feeding
migration, to the plankton-rich waters of the Iceland Sea as far north
as the island of Jan Mayen. There, zooplankton is plentiful and it feeds
on the vernal phytoplankton bloom in the region. The maturing capelin
eat these zooplankton and grow extensively. In October and November,
fully grown capelin return to the waters northwest and north of Iceland.
In January, this portion of the stock undertakes a spawning migration
clockwise around Iceland to the spawning grounds on the southern and
western coasts. The spawning migration generally follows the continental
shelf edge to the northeast and east of Iceland. However, in some years
a portion of the capelin migrates against the coastal current and takes
a westerly anti clockwise route to the spawning grounds. The capelin
spawn in February/March and then die, leaving the eggs to hatch and
the larvae to drift with the coastal currents to the continental shelf waters
north of Iceland and to begin the cycle again. The migrations of capelin
are seasonal and vary by year, so it is clear that the environment has a
significant impact on the migration pattern [10,64,65].
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2
Interacting particle model

2.1 Introduction

In this chapter we give an account of the interacting particle models used
in subsequent chapters. We begin by describing the equations of motion
without environmental effects in Section 2.3. The interaction between
neighboring particles is discussed in Section 2.3.1. This model is the
underlying interacting particle model which we later modify and extend.
The scaling analysis in Chapter 4 applies to this model.

We then introduce the effect of the environment in Section 2.4 and
describe how it is incorporated into the model, such as currents and tem-
perature in Sections 2.4.1 and 2.4.2, respectively. With this extended
model we model the spawning migrations of the Icelandic capelin. Sim-
ulations and sensitivity analysis are presented in Chapter 3. We refer
to Section 1.3 and references therein for a description of the Icelandic
capelin.

9



10 Chapter 2 Interacting particle model

2.2 Model description

The model is a discrete off-lattice interacting particle model, and each
particle represents an individual or a group of individuals. Particles
look to their neighbors to determine their directional heading at each
time step, averaging the neighbors’ directional headings to determine
their own. This allows the particles to move together as a group. The
model introduced in [63], and further analyzed and developed in [13–
15], is hereafter called the CV model. This type of model originated in
physics and was adapted by the biological community to model group
dynamics of social animals. It has been applied to herds of mammals,
swarms of locusts, and schools of fish [8, 12, 13, 63]. A European project
called STARFLAG (http://angel.elte.hu/starling) uses similar models for
swarms of starlings, and explores various interdisciplinary connections.
For a wonderful model in 3 dimensions, with many additional features to
those discussed below, see [29].

Experiments have shown that fish interact differently with each neigh-
bor depending on the distance to the neighbor; fish use their vision
and their lateral lines, sense organs running down the sides of many
species, to align themselves with neighbors and organize themselves into
schools [52, 53]. Fish tend to both aggregate and avoid collisions when
traveling, and the number of and distance to nearest neighbors seems to
play a role in the organization of a school [25,68,69].

To simulate the internal dynamics of a group of interacting animals,
many models incorporate different sensory regions into their simulations.
The distance between two particles in such models determines how they
react to each other and the strength of this interaction. These models
include both individual and continuum (density) models, and the shape
and the size of the sensory regions tend to differ depending on the model,
see for example [11, 12,16,28,40,41,60].
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Partridge [52] pointed out that fish align their velocity to that of their
neighbors. This feature was first introduced into the CV model in [30].
Birnir [7] analyzed the continuous time limit of this type of model and
found several solutions and symmetries. In [6], solutions to both models
presented in [7] were verified numerically. With sensory zones added, the
discrete model exhibits rich behavior, and swarming solutions induced
by noise were found. The latter work explored the interdependence of
noise and the size and weights of the sensory zones in eliciting certain
behavior from the model.

We follow [2] and [34] in employing three sensory zones around each
particle to determine its reaction to the particles around it. Unlike many
similar models [2, 12, 27, 28, 34, 40, 41, 68, 69], we do not employ a blind
region behind the particle. It is ambiguous whether this blind region is
biologically relevant in the case of fish, because the lateral line could allow
a fish to sense the region behind it as it swims. In addition, the presence
of such a region does not seem to affect the outcome of simulations [35].

2.3 Basic equations of motion

Let qk(t) = (xk(t), yk(t))
T and vk(t) denote the planar position and speed

of particle k at time t, respectively. The particles then update their
speeds as the average of the speeds of neighboring particles within the
zone of orientation, described in Section 2.3.1 below :

vk(t + ∆t) =
1

|Ok|
∑
j∈Ok

vj(t), (2.1)

and their positions

qk(t + ∆t) = qk(t) + ∆tvk(t + ∆t)

(
cos(φk(t + ∆t))

sin(φk(t + ∆t))

)
, (2.2)
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where φk(t) is the directional angle of particle k. Below, we show how
the directional angle of particle k is updated according to the position
and directional angle of its neighbors, see Equations (2.8) and (2.7).

In Section 2.4.3 the directional angle will be determined by two fac-
tors, the reaction to neighboring particles, and reaction to the environ-
ment; see Equation (2.10).

We stress the fact that the above model is discrete in time. Ideally
the time step ∆t should reflect the time it takes the individual to react
to its surroundings. That time constant we will denote τ . To appreciate
this assume e.g. that we would replace Equation (2.1) with the following
differential equation:

d

dt
vk(t) =

1

τ

(
1

|Ok|
∑
j∈Ok

vj(t)− vk(t)

)
. (2.3)

The discretizing in time with time step ∆t would result in

vk(t + ∆t) = vk(t) +
∆t

τ

(
1

|Ok|
∑
j∈Ok

vj(t)− vk(t)

)
, (2.4)

which reduces to Equation (2.1) if and only if ∆t = τ . If this is not the
case it may be more appropriate to use Equation (2.4).

We discuss this issue further in Section 2.5, and it is central to our
scaling analysis in Chapter 4.

2.3.1 Sensory zones

The sensory zones are three regions around each particle, defined as
shown in Figure 2.1. The innermost region is the zone of repulsion,
and a particle heads directly away from other particles in this region,
so avoiding collisions. The outermost region is the annular zone of at-
traction; a particle heads directly towards other particles in this region,
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Figure 2.1: Zones of interaction (sensory zones) of particle k. Ak is its zone
of attraction, Ok its zone of orientation, and Rk its zone of repulsion. These
zones have radii ra, ro, and rr, respectively.

adding to the cohesiveness of a group of particles. The annular region
between the zones of repulsion and attraction is referred to as the zone
of orientation, and a particle attempts to align itself in speed and in di-
rection with particles within this zone. These directional headings often
conflict, so each particle takes a weighted average of these directions, see
Equation (2.7).

We denote the set of indices of the particles within particle k’s zone
of repulsion at time t by Rk(t), its zone of orientation by Ok(t), and its
zone of attraction by Ak(t). In order to simplify notation we omit the
dependence on time below. At all times k ∈ Ok, ensuring that particle
k’s directional heading is taken into account. Now, introduce

Ik(t) := Rk(t) ∪Ok(t) ∪ Ak(t) (2.5)

as the set of indices of all the particles within particle k’s zones of in-
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teraction, including itself because k ∈ Ok. The set Ik thus contains the
indices of all the particles by which particle k determines its directional
heading. We denote the number of particles within each zone by | · |.
Note that at each time step we have

|Ik| = |Rk|+ |Ok|+ |Ak| (2.6)

since all the sets on the right hand side are disjoint. Finally, |Ik| ≥ 1

because k ∈ Ok.

2.3.2 Directional heading determined by neighbors

At each time step, we calculate how a particle reacts to neighboring
particles within its zones of interaction as a directional heading, dk. To
avoid conflicts with neighboring particles, a weighted average is taken:

dk(t + ∆t) :=
1

|Ik| ×
( ∑

r∈Rk

qk(t)− qr(t)

‖ qk(t)− qr(t) ‖

+
∑
o∈Ok

(
cos(φo(t))

sin(φo(t))

)
+

∑
a∈Ak

qa(t)− qk(t)

‖ qa(t)− qk(t) ‖

)
.

(2.7)

In the expression above, we sum up unit vectors according to the inter-
action rules described in Section 2.3.1.

We thus calculate the directional angle, φk, of Equation (2.2) as the
direction of the vector dk:

(
cos(φk(t + ∆t))

sin(φk(t + ∆t))

)
=

dk(t + ∆t)

‖ dk(t + ∆t) ‖ . (2.8)

This is the directional angle used for the basic interacting particle model
of Equation (2.2). As mentioned before, the scaling analysis of Chapter
4 analyzes this model on a torus.
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In the next section we include environmental factors to the model. In
Section 2.4.3 we show how we include particles’ reaction to temperature,
and subsequently how the directional angle is modified, see Equations
(2.9) and (2.10).

2.4 The environment

To model the migration route accurately, we include environmental data
in the simulations to allow particles to respond to their environment.
To this end, we introduce an environmental grid containing information
about the current and the oceanic temperature at a depth of 50 m. The
grid also has information about landmasses, encoded as points on the
grid with extreme heat, thus indirectly forcing the particles to move
away from landmasses. We describe in more detail in Section 2.4.4 how
this is handled. The data contained in the grid allow each particle to be
translated by the current and to adjust its direction depending on the
temperature of the surrounding ocean.

Previous models of the migratory behavior of capelin use some sort
of attraction towards the feeding or spawning grounds [30, 46–48, 58].
Promising results for the Barents Sea stock were presented by [32] using
only environmental factors, but with some discrepancies between pre-
dictions and observations. Here, we use an interacting particle model
based on the work of [3, 30, 48]. A notable difference between our model
and previous models of capelin migration is the absence of an artificial
attracting forcing term.

2.4.1 Currents

The speed of a migrating capelin has been recorded to reach >25 km d−1

[64]. The clockwise coastal current around Iceland is quite strong and its
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speed can be of the same order of magnitude as the speed of fish relative
to the surrounding sea. Although the current changes seasonally and
even varies from day to day based on weather conditions, for simplicity
we took it to be constant in [3]. We show a map of these currents in
Figure 3.2. Its maximum translation is about 15 km d−1.

We assume that fish do not change directional heading dependent on
the current, so it translates them independent of their own movement.
This assumption is reasonable and in fact integral to the physicality of
the model, because in some years a portion of the capelin stock migrates
counter-clockwise around Iceland, against the current. The currents used
in [3] is the same approximated oceanic current field as [47], and can be
seen in Figure 3.2. Hereafter, the current field is denoted C. In Section
6.3 we describe a new model on currents and temperature around Iceland
by Dr. Kai Logemann [43], which we intend to use for future simulations.

2.4.2 Temperature

It is well known that capelin are sensitive to oceanic temperatures, both
during their feeding migration and during their spawning migration [64,
65]. Capelin have a relatively narrow temperature preference, and prefer
temperatures from about 3◦C up to 10◦C, although they are known to
enter much colder waters [64]. We therefore model this behavior in the
following way.

The particles sense the surrounding temperature, T , according to the
gradient of the function r:

r(T ) :=





−(T − T1)
4 if T ≤ T1,

0 if T1 ≤ T ≤ T2,

−(T − T2)
2 if T2 ≤ T

(2.9)

where T1, T2 are constants, and [T1, T2] is referred to as the preferred
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Figure 2.2: Graph of the temperature response function r from Equation
(2.9)

temperature range. Figure 2.2 shows the graph of r. This is the same
function previously used in [46–48].

By looking at the gradient of r, we see that fish should move to-
wards areas within the preferred temperature range, the tendency being
stronger in colder water. However, the last tendency does not often come
into effect in practise, since only the direction of the gradient of the func-
tion r is used.

2.4.3 The directional angle with environmental influ-

ence

Now, we have the directional heading according to neighbor interactions,
Equation (2.7), and the particles’ reaction to temperature via ∇r, see
Equation (2.9). These two factors need to be weighed together in Dk,
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where

Dk(t + ∆t) := (1− β)
dk(t + ∆t)

‖ dk(t + ∆t) ‖ + β
∇r

(
T (qk(t))

)

‖ ∇r
(
T (qk(t))

) ‖ . (2.10)

The factor β we refer to as the temperature weight factor. We note that
the model’s behavior is highly dependent on β [3], which we detail in the
next chapter. In the discussion below we discuss details about the above
equation and the complexities of β.

Alternatively, we can rewrite Equation (2.10) as

Dk(t+∆t) =
dk(t + ∆t)

‖ dk(t + ∆t) ‖+β

(
∇r

(
T (qk(t))

)

‖ ∇r
(
T (qk(t))

) ‖ −
dk(t + ∆t)

‖ dk(t + ∆t) ‖

)
.

(2.11)
The second term of the right hand side of Equation (2.11) is proportional
to β and the difference between the direction of temperature preference
and the direction determined by neighbor interactions. We see that β

determines how much a particle adjusts to its temperature preference at
each time step. This, in turn, affects how information of the environment
propagates through a school of particles.

We thus calculate the directional angle φk, with reaction to environ-
ment included, as the angle of the vector Dk. We now have everything
to describe the full model, as Equation (2.12) below.

2.4.4 Equations of motion with the environment

We nowmodify the Equation of motion (2.2) to include the environmental
fields as following:

qk(t + ∆t) = qk(t) + ∆tvk(t + ∆t)
Dk(t + ∆t)

‖ Dk(t + ∆t) ‖ + ∆tC(qk(t)). (2.12)

Equation (2.12) is the model of motion with environmental factors
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included, which we use to model the spawning migration of the capelin [3]
1. In the next chapter we describe the simulation from the 2007-2008
season. In Section 3.3 we discuss how the temperature and currents affect
the model and present a sensitivity analysis to investigate the model’s
dependence to the parameters described above.

We note that in order to ensure that particles do not swim onto
land, we go through the following process if a particle gets close to land,
i.e. senses a point of extreme temperature. We calculate Equation (2.10)
and determine its next location according to Equation (2.12). If that
location is still close to land we temporarily increase the particle’s sen-
sitivity to temperature. We then recalculate Equation (2.12) and go
through the same process until the particle only responds to the temper-
ature, i.e. as if β has the value 1. By doing so, we effectively reflected
particles from land with a minimal angle needed to avoid swimming onto
dry land.

2.5 Discussion

It is plausible to assume that there is a difference between the time it
takes an individual fish to react to temperature and the time it takes
it to react to its neighbors. The factor β, to which we refer as the
temperature weight factor, reflects the relation between the time constant
of the reaction to its neighbors, τN and the time constant of the reaction
to temperature, τT .

To appreciate this assume, similarly to Equation (2.3), that we have
the following differential equation governing the change in the [unit] di-

1Equation (6) in [3] does not multiply the currents with the time step, which is
simply a typographical error.
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rection:

d

dt
D̃k(t) =

1

τN

(
Dk,N(t)− D̃k(t)

)
+

1

τT

(
Dk,T(t)− D̃k(t)

)
, (2.13)

where Dk,N(t) denotes the directional heading according to neighbor in-
teractions,

Dk,N(t) :=
dk(t + ∆t)

‖ dk(t + ∆t) ‖ , (2.14)

and Dk,T(t) denotes the directional heading according to the reaction to
temperature,

Dk,T(t) :=
∇r

(
T (qk(t))

)

‖ ∇r
(
T (qk(t))

) ‖ . (2.15)

Discretizing Equation (2.13) with time step ∆t results in

D̃k(t + ∆t) = D̃k(t) +
∆t

τN

(
Dk,N(t)− D̃k(t)

)
+

∆t

τT

(
Dk,T(t)− D̃k(t)

)
,

(2.16)
which reduces to Equation (2.10) by choosing ∆t = τNτT /(τN + τT ) and
subsequently obtaining

β =
τN

τN + τT

. (2.17)

We note that with β as in Equation (2.17) and τT = στN we obtain

β =
1

1 + σ
, (2.18)

which results in β ∈ [0, 1].

On the other hand, if we choose the time step to correspond to the
reaction time to neighbors, ∆t = τN , then we get

D̃k(t + ∆t) = Dk,N(t) +
τN

τT

(
Dk,T(t)− D̃k(t)

)
, (2.19)
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which is again similar to Equation (2.11) with

β =
τN

τT

, (2.20)

and with τT = στN as before we obtain

β =
1

σ
, (2.21)

which results in β ∈ [0, 1], assuming that σ > 1.
Finally, we note that neighbor interactions are due to both vision and

sensing through the lateral line of the fish. It is biologically plausible
that visual and lateral line sensing is information a fish processes fairly
quickly, and much quicker than information about the temperature is
processed. In addition, changes to the order of neighboring fish happen
faster than changes to the temperature, which on small scales is close
to being constant. Thus the reaction time to temperature, τT , is much
longer than the reaction time to neighbors, τN , resulting in σ À 1 and
hence β ¿ 1 in either Equation (2.18) or Equation (2.21). In the next
Chapter, Section 3.2, we indeed simulate the model of Section 2.4.4 with
β small.

However, the time constants τN and τT are data which is hard to
measure and not available for capelin, and so the choice of the correct
form of β has to be based on simulations.
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3
Case studies and sensitivity

analysis

3.1 Introduction

In [3] we presented simulations of the spawning migrations of the Ice-
landic capelin from three different seasons; 1984-1985, 1990-1991, and
2007-2008. With parameter values given in Equation (3.1) and discussed
in Section 3.2.2, we reproduced the spawning migration route of the
capelin for each season. In particular, the simulations recreated charac-
teristics of the migration route particular to each of the three seasons,
closely matching acoustic data from [64].

Below, in Section 3.2.3, we describe the simulation of the 2007-2008
spawning migration in detail, but refer to [3] for further information,
figures, and details on the other two case studies. The simulation of
the 2007-2008 spawning migration is of interest and included here for
two reasons. Firstly, it successfully predicted the migration route of the
capelin that year. Secondly, it serves as the reference simulation to which
we compare the scenarios of the sensitivity analysis in Section 3.3.

23
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In the sensitivity analysis of Section 3.3 we show the temperature
reaction and neighbor interactions to be the parameters most significant
in reproducing the migration paths [3].

3.2 Simulations of spawning migrations

3.2.1 Temperature and currents for the 2008 simu-

lation

In the 2007-2008 case study, we used temperature data extracted from
a German weather website (http://www.wetterzentrale.de/topkarten/...
fsfaxsem.html) on February 5 of 2008. These data were then extrap-
olated to our grid using Ocean Data View. The nature of these data
is different from temperature data from the MRI, which had not been
collected at that time; the website averages data from various surface
measurements from buoys, satellites, and ships. If data are missing or
beyond a certain distance from available measurements, the website uses
the average temperature of the current month from 1961 to 1990. It is
reasonable to assume that these surface data approximate the temper-
ature at a depth of 50 m because, in winter, strong winds and storms
cause turbulent mixing of the water near the surface down to a few dozen
meters, as temperature data corroborate. Hence, the temperature data
is comparable among the three case studies in [3]. Contour plots of the
extrapolated temperatures are shown in Figure 3.1.

In all three case studies in [3] we used the map of the currents shown
in Figure 3.2. Its maximum translation is about 15 km d−1 . This is the
same approximated oceanic current field as used in [47]. These currents
come into play as the currents field C in Equation (2.12).

As mentioned before, for simplicity we took the currents field to be
constant although the current changes seasonally and even varies from
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Figure 3.1: Contour lines of extrapolated surface temperature data used in
the simulations of the 2008 spawning migration. From February of 2008

Figure 3.2: Simulated ocean current field around Iceland [47]. The strength
of the current is given by the length of the line segments. The stronger coastal
current runs clockwise around Iceland.
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day to day based on weather conditions. We show in Section 6.3, once the
new currents of the CODE model have been included, how such changes
will be handled.

3.2.2 Parameter and simulation specifications

In the simulations of the spawning migrations, we use a general xy-
coordinate system of dimensions 82 by 56. The temperature and oceanic
currents are stored in a grid defined at points (i, j) ∈ Z2

⋂
([0, 82] ×

[0, 56]), corresponding to the area from 30.5–10.0 ◦W to 62.0–69.0 ◦N.
Hence, the spacing between points on the environmental grid is 0.25 ◦ in
longitude and 0.125 ◦ in latitude. This means that the grid has a spatial
resolution of roughly 12 km in each direction, although the longitudinal
length varies slightly depending on the latitude. This discrepancy is not
significant for our simulations, so is not taken into account here.

We initially placed particles in areas where data indicated a high
density of mature capelin [64]. For the simulation of the 2008 spawning
migration, the initial distribution of particles is shown in Figure 3.4(a),
as reported by the MRI. The simulation runs from early January to early
April. The general route of the simulation can be seen in Figure 3.4 and
is discussed in more detail below in Section 3.2.3.

We held the number of particles per “main school” to be between
40 000 and 50 000 in each simulation, with a uniform density in each
school across the simulations. This ensures that the dynamics of the mi-
gration are similar across years, although the total number of particles
differs between simulations. According to the scaling arguments pre-
sented in Section 4.3, by keeping the particle density constant in areas
containing fish, we avoid the need to change parameter values between
simulations.

Icelandic capelin generally spawn in water between 3 and 10◦C [64].
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In the simulations, we set the temperature preferences to be between 3

and 6.5◦C. Interaction among particles and the relatively high interaction
weight enables particles to enter water that is outside their preferred
range. We set the temperature weight factor β = 0.010 [Equation (2.10)],
but because of the form of the temperature preference function (2.9),
the particles tend to leave water that is outside their preferred range.
This preference function combined with the fact that all the particles
are reacting to the same temperature map keeps them in water of a
temperature close to the actual preferred range of the capelin.

We measure time t in days and speed vk in grid units (about 12 km)
per day, and the radii of a particle’s sensory zones in grid units. We set
∆t = 0.050 (i.e. 1.2 h); speeds vk were initialized uniformly in [0, 0.375]

(i.e. [0, 4.5] km d−1), then updated according to Equation (2.1). Initial
direction angles are assigned randomly. Once the particles are east of
13.5◦W, the algorithm sets vk = 1.25, or about 15 km d−1, which is sig-
nificantly faster than the initial speeds and crudely models the observed
increase in speed. We discuss the interplay between the spatial resolution
of the grid and the time step in the Discussion below. In Section 6.1 we
describe how this increase in speed will depend on the roe content of each
individual particle, once changes in roe content have been incorporated
into the model.

The other parameter values were rr = 0.010 and ro = 0.100, which
correspond roughly to rr ' 120 m and ro ' 1.2 km. We found that
including the zone of attraction causes the particles to cluster unnaturally
and fails to reproduce the large schools observed by researchers. The zone
of attraction was therefore excluded here from the simulations by setting
ra = ro.

In the simulations of the three spawning migrations in [3] the param-
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eter values are therefore

∆t = 0.050

(rr, ro, ra) = (0.010, 0.100, 0.100),

[T1; T2] = [3.0; 6.5]◦C,

β = 0.010.

(3.1)

In Section 3.2 we briefly describe these simulations, but for details, dis-
cussion and figures, we refer to [3]. However, below we present the sensi-
tivity analysis from that paper. In the simulations of the three spawning
migrations, the value of β was set to 0.010.

We let ∆q denote the distance a particle travels in one time step. We
note that with these parameter values the average initial spatial resolu-
tion ∆q is similar to the radius of repulsion, rr, allowing faster moving
particles to fall close to each other. We discuss this issue further in
Section 3.4.

Finally, the code used is written in C++, and the run time with around
50 000 particles was on average 3-5 h. All simulations were done on a
dual-core Intel Pentium 4 (2.60 GHz per core, 512 L2 cache, 1GB main
memory). In [70], the run time of the code is shown to be O(N1.8), when
run in parallel. For further details about the implementation, and how
the simulations can be run in parallel, see [70].

3.2.3 The 2008 case study

An important result of [3] is the successful prediction of the route of the
2007-2008 spawning migration using only initial fish density and temper-
ature measurements taken by research and fishing vessels during January
2008. Capelin proved to be difficult to find and a very low fishing quota
was set. Subsequently, the fisheries were closed in late February as a
result of poor and low estimates of stock size. Eventually, a large quan-
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tity of capelin was found to have taken an unusual route, resulting in an
additional fishing quota being set at the beginning of March 2008.

We ran the 2007-2008 simulation for 1900 time steps (95 d) between
early January and early April. Figure 3.3 shows the simulated migration’s
initial placement and simulations of days 47, 59, and 65, roughly mid-
February, late February, and early March. Figure 3.4a shows acoustic
measurements from 26 and 27 February, and Figure 3.4b shows observa-
tions gathered between 29 February and 3 March. Comparing Figure 3.3c
with Figure 3.4a reveals that the bulk of the particles in the simulation
headed towards the shore almost exactly where the research vessels later
found them to be. Furthermore, Figure 3.3d shows a school of particles
east of Iceland in almost precisely the same location as the school of fish
farthest to the right in Figure 3.4b. This indicates that the route and
proportions of the particles in the simulated spawning migration were
remarkably accurate, especially because the simulation was completed in
early February 2008, before fishing was closed.

3.3 Sensitivity analysis

We now look more closely at the behavior of the model when parameters
are varied. We choose the run from the 2007-2008 simulation, see Section
3.2.3, as a reference case to which we compare the other simulations.
This choice of parameters successfully predicted the unusual spawning
migration of that year, in addition to producing good results for the two
other years [3].

We explore the model’s sensitivity to three different sets of parame-
ters. First, we change the preferred temperature range, [T1, T2], which
clearly affects the migration pattern because particles seek into waters
with temperature within this range. Second, we vary the parameter β,
which determines how strongly and quickly particles sense temperature,
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(a) (b)

(c) (d)

Figure 3.3: Simulation of the 2007-2008 spawning migration [3]. (a) early
January, day 0, (b) mid-February, day 47, (c) late February, day 59, (d) early
March, day 65. Compare to Figure 3.4 and see Section 3.2.3 for details.
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(a)

(b)

Figure 3.4: (a) Measured distribution of capelin near the south coast of
Iceland from 26 to 27 February 2008. (b) Measured distribution of capelin
near the southeast coast of Iceland from 29 February to 3 March 2008.
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Figure 3.5: Compartments used for the sensitivity analysis. See section on
the sensitivity analysis and Tables 3.1, 3.2, and 3.3.

and is an interesting parameter for the simulations. Finally, we vary the
radii, rr, ro, and ra, which affect the interacting behavior of the particles.
These scenarios are described in Section 3.3.1.

In order to quantify the outcome of the sensitivity analysis, the area
of the simulation is divided into 21 numbered compartments, as shown in
Figure 3.5. In each new simulation, only one parameter value is changed
in order to understand its role in the model. The new values for each
parameter are presented in Table 3.1, giving rise to nine scenarios.

In none of the scenarios do we change the time step, and thus the
ratio between the time step and the reaction time of the particle to its
neighbors, τN , remains constant. This is especially important for the
scenarios where we change the value of β. The reason is that β depends
in some way on the ratio between the reaction times to neighbors and
temperature, as discussed in Section 2.5, and thus on how strongly the
particle reacts to temperature.

The number of particles in all runs was approximately 41 800. At days
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47 and 65, the numbers of particles in each compartment were counted,
then divided by the initial number of particles in these simulations to
obtain the distribution as percentages. This was done for Scenarios (a)-
(i) (Table 3.1) as well as the 2007-2008 reference case on days 47 and 65

(Tables 3.2 and 3.3). Note that the percentage values of the reference
simulation do not add to 100% nor do the differences in the remaining
simulations add to 0%. The reason is that particles crossing the boundary
of the model region are lost. The percentage of lost particles in the
reference case on days 47 and 64 was 8.9% and 20.3%, respectively.

3.3.1 Scenarios

In Scenario (a), only the upper bound of the preferred temperature range
was increased. The runs therefore look similar until the particles reached
the upper limit of the preferred temperature range in the east of Iceland.
On day 47, the difference in compartments 13, 14, and 21 was the result of
the particles not having reached this upper limit. They therefore stayed
closer to shore and were in turn translated by the current to the south.
The distribution on day 65 was, however, similar to the reference case.
In Scenario (b), the lower bound of the temperature range was lowered
and the particles lingered in the north (see compartments 5 and 6 on day
47). The reason for this is that the cold front in the north did not push
the particles down into the stronger currents. The current then slowly
moved the particles to the east, and on day 65 most of the particles were
located in compartment 14. We note that the particles did not reach the
spawning grounds, as compartments 17-19 showed.

In Scenarios (c)-(f), the value of β was changed. This parameter
determines how strongly the particles sense their temperature environ-
ment compared with the strength of interaction. The time step remained
unchanged in all scenarios. By changing β and not the time step, we con-



34 Chapter 3 Case studies and sensitivity analysis

sistently change how quickly particles adjust their directions according
to the temperature. In Scenarios (c) and (d), the value of β was lowered,
so the effect of the current was the main environmental factor in the
particles’ movement. They therefore did not sense the temperature as
strongly, causing them to swarm to the north.

In extreme Scenario (c), where the value of β was one-fifth of the
reference value, the particles traveled slowly to the northern and the
eastern boundary, and close to 65% of the particles were lost. In Scenario
(d), lack of an aggregate direction caused a more northerly distribution
than in the reference case, on days 47 and 65. For both (c) and (d),
the particles did not arrive at the spawning grounds. In (c), a small
proportion of the particles traveled south, but did not come close to land
because the effect of temperature was not strong enough to drive them
to shore. The particles passed by the spawning grounds and finished in
compartments 9 and 16, far off the coast of Iceland.

Scenarios (e) and (f) had a higher value of β than in the reference
simulation, so the particles sensed their environment more strongly. In-
terestingly, even in (e) with β 50% higher than in the reference case, the
particles did not arrive at the spawning grounds. When they reached the
6.5◦C isotherm, they were diverted to the west. Most of the particles
then came to shore in southeast Iceland, because they were not able to
enter water that was too warm. Close to 58% of the particles finished in
compartments 12, 13, 19, and 20.

In Scenario (f), the high value of β resulted in an interesting behav-
ior when the particles reached the 6.5◦C isotherm. The strong current
translated the particles into warm water, to which they reacted strongly.
Unable to enter the warm water, the particles were reflected to the east
and continued off the boundary. About 72% of the particles were lost to
the east in this way.

Finally, Scenarios (g)-(i) explored the behavior of the system as the
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ratio of the radii changed. In Scenario (g), the radius of repulsion, rr,
was half the value used in the reference case and in (h) it was twice
the value. In Scenario (g), the particles formed smaller schools, because
the small value of the radius of repulsion did not force them to spread
out. Some particles reached the spawning grounds via a similar route to
the reference case, but more quickly (see compartments 16-18 in Table
3.3). In Scenario (h), the particles also reached the spawning grounds
similarly to the reference case. The main difference in distribution can be
explained by the fact that many fewer particles were lost: in the reference
case more than 20% were lost on day 65, but less than 8% in Scenario (h).
The schools were also more spread out, as expected from a larger value of
the radius of repulsion. Finally, Scenario (i) includes a non-trivial zone of
attraction. In this case the particles clumped unnaturally and moved in
small clusters. This led to less cohesion among the particles as a whole,
which is uncharacteristic of the migration patterns [64].

3.4 Discussion

Our work in [3] indicates that it is possible to explain the migration
route of the Icelandic capelin stock without a homing instinct, and that
oceanic temperature is of great importance to the path of the migration.
With tens of thousands of particles, information about the environment
propagates through the simulated schools much more effectively than in
previous models, which makes the system more able to sense the envi-
ronment. This improvement could account for not needing attraction
potentials to reproduce the migration.

The success of such a biologically simplistic model demonstrates the
profound effects that temperature and local interaction among the fish
have on the migration route. Using a preferred temperature range and
an adjustable strength of the interactions between particles suffices to re-
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Table 3.1: Parameter values used in the scenarios of the sensitivity analysis.

Parameters varied: Lost on day 47 [%] Lost on day 65 [%]

(a) T2 = 7.5◦C 10.7 14.7
(b) T1 = 2.0◦C 18.4 22.7
(c) β = 0.002 38.3 64.9
(d) β = 0.005 9.3 23.4
(e) β = 0.015 9.0 11.1
(f) β = 0.050 12.3 72.4
(g) rr = 0.005 14.5 29.8
(h) rr = 0.020 4.6 7.6
(i) ra = 0.200 8.8 10.0

Parameter values used in the reference case of 2007-2008:
[T1; T2] = [3.0; 6.5]◦C, β = 0.010, (rr, ro, ra) = (0.010, 0.100, 0.100).
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Table 3.2: The entries in the first block show the distribution into the com-
partments shown in Figure 3.5 on day 47 in the reference case of the 2007-2008
simulation, which is described in Section 3.2.3. For a description of Scenarios
(a)-(i) see Table 3.1, and the difference between the scenarios and the reference
simulation of 2007-2008 is shown. The entries in (a)-(i) correspond to the 21
compartments shown in Figure 3.5, and are arranged in the same order. And
a negative entry signifies more particles being in the reference simulation of
2007-2008.

Distribution into compartments:
0.0 0.0 0.0 13.2 3.2 0.0 0.0

Reference 0.0 0.0 0.0 0.0 1.2 22.0 13.0
0.0 0.0 0.0 0.6 7.4 8.0 22.5

Scenarios: Difference of distribution into compartments:
0.0 0.0 1.9 0.6 1.2 0.0 0.0

(a) 0.0 0.0 0.0 0.0 4.6 14.9 -9.2
0.0 0.0 0.0 0.7 -1.8 1.7 -16.5
0.0 0.0 6.4 -1.5 14.3 19.3 0.3

(b) 0.0 0.0 0.0 0.0 -1.2 -9.2 -12.2
0.0 0.0 0.0 3.8 -2.4 -4.8 -22.5
0.0 0.0 4.6 -4.8 -0.1 8.3 0.0

(c) 0.0 0.0 0.0 0.0 -1.2 -11.0 -3.5
0.0 0.0 0.0 -0.6 -7.2 0.1 -14.1
0.0 0.0 0.0 9.5 7.2 2.5 0.0

(d) 0.0 0.0 0.0 0.0 -1.2 3.1 -11.1
0.0 0.0 0.0 1.5 4.4 -6.9 -9.5
0.0 0.0 0.0 -8.6 3.1 1.2 0.0

(e) 0.0 0.0 0.0 0.0 3.1 4.8 -10.4
0.0 0.0 0.0 -0.6 -0.1 15.3 -8.0
0.0 0.0 0.0 -6.1 3.9 0.3 0.0

(f) 0.0 0.0 0.0 0.0 -1.2 -10.2 37.5
0.0 0.0 0.0 -0.6 -7.4 -2.7 -17.1
0.0 0.0 0.0 -1.3 -2.7 0.0 0.0

(g) 0.0 0.0 0.0 0.0 1.0 -2.1 -5.3
0.0 0.0 0.0 3.1 -1.5 6.1 -3.1
0.0 0.0 0.0 -11.2 -2.9 0.0 0.0

(h) 0.0 0.0 0.0 0.0 2.5 -0.3 -10.5
0.0 0.0 0.0 2.9 6.4 8.6 8.8
0.0 0.0 0.0 -6.1 6.5 0.1 0.0

(i) 0.0 0.0 0.0 0.0 -1.2 7.9 -3.2
0.0 0.0 0.0 -0.1 2.9 15.7 -22.5
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Table 3.3: The entries in the first block show the distribution into the com-
partments shown in Figure 3.5 on day 65 in the reference case of the 2007-2008
simulation, which is described in Section 3.2.3. The Scenarios (a)-(i) are de-
scribed in Table 3.1, and the difference between the scenarios and the reference
simulation of 2007-2008 is shown. The entries in (a)-(i) correspond to the 21
compartments shown in Figure 3.5, and are arranged in the same order. And
a negative entry signifies more particles being in the reference simulation of
2007-2008.

Distribution into compartments:
0.0 0.0 0.0 7.3 6.0 0.0 0.0

Reference 0.0 0.5 0.0 0.0 0.0 18.9 0.0
0.0 0.4 11.1 19.6 7.6 1.7 6.7

Scenarios: Difference of distribution into compartments:
0.0 0.0 2.6 -0.1 -0.9 0.0 0.0

(a) 0.0 -0.5 0.0 0.0 0.0 9.1 0.0
0.0 -0.4 3.1 -2.8 -0.1 2.3 -6.7
0.0 0.0 2.8 6.1 -4.7 0.5 0.0

(b) 0.0 4.0 0.0 0.0 0.9 1.0 25.9
0.0 -0.4 -3.4 -19.6 -7.1 -1.7 -6.7
0.0 0.7 3.8 -1.7 -5.4 4.3 0.0

(c) 0.0 -0.5 0.0 0.0 0.0 -3.5 4.4
0.0 -0.4 -10.9 -19.5 -7.6 -1.7 -6.7
0.0 0.0 0.2 2.6 3.7 0.4 0.0

(d) 0.0 6.4 0.0 0.0 5.5 2.5 3.7
0.0 3.6 -7.0 -18.6 -7.5 0.8 0.5
0.0 0.0 0.0 -7.3 -3.6 0.0 0.0

(e) 0.0 -0.5 0.0 0.0 1.5 13.3 0.2
0.0 -0.4 -11.1 -19.6 39.8 3.3 -6.4
0.0 0.0 4.8 -6.0 -5.3 0.0 0.0

(f) 0.0 -0.5 0.0 0.0 0.1 -5.6 2.4
0.0 -0.4 -11.1 -19.6 -7.6 -1.4 -2.0
0.0 0.0 0.0 -1.8 -1.8 0.3 0.0

(g) 0.0 -0.5 0.0 0.0 0.0 -0.3 0.0
0.0 3.8 6.9 -7.2 -0.5 -1.6 -6.7
0.0 0.0 0.2 -5.6 -5.6 0.0 0.0

(h) 0.0 5.3 0.0 0.0 0.0 0.7 0.0
0.0 -0.4 3.0 19.0 2.0 0.6 -6.6
0.0 0.0 0.0 -0.2 -6.0 0.0 0.0

(i) 0.0 0.2 0.0 0.0 0.0 -5.9 0.0
0.0 -0.4 6.1 -10.3 22.6 11.0 -6.6
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produce the spawning migration qualitatively. Although it is impossible
to determine with certainty how organisms behave, one hopes to produce
a model that is at least able to reproduce the behavior. Doing so with a
model that uses interaction strength and measured environmental factors
is therefore a significant result for the model being used.

Of special interest is how low the value of β is in Section 3.2. A
low value resonates with the Discussion in Chapter 2, where we argue
that the reaction time to neighbors is shorter than the reaction time to
temperature, thus requiring a low value of β.

As noted in Section 3.2.2, the average initial spatial resolution ∆q is
similar to the radius of repulsion, rr, for the simulations in Section 3.2.3.
When a particle updates its directional heading, most of them take into
account all neighboring particles which they could encounter in the next
time step. This ensures that most particles tend to avoid collisions at
each time step. However, faster moving particles could collide, or even
travel past each other. Once the speed is drastically increased, particles
could travel past each other, even through the zones of orientation. We
need to choose the parameters carefully to avoid this problem. Shortening
the time step or increasing the radii would ensure particles reacting to
all neighboring particles. Finally, we see in Scenario (h) that doubling
the radius of repulsion results in a more realistic migration pattern.

With our choice of ∆t and vk, in the simulations of the spawning
migrations, each particle travels on average ∆q ' 0.12 km per time step.
This means that it takes a particle about 100 time steps to move from one
grid point to another. Taking time steps that are too large for the grid
resolution would force particles to skip over grid points, and therefore to
miss the information located at these grid points. Refining the spatial
resolution of the grid should go hand in hand with a refined temporal
resolution. By choosing ∆t and vk as we have, we are simulating well
within the limits of the spatial resolution of the environmental data,
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thereby using all of the information available.

The sensitivity analysis showed that there is an interplay between
the preferred temperature range and the currents around Iceland, thus
affecting the route of the spawning migration. We see that if the upper
bound of the preferred temperature range, T2 is too high, the particles
enter waters which normally should be too hot and get carried away with
the fast currents. The temperature gradients off the southeast coast of
Iceland have been observed to slow down migrating capelin, but with a
high T2 the particles moved past these boundaries. However, lowering
the lower bound, T1, we see that particles linger in the north and do not
enter waters with stronger currents, which carries them along their way
to the spawning grounds.

The sensitivity analysis indicates that the value of β controls a fine
balance between how strongly the particles sense their environment and
the strength of interaction among particles. The value of β has to be
high enough to allow a school to sense the environment, but low enough
to allow it to enter water outside the preferred temperature range of the
fish.

It is important to note that the value of β seems to affect where the
particles come onto the continental shelf of Iceland. This is an interplay
between the currents and the shape of the temperature contour lines
around Iceland, see Figures 3.1 and 3.2, along with the upper bound
of the preferred temperature range. The fast current off the southeast
coast drives the particles into warm water, and in return the value of β

determines how the particles respond to that warm water.

We also note that the values of β used in the scenarios are low. Even
in the extreme case of Scenario (f) the value of β is 0.050. But in that sce-
nario, the particles react so quickly to the temperature boundaries that
they effectively reflect the whole school of particles hitting the boundary.
The balance between neighbor interactions and temperature reaction is
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indeed a fine one.
We note that the schools of particles in the simulations seem “thin”

compared with acoustic measurements. Adding noise to the directional
angle of the particles could have the effect of spreading them out. Noise
has not been added into the simulations at this stage, to facilitate the
interpretation of the behavior of the system. Future simulations will
incorporate noise, which requires a statistical interpretation of the simu-
lations.

The radius of repulsion effectively spreads out particles. With the
value of rr too small, the particles form dense schools which sense tem-
peratures on a small scale, compared to larger and less dense schools.
The Scenario (h), with the radius of repulsion double that of the refer-
ence case, does create a simulation which looks realistic and might be a
better value than used in the reference case. In Section 4.3.1 we see that
doubling the value of radius of repulsion is within reasonable biological
bounds. We only explored one extreme case with the radius of attrac-
tion active, which had the effect of forming many dense schools. Since
that behavior is uncharacteristic of capelin we have not investigated the
parameter further.

Finally, we note that the radii of interaction are biological parameters
for individual fish, and could be found from experiments. We show in
Section 4.3.1 how the values used in the simulations of the spawning
migrations should change, were we to simulate at the level of individual
fish, and obtain biologically reasonable values.
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4
Scaling of parameters

4.1 Introduction

We now focus our attention on the relationship between the number of
particles in a simulation, the radii of interaction and the time step. As
described in Section 2.3 the model is a discrete one, with an inherent
biological reaction time, τ .

Optimally, one would have estimations of the reaction time, τ , and
the radii of interactions, based on some measurements. The time step in
the simulations would then be set to the reaction time, and the radii in
the simulations would be determined by the values of the biological coun-
terparts. Since data on these parameters are typically hard to measure,
one must know how to handle different scenarios.

Preferably, one would be able to simulate at the level of individual
fish. However, computational recourses do not allow such a feat in a
reasonable time when it comes to the capelin. Stock sizes are usually
measured in billions of individual fish, and we therefore have to make do
with fewer particles in the simulations. These individual particles, each
of which represents many individual fish, we call superindividuals.

43
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We think of the superindividual as a school of fish, moving as a whole
entity. The dynamics of a school of superindividuals need not be identical
to the dynamics of a large school of individuals. Here, we assume that the
superindividual follows the same equations of motion as the individual
fish.

However, care must be taken when simulating under such circum-
stances. Both the radii of interactions and the time step are somehow
related to the number of fish each superindividual represents. The time
step and the reaction times of individuals, τ , versus the reaction times of
superindividuals needs to be considered. The time step also holds hand
in hand with the radii of interactions.

In [3] we presented arguments for how parameters of the interacting
particle model should change when the number of particles is changed.
In Section 4.2 we restate the model under investigation and describe the
proposed scaling arguments in Section 4.3. We propose in Section 4.4
several measures to be used to investigate the veracity of the scaling
arguments, and the behavior of the system of particles.

Numerical simulations for the scaling arguments are presented in Sec-
tion 4.5. There, we show that with the scaling relationships between pa-
rameters in Section 4.3 we do in some sense achieve the same behavior in
a system of individuals, across a spectrum of simulations with different
number of particles. We show that the average number of neighbors stays
constant. Of special interest is the system’s dependence on the time step
and how quickly the system of particles reaches a local consensus, which
we discuss in Section 4.6.

4.2 Model description

We focus on the dynamics of the underlying interacting particle model
without any environmental factors or a grid. For the sake of analysis, we
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take the speeds vk(t) = v to be fixed. By fixing the speeds of the particles
we ensure that the time step is the only parameter which affects how far
a particle travels during each iteration.

The model under consideration consists of N particles in an area of
size L × L with periodic boundary conditions. Particle k has position
qk(t) at time t as before. As before, we let θk(t) denote particle k’s
directional angle at time t and

ek(t) :=

(
cos(θk(t))

sin(θk(t))

)
(4.1)

thus denotes the unit direction vector of particle k at time t.

The equation for the movement of the particles is the same as Equa-
tion (2.2) but the directional angle is updated as

(
cos(θk(t + ∆t))

sin(θk(t + ∆t))

)
=

dk(t)

‖ dk(t) ‖ , (4.2)

where the vector dk is the one in Equation (2.7). The zones of interactions
are the same ones as before, they can be seen in Figure 2.1, and are
discussed in Section 2.3.1.

We note that if the only sensory zone is the zone of orientation, the
model is exactly that presented in [63] with R = ro. In that paper, a
phase transition was shown to occur in the thermodynamic limit, with
directional noise as the temperature. We do not, however, add noise
to the system, but analyze the system’s behavior with varying particle
density and parameter values.
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4.3 Scaling arguments

For a given year, let F be the number of individual fish in the actual
migration. We assume F to be constant, ignoring predation and other
natural factors. Also, let N be the number of particles in a given simu-
lation. Define F s := F/N to be the number of fish that each particle, or
superindividual, represents in that simulation.

We let ∆q denote the distance a particle travels in one time step at
speed v. We note that the time step is related to the reaction time of
individuals, τ , as described in Section 2.3. Here, the time step ∆t is a
parameter in the simulations and we use ∆q as a measure of the spatial
resolution in the simulations. The time step is implicitly taken to be the
reaction time of individuals. The simple relationship ∆q = v∆t indicates
that there is a linear scaling between the spatial and temporal variables:

∆q ∝ ∆t. (4.3)

We note that Equation (4.3) also shows how the parameters should
scale if the speed were varied. However, in our scaling simulations in
Section 4.5, we fix the speed to be v = 1. By doing so, we have made the
time step the parameter which determines the spatial resolution, ∆q.

The radii of the zones of repulsion rr, orientation ro, and attraction ra

are parameters which are known in the literature to affect the behavior
of the system [2,12,16,27,34,35,40]. We assume that rr ∝ ro ∝ ra.

Each particle travels a distance of ∆q at every time step and senses
other particles within its sensory zones. In order for the movements and
interactions among particles to be consistent across simulations, the radii
of these sensory zones should also scale with ∆q, i.e.

∆q ∝ rγ, γ ∈ {r,o,a}, (4.4)
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and from (4.3) we see that the same holds for ∆q replaced by ∆t.

Now, when adding more particles to the system, we require the dy-
namics of the simulations to be comparable. Let us consider the number
of fish in a region of area R, assuming uniform density. Let us now spread
N superindividuals evenly throughout this region. Then each superindi-
vidual in effect represents the fish contained in an area of R/N . Thus,
as the number of superindividuals increases, the number of fish which
each particle represents decreases with this area. We assume that (∆q)2

scales with the size of the area of the region which each superindividual
represents. Accordingly,

∆q ∝ 1√
N

, (4.5)

or equivalently
∆q ∝

√
F s, (4.6)

because F s := F/N . First, this ensures that the number of particles
that each particle will interact with during one time step will not depend
significantly on F s. Second, from Equation (4.4), the same holds for the
number of particles within each zone of interaction.

4.3.1 Case study

One ambitious goal of our research is to be able to simulate each fish
in the migration, i.e. when the number of particles is the same as the
number of fish, N = F . Using relations (4.3) through (4.6), it is of
interest to investigate how the parameters should scale when we take
F s = 1, i.e. when each particle in the simulation corresponds to one fish.

In [3] we presented a simulation which successfully predicted the route
of the spawning migration of the Icelandic capelin in 2008. In that simu-
lation, the number of particles was in the order of 5×104. A conservative
estimate of the stock size of the migrating capelin is F ' 5 × 1010 indi-
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vidual fish. Thus, the number of fish each superindividual represents in
that case studies is F s ' 106.

Now, let a superscript 0 denote the parameters and values of the
above simulation. We gave these values in Section 3.2.2 but write them
here with the superscript. Thus, ∆t0 = 0.050 days, or 4320 seconds. The
initial speed was set on average to be v0

k ' 2.4 km/day and the corre-
sponding spatial resolution is on average ∆q0 ' 120 meters. Once the
particles increase their speeds to about 15 km/day, the corresponding
spatial resolution increases to about 750 meters. The radius of repul-
sion was set r0

r = 0.01 grid units, or about 120 meters. The radius of
orientation (and attraction) was set r0

o = 0.10 grid units, or about 1.20
km.

Now, we look at another simulation, with parameters N , ∆t, and
radii rr and ro = ra, in which we want to have the same dynamics as
the above simulation. We see that if the number of particles is changed,
N = ηN0, then from Equations (4.3) and (4.5) we arrive at

∆t ∝ 1√
N

=
1√
ηN0

= η−1/2 1√
N0

which shows that
∆t = η−1/2∆t0. (4.7)

From Equation (4.4) we see that the same holds for the radii, and that
all parameters should scale by the factor η−1/2.

When simulating individuals in the simulation of the 2008 spawn-
ing migration, we find η = 106. The spatial resolution turns out to be
∆q ' 12 cm and the temporal resolution to be ∆t ' 4.3 s. The radius of
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repulsion scales down to rr ' 12 cm, which is just under 1 body length.
The radius of orientation scales to ro ' 1.2 m. It is worth noting that
these values are quite reasonable from a biological perspective [52, 53].
Furthermore, while modern computational capabilities may allow for sim-
ulations at this scale, allowing us to model at the level of an individual,
it is of interest to establish whether the same results can be deduced by
working with superindividuals at a much lower computational cost.

4.4 Measures

We now describe several pertinent measures which we use to determine
the behavior of the system. The pertinent measures will be a global
order parameter, an average local order parameter, and average number
of neighbors, defined in Equations (4.8), (4.10), and (4.12), respectively.
We describe in each section some characteristics of these measures.

In Section 4.5 we perform several simulations for each set of parameter
values. A set of parameter values is used to define a base case which we
use to compare other simulations to. In all simulations we find the values
of the measures presented in this section. We argue that we are able to
ensure that the parameters reach a steady state, which indeed turns out
to be the case. In Section 4.4.6 we define how we find the time it takes
for the system to reach these steady states and investigate the relaxation
times’ dependence on the parameters.

4.4.1 Global order parameter, R

Inspired by the order parameters commonly used to analyze synchroniza-
tion in systems of coupled phase oscillators, e.g. the model presented by
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Kuramoto [42] and in [63], we define

R(t)

(
cos(Ψ(t))

sin(Ψ(t))

)
:=

1

N

N∑
i=1

ei(t). (4.8)

Here, R(t) is a global order parameter of the system with R ∈ [0, 1] for
all t. The angle Ψ denotes the global direction angle.

It is clear that for R = 1 the whole school is completely synchronized,
with all particles moving in the same direction. In a completely chaotic
school, with particles moving in all directions, the value of R is zero.
However, a low value of R could also be achieved with the particles
breaking into smaller schools, each highly synchronized.

In Section 4.4.4 we establish what particle density, as a function of the
radius of repulsion, is required in order to ensure that the connectivity
of the system is high enough to avoid small unconnected schools. By
ensuring high enough particle density, we can be sure that the system is
highly connected, and can thus find the time it takes to reach equilibrium,
as described in Section 4.4.6.

4.4.2 Average local order parameter, r̄

We also define a local order parameter for each particle,

rk(t)

(
cos(ψk(t))

sin(ψk(t))

)
:=

1

|Ik|
∑
i∈Ik

ei(t), (4.9)

where Ik is the set of indices of all the particles within particle k’s zone
of interactions, see Equation (2.5) in Section 2.3.1.

Note that rk ∈ [0, 1] for all t and behaves similarly to R. However,
if rk = 0 (or close to zero) we know that because of the connectivity of
neighbors of particle k, we have local chaotic behavior near particle k.
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Finally, we define the average local order parameter,

r̄(t) :=
1

N

N∑
i=1

ri(t), (4.10)

which will serve as a useful tool to determine the behavior of the system.

4.4.3 Global versus local

It is tempting to speculate whether that the value of the global order
parameter will always be smaller or greater than that of the correspond-
ing average local order parameter. If the number of particles is large and
several schools exists, then generally R ≤ r̄ in simulations. However, this
needs not be the case, as we show below.

We look at all possible arrangements for N = 3 which serve as ex-
amples for how particles can be arranged for a general N with R both
smaller and larger than r̄. We arrange the analysis in order of connec-
tions between particles, where two particles are said to be connected if
they are within zones of interaction of one another.

N = 3, no connectivity

Here, every particle has no neighbors and so ri = 1 for all i. We therefore
have r̄ = 1 but it is clear that R can take any value in [0, 1].

N = 3, one connection

Here, two particles are neighbors but the third particle is far away. We
look at Figure 4.1(a) and see that r1 = r2 = 1

2
‖e1+e2‖ and r3 = ‖e3‖ = 1.

Thus, r̄ = 1
3
(‖e1 + e2‖+ 1).

R =
1

3
‖e1 + e2 + e3‖ ≤ 1

3
(‖e1 + e2‖+ ‖e3‖) = r̄.
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Figure 4.1: Configurations discussed in Section 4.4.3.

An example of inequality is shown in Figure 4.1(a) and easily verified.

N = 3, two connections

In this case, two particles have one neighbor but the third one is neighbor
to both of the other ones. It is quite easy to find configurations with
R < r̄ and R > r̄ where either R or r̄ is equal to 0 or 1. We therefore
present the following cases:

a) We look at the arrangement in Figure 4.1(b) with the following
directional angles (θ1, θ2, θ3) = (π, π, 0). We have r1 = 1, r2 = 1/3,
and r3 = 0, resulting in r̄ = 4/9. However, R = 1/3 and so R < r̄.

b) In Figure 4.1(c) we have (θ1, θ2, θ3) = (0, π, 0) and so r1 = 0, r2 =

1/3, and r3 = 0. We calculate r̄ = 1/9 and R = 1/3, thus R > r̄.

N = 3, all connected

In this case we have R = r̄ at all times.
We therefore see that a system of particles can at any time be ei-

ther more globally synchronized than locally synchronized or vice versa.
However, in Section 4.5 and from Figure 4.3, we see numerically that the
system reaches local consensus much faster than a global consensus.
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4.4.4 Particle density and the radii

We note that our scaling arguments assume a uniform density of particles.
We therefore confine the system to a torus of size L2. By doing so we
avoid problems with boundary issues and issues associated with infinite
domains.

The particles’ tendency to avoid other particles within their zone of
repulsion will effectively spread out the particles. If the number of par-
ticles is high compared to the radius of repulsion, then the particles will
spread out and the system eventually becomes path connected. How-
ever, the time it takes for the system to reach an equilibrium can vary
greatly and will depend on the initial distribution of particles and their
directional angles.

If the number of particles is low compared to the radius of repulsion,
then the system can enter a long transient state where several small
schools travel on their own, possibly eventually finding each other. When
that happens, the evolution of the global and local order parameters
will be characterized by periods of constant values, with sharp increases
following initial fluctuations when schools collide and align. Eventually,
the value of both order parameters will reach 1, unless e.g. two schools
happen to circle the torus at a 90 degrees angle to each other and with
frequency difference of 0.5, thus neither school senses the other and they
never merge. The probability of the latter scenario will sharply drop to
zero as the number of particles increases or as the radius of repulsion
increases.

A particle has an area of repulsion of size πr2
r . We therefore see that

we require N · πr2
r to be greater than the whole area, L2, in order for

the system not to linger in metastable partially synchronized states. We
define

Nmin :=
L2

πr2
r

(4.11)
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and note that it is the minimal number of particles required for the system
to maintain a path connected graph, where two particles are considered
to be connected if they are within each others’ zones of interaction. In
the simulations below, Section 4.5, we let the number of particles be well
above the minimum Nmin in all cases.

Now, if the radius of repulsions is varied then the scaling arguments
would require the number of particles to vary accordingly. For example,
if the radius of repulsion is changed to one quarter of its original value,
then both the number of particles, N , and Nmin should double. The
ratio between N and Nmin is thus maintained across simulations. It
is therefore clear that our scaling arguments indeed ensure consistency
when it comes to Nmin.

4.4.5 Average number of neighbors, n̄

Now, let nk(t) := |Ik| − 1 denote the number of neighbors which particle
k has at each time step. We define the average number of neighbors of
the system as

n̄(t) :=
1

N

N∑
i=1

ni(t). (4.12)

Now, let us again assume that we are on a torus of size L2 with
N particles. If the particles are uniformly distributed then the particle
density is N/L2. The average number of neighbors for particle k will be
determined by all particles within its zone of attraction, and thus the
average number of neighbors at uniform density is

n̄U :=
N

L2
πr2

a − 1, (4.13)

where the neighbor being subtracted is the particle itself. We shall see in
the simulations in Section 4.5 how the inclusion of the radius of repulsion
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increases this value, resulting in a mostly uniform distribution with a
ripply or wavy pattern, seen in Figure 4.2 (b).

By inspecting (4.13) we see that our scaling arguments indeed main-
tain n̄U constant. Below, in Section 4.5, we show that our scaling argu-
ments also maintain the equilibrium value of n̄ constant, as expected.

4.4.6 Relaxation times to equilibrium

As mentioned above, one expects the system to reach a consensus with
the value of both the global order parameter and the average local order
parameter close to 1. With enough particles, this should be ensured and
happen with few, if any, metastable transient states of partial synchrony.
The system should therefore remain connected and we find the time it
takes a system to reach an equilibrium state. To this end, we look at the
order parameters from Equations (4.8) and (4.10). Indeed, by looking at
Figure 4.3 from the base case, described below, the system does reach a
consensus.

We run all simulations for long enough in order for the system to have
fully relaxed to a steady state. As we see below, e.g. Figure 4.3(a), the
order parameters both reach a value close to 1, meaning that the system
is almost fully synchronized.

The average number of neighbors also reaches a steady state which
we will define as

n̄E := lim
t→∞

n̄(t). (4.14)

In the simulations we define this value as the average of the last few
hundred iterations, in which the system should have remained at equilib-
rium. In Figure 4.3(b) we see that the average number of neighbors does
indeed reach an equilibrium value. We compare this value, which de-
pends on the simulation parameters, to the average number of neighbors
at uniform distribution, see (4.13).
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Now, we define the consensus or equilibrium to have been reached if
the measures have fallen within a certain range of the final value. We
define εR, εr, and εn to be the deviation from the final values of R, r̄

and n̄. The order parameters both have final values very close to 1 in all
simulations. The final value of n̄ is defined as (4.14), and as mentioned
above, is found as the average of the last few hundred iterations. We let
tR, tr and tn be the resulting relaxation times, which we define as the
first time R, r̄ and n̄ remain within εR, εr, and εn of their final value,
respectively.

It is not immediately clear how εR, εr, and εn should be chosen. Below,
we investigate the relaxation times’ dependence on these parameters by
finding the resulting relaxation times for seven different values of εR,
εr, and εn. These values and resulting relaxation times for each of the
scenarios are given below in Tables 4.3, 4.4, and 4.5, respectively.

4.5 Simulations

We confine the simulations to a torus in order to avoid determining
boundary conditions. In all simulations we fix L = 10, so the area
(i.e. the torus) has size L2 = 100. The particles’ speed is kept constant
at 1 unit/day. Thus, the time step is the only control parameter which
determines the distance a particle travels at each time step, i.e. the spa-
tial resolution of the system.

We choose a base scenario to which we compare other scenarios. The
parameter values of the base Scenario (a) are given in (4.15), which the
following scenarios modify, as described below. Each scenario consists of
nine simulations.

The next three Scenarios (b)-(d) increase the number of particles by
a factor of 4, thus simulating with N = 200 000 particles. Scenario (b)
varies parameter values according to the scaling arguments of Equations
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(4.3) - (4.5). With the particles increased by a factor of 4, the radii and
time step change by a factor of 1/2 in Scenario (b). In Scenario (c) we
only change the radii by a factor of 1/2, but do not change the time step.
Finally, Scenario (d) sees only the number of particles varied, and thus
other parameter values are as in the base Scenario.

Scenarios (e)-(g) we take the number of particles to be a quarter of
that of the base Scenario (a), thus simulating with N = 12 500 particles.
In Scenario (e), we scale the radii and time step in the same way as in
Scenario (b), but now with a factor of 2. Scenario (f) only varies the
radii but maintains the time step of the base scenario. Finally, Scenario
(g) only varies the number of particles from that of the base scenario,
similarly to Scenario (d).

Lastly, in order to further determine the system’s sensitivity to the
time step, we create two scenarios; one scenario with the time step halved,
and one scenario with the time step doubled. Thus, we use the parameter
values in (4.15), with the time step halved in Scenario (h), and the time
step doubled in Scenario (i).

In each of these scenarios we choose one of the nine simulations and
plot in Figures 4.3-4.6 the evolution of the global and average local order
parameters, as well as the average number of neighbors. The simulations
were run up to an absolute time of t = 30 even though the simulations
were run for twice as long, because the relaxation times show that most
simulations had reached an equilibrium by that time.

4.5.1 Scenarios (a)-(i)

We now describe the Scenarios (a)-(i) in more detail. Scenario (a) is a
base scenario to which we compare the other scenarios. The parameter
values of that scenario are as described in Equation (4.15). Variations
from those parameter values are shown in Table 4.1.
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(a) N rr ro ∆t
(b) 4N rr/2 ro/2 ∆t/2
(c) 4N rr/2 ro/2
(d) 4N
(e) N/4 2rr 2ro 2∆t
(f) N/4 2rr 2ro
(g) N/4
(h) ∆t/2
(i) 2∆t

Table 4.1: A description of how the Scenarios (b)-(i) vary from the base
Scenario (a). Values of the parameters of the base Scenario (a) are given in
(4.15).

The number of interactions was chosen to be 6000 in the base Scenario
(a) which results in the absolute time of 60 (days). This value was found
by trial and error in order to ensure that the system indeed had relaxed
to a steady state. Scenarios (c), (d), and (g) are run for the same number
of iterations. In the other scenarios the time step changes, and we change
the number of iterations so that the same absolute time of 60 (days) is
achieved.

We performed 9 simulations for each set of parameter values, be-
cause the initial spatial distribution and angular distribution were set
randomly. However, with the large number of particles and radius of re-
pulsions we claim that the system is path connected. The resulting values
shown in Tables 4.2-4.5 are the average values from the 9 simulations of
each scenario.

Figures 4.3-4.6 show plots of the evolution of the global order param-
eter, average local order parameter, and the average number of neighbors
from one of the nine simulations of each scenario.
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(a) Base Scenario

The following values of the radii and the time step were used as a base
case scenario:

N = 50000

rr = 0.120

ro = 0.240

ra = 0.240

∆t = 0.010

(4.15)

We see that with the parameter values and L = 10 as the size of the
torus, we get Nmin ' 2210 particles. With fifty thousand particles we
are well above the required number of particles needed for the system
not to linger in metastable partially synchronized states. And indeed the
system quickly reaches a steady state of consensus.

We note that the above parameter values are different from the ones
in Equation (3.1), used in the simulation of the 2008 spawning migration
in Section 3.2.3. There, the ratio rr/ro was 0.1, whereas it is 0.5 with
the parameter values from (4.15). In the Scenarios described below, we
therefore keep in mind that the repulsion is stronger than in the simu-
lation of the 2008 spawning migration. However, as discussed in Section
3.4, the ratio between the radius of repulsion and the spatial resolution
small, allowing some particles to collide. With parameter values as in
(4.15) we note that particles travel v∆t = 0.010 units per time step, thus
meaning that once particles are within each others’ zone of repulsion,
they should be about 5 time steps apart, which gives them time to react
accordingly.

(b) Scaling of parameters, 4 ·N

In Scenarios (b)-(d) we quadruple the number of particles to that of the
base Scenario (a), resulting in 200 000 particles. Here, in Scenario (b),
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Figure 4.2: A simulation of the base Scenario (a) with 50.000 particles. Top:
The initial distribution of particles. Bottom: Final distribution at equilibrium
after 6000 iterations with time step ∆t = 0.01. We discuss the peculiar “wave”
pattern in Section 4.7.
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Figure 4.3: A simulation of the base scenario (a) with 50 000 particles. Left:
The global order parameter, R, and the average local order parameter, r̄.
Right: The average number of neighbors, n̄.

we vary the radii and the time step according to the scaling arguments of
Section 4.3, see (4.3) - (4.5). Since the number of particles was changed
by a factor of 4, the radii and time step were halved.

In Figure 4.4 we show the evolution of the global order parameter,
average local order parameter, and the average number of neighbors for
the Scenarios (b)-(c).

(c) Scaling of parameters except time step, 4 ·N

Here, the number of particles was set to N = 200 000 and the time
step kept the same as in the base Scenario (a). However, the radii were
changed according to the scaling arguments, thus halving the radii.

(d) Changing only the number of particles, 4 ·N

The number of particles is again N = 200 000 particles. Both the time
step and the radii are the same as in the base Scenario (a). We therefore
investigate how the system depends on the number of particles.
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Figure 4.4: A simulation of the Scenarios (b), (c), and (d), described in
Section 4.5.1. The number of particles is N = 200 000 in all scenarios. The
time step is (b) ∆t = 0.005, (c) ∆t = 0.010, and (d) ∆t = 0.01. Left: The
global order parameter, R, and the average local order parameter, r̄. Right:
The average number of neighbors, n̄.
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(e) Scaling of parameters, 1
4
·N

Scenarios (e)-(f) correspond to the Scenarios (b)-(d) but we now take the
number of particles to be one quarter of that of the base Scenario (a),
resulting in N = 12 500 particles. Here, in Scenario (e), we vary the radii
and the time step according to the scaling arguments of Section 4.3, see
(4.3) - (4.5). Since the number of particles was changed by a factor of
1/4, the radii and time step were doubled.

In Figure 4.5 we show the evolution of the global order parameter,
average local order parameter, and the average number of neighbors for
the Scenarios (e)-(g).

(f) Scaling of parameters except time step, 1
4
·N

Similarly to Scenario (c), we set the number of particles to N = 12 500,
now one fourth of that of the base Scenario (a). The time step was kept
the same, but the radii were changed according to the scaling arguments,
thus halving the radii.

(g) Changing only the number of particles, 1
4
·N

We now investigate how the system reacts to only changing the number
of particles, similarly to Scenario (d). Here, we take a quarter of the base
Scenarios’s, resulting in 12 500 particles. The time step and the radii are
the same ones as in the base Scenario (a) and Scenario (d).

(h) Only time step, 1
2
·∆t

Finally, we create two scenarios where only the time step is changed. In
this Scenario (h), the time step is halved. The other parameter values
are the same as in the base Scenario (a).

In Figure 4.6 we show the evolution of the global order parameter,
average local order parameter, and the average number of neighbors for
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Figure 4.5: A simulation of the Scenarios (e), (f), and (g), described in
Section 4.5.1. The number of particles is N = 12 500 in all scenarios. The
time step is (b) ∆t = 0.02, (c) ∆t = 0.010, and (d) ∆t = 0.01. Left: The
global order parameter, R, and the average local order parameter, r̄. Right:
The average number of neighbors, n̄.
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the Scenarios (h) and (i).

(i) Only time step, 2 ·∆t

Again, similarly to Scenario (h), we change only the time step and main-
tain other parameter values of the base Scenario (a).

We note this since the time step was doubled, the simulations require
only 3000 iterations in order for the absolute time in the simulations to
be 60 (days) as in the other scenarios. Since it was a possibility that
with a larger time step the system would not reach an equilibrium, we
ran the simulations for 6000 iterations. However, the results are very
similar considering 3000 or 6000 iterations.

4.6 Results

Scaling of parameters

A good result of the scaling arguments are how parameters of the simula-
tion of the 2008 spawning migration, scale down to biologically realistic
values at the individual lever, as found in Section 4.3.1. We note that the
radius of repulsion should scale down to about one bodylength. However,
this value could even be doubled to remain within realistic bounds [52,53].
As described in Section 3.4 we obtained an even better simulation of the
2008 spawning migration than the one presented in Section 3.2.3, by
doubling the radius of repulsion. In that simulation, the particles were
more realistically spread out, and formed larger schools. Future simu-
lations of spawning migrations could therefore be made with a doubled
radius of repulsion as that of Equation (3.1). A double radius of repul-
sion would result in each particle having fewer neighbors, thus reducing
the computational cost of the simulations.
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Figure 4.6: A simulation of the Scenarios (h) and (i) described in Section
4.5.1. The number of particles is N = 50 000 in both scenarios. The time step
is (h) ∆t = 0.005 and (i) ∆t = 0.02. Left: The global order parameter, R, and
the average local order parameter, r̄. Right: The average number of neighbors,
n̄.
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n̄E n̄U n̄E/n̄U

(a) 116.2 89.5 1.298
(b) 116.5 89.5 1.302
(c) 116.2 89.5 1.298
(d) 463.0 360.9 1.283
(e) 116.0 89.5 1.296
(f) 115.6 89.5 1.292
(g) 28.6 21.6 1.324
(h) 115.4 89.5 1.289
(i) 116.0 89.5 1.296

Table 4.2: Average number of neighbors, n̄E from Equation (4.14), and n̄U

from Equation (4.13), from the Scenarios (a)-(i) described in Section 4.5.1.

Simulations of Scenarios (a)-(i)

We now simulate the Scenarios (a)-(i) described in Section 4.5.1. The
parameter values of the base Scenario (a) are given in Equation (4.15).
Table 4.1 shows the difference between the base Scenario (a) and the
Scenarios (b)-(i), by showing which parameters were varied. Figures 4.3-
4.6 show plots of the evolution of the global order parameter, average
local order parameter, and the average number of neighbors from one of
the nine simulations of each scenario.

We find for each scenario the resulting average number of neighbors,
n̄E, and the expected number of neighbors at a uniform distribution, n̄U .
The values, along with the ratio n̄E/n̄U , are given in Table 4.2.

The resulting relaxation times, tR, tr, and tn from Section 4.4.6, are
shown in Tables 4.3, 4.4, and 4.5, respectively. The tables show the
relaxing times for seven different values of εR, εr, and εn for each scenario.



68 Chapter 4 Scaling of parameters

εR: 0.1 0.05 0.04 0.03 0.02 0.01 0.005

(a) 6.37 8.10 8.45 8.84 9.31 10.30 11.90
(b) 6.95 8.53 8.85 9.21 9.61 11.53 13.54
(c) 11.35 14.40 14.94 15.98 16.83 18.11 21.59
(d) 6.07 7.80 8.14 8.50 9.72 11.12 12.32
(e) 3.20 4.09 4.38 4.69 6.16 7.27 7.27
(f) 1.84 2.13 2.40 2.80 3.89 4.81 5.65
(g) 5.06 5.86 6.26 7.40 8.58 9.48 10.16
(h) 3.80 4.74 4.92 5.11 5.64 6.27 7.13
(i) 7.74 9.51 10.46 11.04 12.70 14.43 16.42

Table 4.3: Average relaxation times, tR, of the global order parameters, R,
from the Scenarios (a)-(i) described in Section 4.5.1.

εr: 0.1 0.05 0.04 0.03 0.02 0.01 0.005

(a) 0.07 0.16 0.20 0.28 0.44 1.06 2.80
(b) 0.03 0.08 0.09 0.13 0.19 0.48 1.13
(c) 0.06 0.12 0.15 0.21 0.33 0.79 2.11
(d) 0.06 0.15 0.19 0.25 0.43 1.17 3.21
(e) 0.12 0.26 0.32 0.42 0.76 2.43 3.01
(f) 0.08 0.22 0.28 0.36 0.66 1.35 1.73
(g) 0.07 0.16 0.20 0.27 0.39 0.99 2.64
(h) 0.03 0.10 0.12 0.17 0.28 0.63 1.54
(i) 0.13 0.25 0.31 0.42 0.74 1.91 3.94

Table 4.4: Average relaxation times, tr, of the average local order parameters,
r̄, from the Scenarios (a)-(i) described in Section 4.5.1.
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εn: 5 4 3 2 1 0.5 0.25

(a) 9.6 10.0 10.5 12.3 16.4 19.1 21.59
(b) 10.2 10.9 11.3 12.9 15.9 19.5 24.1
(c) 18.3 19.6 20.2 21.0 23.8 28.9 32.04
(d) 16.0 16.7 17.9 18.7 23.9 29.0 35.1
(e) 6.6 6.89 7.4 9.5 14.1 22.8 30.16
(f) 4.5 4.7 5.1 6.2 11.0 20.1 28.7
(g) 6.03 6.36 6.73 7.19 7.99 9.29 12.8
(h) 4.90 5.07 5.31 7.71 10.26 12.66 17.16
(i) 13.63 14.40 15.48 16.47 21.04 25.56 31.46

Table 4.5: Average relaxation times, tn, to the average number of neighbors,
n̄E , from the Scenarios (a)-(i) described in Section 4.5.1.

Number of neighbors

Now, by inspecting the values in Table 4.2 we see that the resulting av-
erage number of neighbors, n̄E, is higher than the expected number of
neighbors, n̄U . The expected number of neighbors is n̄U = 89.5 neighbors,
except for Scenarios (d) and (g), and the average number of neighbors
was roughly n̄E = 116.0. In Scenario (d) only the number of particles
was increased, resulting in more particles being within the zones of in-
teraction. Similarly in Scenario (g), only the number of particles was
decreased. However, the ratio n̄E/n̄U is about 1.298 which remarkably
holds true for approximately all the simulations. We discuss a possible
explanation below in Section 4.7.

It is worth noting that there is very little variance in the resulting
average number of neighbors in the simulations of the scenarios. The
variance is in all scenarios less than 2 neighbors, which means a variance
of less than 1%.

Finally, we note that in all Figures 4.3 - 4.6 of the average number
of neighbors, we see a sharp initial increase in the number of neighbors.
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The system then finally relaxes to an equilibrium value. In some cases,
e.g. Figure 4.5(f) the peak is smooth, but in Figure 4.3 the peak is quite
rough. Figure 4.4(c) shows two peaks, but it is interesting to note that the
corresponding order parameters do not appear to reflect this behavior.

Relaxation times

We now look at the resulting values for the relaxation times tR, tr, and
tn, which are given in Tables 4.3 - 4.5. Table 4.1 gives a visual overview
of the parameters in each scenario.

Now, Scenarios (b) and (e) are the versions of the base Scenario (a)
which maintain full scaling according to our scaling arguments. We see
that tR is similar in Scenarios (a) and (b), but note that this is not
the case for tr, where the values in Scenario (b) are approximately half
those of Scenario (a). However, in Scenario (e) the relaxation time tR is
significantly lower than in Scenario (a), even though the time step was
scaled with other parameters.

Scenarios (c) and (f) changed all parameter values except the time
step. Even though the average number of neighbors is maintained, the
global relaxation time tR almost doubles from Scenario (a) when the
number of particles is quadrupled in Scenario (c). However, this behavior
is reversed for the local relaxation time tr. Scenario (f) has a quarter of
Scenario (a)’s number of particles and the global relaxation times are
close to being halved.

We also see that even thought the number of particles in Scenarios (d)
and (g) are the same as in Scenarios (c) and (f), the global relaxation time
is similar to the base Scenario (a). In fact, the only difference between
the base Scenario (a) and the Scenarios (d) and (g) is the number of
particles.

Changing only the time step in Scenarios (h) and (i), has a similar
effect on the global relaxation time tR as on the local relaxation time tr,
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which we discuss directly below.
Looking at the local relaxation times tr, we see that the most influ-

ential parameter is the time step. We note that this dependence on the
time step is not as pronounced for the global relaxation time, tR. Sce-
narios (c), (d), (f), and (g) have the same time step as the base Scenario
(a), and the relaxation times to local consensus are very similar to the
base scenario. In Scenarios (b) and (h), halving the time step has the
effect of halving the relaxation times. Similarly, doubling the time step
in Scenarios (e) and (i) doubles the relaxation times. We note that the
relaxation times are given in absolute time which means that in both
cases, i.e. in Scenarios (b), (e), (h), and (i), the simulations have taken a
similar number of time steps to reach the consensus.

Finally, we observe the relaxation time tn. As with the relaxation
time tR, Scenario (b) has a similar relaxation time tn to Scenario (a),
and Scenario (e) has a relatively lower relaxation time tn. Scenarios (c)
and (f) exhibit similar behavior compared to Scenario (a) with respect
to both tn and tR. However, tn differs from tR in Scenarios (d) and (g),
by being similar to Scenarios (c) and (f). Finally, in Scenarios (h) and
(i), where only the time step was changed from Scenario (a), we see that
tn is affected in a similar way as the relaxation times tR and tr.

Perhaps the most noteworthy conclusion is that for both the relax-
ation times tR and tr we maintain the closest resemblance to the reference
case when we only change the number of particles in Scenarios (d) and
(g), whereas for the relaxation time tn, we maintain the closest resem-
blance by adhering to the full scaling in Scenarios (b) and (e). Another
interesting result is tr ¿ tR, which we discuss below.

Global vs. local relaxation time

Of particular interest is how quickly the system of particles reaches a local
consensus, even though the value of either of the two order parameters
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can be larger than the other as we showed in Section 4.4.3. This means
that locally the system reaches a consensus, but the whole system is not
completely aligned yet. We see that the relaxation time for the average
local order parameter is much lower than the relaxation time for the
global order parameter, requiring εr ¿ εR in order to fully explore the
relaxation time for average local order parameter. The local consensus is
even maintained when the global order parameter passes through several
levels of consensus, as clearly seen in Figure 4.4 from Scenario (d).

It is fairly easy to convince oneself that this phenomenon is due to lo-
cal interactions aligning particles effectively, since the time step denotes
in this case the reaction time to neighbors. Thus, locally the particles
adjust to their neighbors in an efficient manner, but the discrepancies
can gradually build up over larger distances, causing a lower value of the
global order parameter. However, the groups in turn interact, sending
and receiving information, and it takes that information time to prop-
agate through the whole system and for all the groups to align. This
difference could be one way to measure the propagation speed through a
school of particles.

4.7 Discussion

Radii of interactions and temperature weight factor

A point of interest is the relationship between the temperature weight
factor β, the time step, ∆t, the radii of interaction, rr, ro, ra, and the
number of particles in a simulation, N . The weight factor governs how
strongly each particle reacts to the environmental data versus the inter-
actions at each iteration. It depends on the reaction time τ and thus
the time step used. The radii of interactions are somehow linked to the
individuals’ vision, and in the case of the capelin, to the sensing of the



4.7 Discussion 73

lateral line. We argue a linear relationship between the weight factor and
the time step.

Both the weight factor and the radii are therefore intrinsic parameters
to the organism at hand. Optimally we would know the values of the
weight factor, radii and the reaction times. If we are not able to simulate
at the level of individuals, the values of these parameters would then scale
according to our scaling arguments, as computational powers allow. Now,
the scaling arguments hold for a simulation of identical situations. The
number of individual fish varies from year to year, which would result
in different parameter values needed for the simulations. However, the
dynamics of the system of particles could change, which could explain
some of the differences between migration routes.

Pattern formation

In Figure 4.2(b) we see a pattern at equilibrium which all simulations
exhibit. This pattern can be described as a “wave” pattern, or alterna-
tively as a “ripple” pattern. The reason for this emerging pattern is not
obvious, and one might have expected a uniform distribution of particles.

The pattern could be due to the presence of the zone of repulsion in
the simulations. In fact, the ratio between the resulting average number
of neighbors, n̄E, and the expected number of neighbors, n̄U , could be
related to the ratio of the zone of repulsion and the zone of orientation.
Another note of interest regarding the pattern is the distance between
the waves. As with the ratio, it is interesting to investigate whether
this distance can be linked to the radius of repulsion and possibly other
parameters. Investigation of all these phenomena is a subject of further
research [17].
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Dynamic Energy Budget

(DEB) model

5.1 Introduction

In this part of the thesis we consider a Dynamic Energy Budget (DEB)
model which is a model for the energy uptake and usage of individu-
als. We focus our attention to female capelin, because they determine
several aspects of the migration, as explained in Section 1.3 and men-
tioned briefly below. We tailor the DEB model to the Icelandic capelin
and estimate several of the species-specific parameters. Furthermore, we
introduce a new variable to describe the roe production of capelin, and
then compare the output of the DEB model to data from the Marine
Research Institute of Iceland. This chapter is mostly based on [18].

The model in Part I, presented in [3], used no maturity model and
only indirectly included that effect in the simulations. It is however well
known that the stage of maturity has a significant effect on the behavior
on migrating capelin [64, 65]. When mature capelin return from the
feeding grounds to the continental shelf north off Iceland, they prefer

77
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relatively cold waters. As they start their spawning migration they have
been reported to slow down and even come to a halt upon reaching
warmer waters near the southeast of Iceland [64,65].

The capelin normally stay on the colder side of the sharp temperature
boundaries between the warm Atlantic water and the colder water until
the weight of the female ovaries is about 8%-10% of their total body
weight. They commonly increase their speeds at this point and have
been recorded to swim at about 15 km d−1, and 25 km d−1 including
the effect of translation by currents [64]. As they enter the warm waters
their roe production increases rapidly, as does their metabolism. After
entering the warm waters they have a limited time to spawn, and it is
crucial for them to succeed in finding suitable spawning grounds. This
happens relatively fast, in several days, and it is important for a model
to capture this aspect of the spawning migration of the capelin.

It is therefore clear that inner dynamics of individual capelin play
an important role in the route and timing of the spawning migration.
Following on the work of [5], who proposed a bioenergetics model to be
integrated into a capelin migration model, and [4], we have developed and
implemented the DEB model to capture the growth, energy usage, and
roe production of individual capelin. In Chapter 6 we describe how we
combine the DEB model with the interacting particle model of Part I. By
doing so we hope to capture most of the characteristics of the spawning
migration of the Icelandic capelin.

In Section 5.2 we describe the DEB theory, and in Appendix A we
show the derivations of the equations of the standard DEB model. Ap-
pendix B shows how growth equations of von Bertalanffy can be derived
from the DEB model. Data from the Marine Research Institute of Ice-
land (MRI) and Matis, an Icelandic Food and Biotech R&D, is described
in Section 5.3. In Section 5.4 we describe how the observable quantities
such as length, weight, fat content and roe content, are related to the
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state variables of the DEB model. We fit parameters to the data from
the MRI and Matis, and present the results in Section 5.5.

5.2 DEB theory

Dynamic Energy Budget (DEB) theory is the study of the mechanisms
of acquisition and use of energy by individuals, that has consequences in
physiological organization and the dynamics of populations and ecosys-
tems. It is closely related to bioenergetics that focuses on molecular as-
pects and metabolic pathways in a thermodynamic setting. DEB theory
treats individuals as nonlinear dynamics systems that follow predictable
patterns during their life cycle. This approach has firm physiological
roots and provides a sound basis for population dynamic theories [38,51].
We refer to [38] for a full description of the DEB theory. A conceptual
introduction is given in [37], and further guides and discussion can be
found in [61] and [59].

DEB theory is ultimately the theory of life. Its aim is to describe all
life forms within the same framework. The complexity of the DEB model
will depend on the complexity of the species at hand. For the Icelandic
capelin, we use a basic form of the DEB model with one food substrate
and one type of reserve. These assumptions can be generalized [38].

DEB theory has been successfully applied to anchovy (Engraulis en-
grasicolus) in the Bay of Biscay [56] where their whole life cycle was
modeled. The capelin and anchovies are similar fish in size and ener-
getics, and both store energy mostly as lipids in their muscle. We fit
the DEB parameters to the data on capelin and compare the resulting
parameter values to those of the anchovies, obtaining similar results.

In Section 5.2.2 we give a brief account of the state variables of the
standard DEB model. Although the equations for the state variables
can be found in [39] and [38], we derive the equations in Appendix A
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because the connection between the original state variables and the re-
sulting equations is by no means obvious or straight forward.

The standard DEB model does not specify the dynamics of roe pro-
duction, since the details of reproduction differs greatly between species.
Producing roe is a particular feature of most species of fish. That aspect
has to be dealt with for the species at hand, and we introduce a new
variable to account for the roe production of individuals in Section 5.2.4.

5.2.1 The κ-rule:

According to DEB theory, each individual allocates a fixed fraction κ of
utilized energy from reserves to growth and somatic maintenance. The
rest, (1−κ), is then allocated to maturity maintenance and reproduction.
This energy flow can be seen in Figure 5.1. The energy has been converted
from food with constant efficiency. The DEB theory states that the
value of κ stays fixed throughout the whole life cycle of an individual.
It is species-specific and therefore is one of the characteristic parameters
of each species. In Section 5.5 we obtain a relatively low value for κ

compared to other fish, which we discuss below in Section 5.6.
We note that energy requirements due to swimming could be ac-

counted for as part of the utilized energy for growth and maintenance,
as shown on Figure 5.1. These requirements would depend on swimming
speeds, but are not taken into account here. We do believe that this
energy expenditure is not necessary because the capelin are a small con-
stantly moving animal, making this energy expenditure fairly constant.

5.2.2 State variables

The state variables of the standard DEB model are structural volume,
reserve energy, maturity energy and reproduction energy. These vari-
ables are not directly observable and have complex dynamics. Measur-
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Figure 5.1: Energy fluxes and the κ-rule. It is assumed that a fixed fraction
κ of utilized energy flows to structural volume and somatic maintenance. See
Section 5.2.1.
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able quantities have contributions from one or more state variables as
described in Section 5.4 below. We now give a brief description of the
state variables and the dynamics involved.

The structural volume, V (cm3), is the amount of biomass. The
dynamics are such that maintenance is assumed to take precedence over
growth. The contribution of energy reserves and reproduction energy to
structural volume is assumed to be small, hence we quantify structure
with length [62]. We let the variable L = V 1/3 denote the structural
(volumetric) length of an individual, which relates to actual physical
length as detailed in Section 5.4.1.

The reserve energy, E (J) is the energy available to the individual. Its
source is food uptake and it is the energy an organism utilizes for growth
and somatic maintenance on one hand, and maturity, reproduction and
maturity maintenance on the other hand.

Following [39] and [59], we let EH denote a maturity energy in order
to determine the onset of puberty. It is important to note that this
variable is abstract and does not contribute directly to the weight of
the fish. Initially, energy is allocated to this variable, and the maturity
maintenance will be a fraction of this energy, kJEH . When EH exceeds a
certain threshold, Ep

H , the fish is mature and allocation of energy to EH

ceases.

Thus EH reaches a final value Ep
H which determines when an indi-

vidual reaches puberty. It is important to note that puberty is therefore
neither determined by the volumetric length nor the physical length of
a fish. Data corroborate this fact, as there is a great variance in the
physical length of individuals at the onset of puberty.

After puberty has been reached, the energy starts to flow to ER, which
is the total energy available for reproduction. This energy will, in turn,
be converted into roe. We assume that the dynamics of the energy flow
to maturity is the same as that to reproduction. In other words, both
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dEH/ dt and dER/ dt have the same form, except that the former one
is nonzero when EH < Ep

H but after that point is reached, the latter
flow becomes nonzero. We assume that there are no maintenance costs
associated with ER, but maturity still requires maintenance of kJEp

H ,
explaining the term in Equation (5.8).

In Section 5.2.4 we introduce Er as the energy converted from the
reproduction energy to eggs. We assume that there are no maintenance
costs associated with roe. This quantity is not a state variable in the
DEB theory and has to be specified for the species in question, as well
as its dynamics.

5.2.3 Equations of the standard DEB model

We non-dimensionalize the standard state variables of the DEB model,
E, V , EH , and ER, and obtain the non-dimensional variables e, l, uH ,
and uR, respectively, where

E = [Em]L3
mel3 (5.1)

V = (Lml)3 (5.2)

EH = [Em]L3
muH (5.3)

ER = [Em]L3
muR. (5.4)

Here [Em] (J cm−3) is the maximum energy density and Lm (cm) is
the maximum structural (volumetric) length, the structural (volumet-
ric) length being denoted with L = Lml. The dynamics of the non-
dimensionalized state variables can be deduced from the ones in [39] and
are the following:

de

dt
=

ν

Lml
(f − e) (5.5)
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dl

dt
=

{
ν

3Lm

e−l
e+g

, l < e

0, else
(5.6)

duH

dt
=

{
ν

Lm
(1− κ)el2 l+g

e+g
− kJuH , uH < up

H

0, else
(5.7)

duR

dt
=

{
0, uH < up

H

ν
Lm

(1− κ)el2 l+g
e+g

− kJup
H , else

, (5.8)

where ν (cm d−1) is called the energy conductance, f (dimensionless)
denotes the functional food response (see Section 5.3.3 below), and g

(dimensionless) is the energy investment ratio.

In DEB theory [39] maximum assimilation rate per surface area,
{JEAm} (mmol d−1 cm−2), and yield of structure from reserve in growth,
yV E (dimensionless), are taken to be primary parameters along with ν,
kJ , Ep

H and κ. The relationship of [Em] and g to these parameters is

[Em] =
µE{JEAm}

ν
, (5.9)

and
g =

ν[MV ]

κ{JEAm}yV E

, (5.10)

where [MV ] (mmol cm−3) is volume specific structural mass and µE (J
mmol−1) is chemical potential.

We note that we fix the value of Ep
H to 3930 J which is the value used

for anchovies [54]. We consider this appropriate here since we are not
simulating the whole life cycle of the capelin. We are simulating capelin
which we assume to have reached puberty, and thus discrepancies in Ep

H

are corrected with the value of kJ . However, Ep
H will be a true parameter

of the model once the full life cycle is simulated, and kJ might change
accordingly.

We also note that [Em] is a biological constant characteristic to each
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species. Data on the energy density was reported in [1] to be 5866 ± 0.43
(J g−1) for capelin (both sexes combined) in the northern Gulf of Alaska,
collected from May through September in 1995 and 1996. We therefore
take care choosing the parameters above such that the value of [Em] is
close to that value, which we discuss further in Section 5.5.

The parameters ν and kJ are temperature dependent as will be de-
scribed in Section 5.2.5. In Table 5.1 we give values of the parameters
and constants used in the simulations presented in Section 5.5.

In Section 5.4.1 we discuss the condition on the dynamics of the vol-
umetric length in Equation (5.6). A full description and derivations are
in Appendix A.

5.2.4 Roe energy, Er, and roe production

As stated above, the process of roe production is not a component of
the DEB framework. We therefore need to handle the production of
roe separately. We introduce a new variable, Er, which denotes the
accumulated energy content of roe. We remember that ER is the total
energy available for roe production, and therefore we expect Er to depend
on that value and not exceed ER. Below, we use the variable Er to
determine the roe percentage of capelin, see Equation (5.21), as well as
Equations (5.17) and (5.19).

We introduce the equation for Er as follows:

dEr

dt
= γ(ER − Er)

Er

[Em]L3
m

(5.11)

i.e. it increases proportionally to Er with a proportional coefficient γ

(d−1) depending on the difference between ER and Er.
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Similarly to ER we non-dimensionalize Er by setting

er :=
1

[Em]L3
m

Er, (5.12)

which yields the elegant equation

der

dt
= γ(uR − er)er. (5.13)

We note that the parameter γ depends on temperature in the same way
as ν and kJ as detailed in Section 5.2.5 below. Also worth mentioning is
that we have assumed that the energy invested in roe grows logistically
to the asymptote uR, which is a variable. We do not address here the
implications this has on the timing of the actual spawning since we are
working with data on capelin before spawning takes place.

5.2.5 Arrhenius temperature

Physiological rates depend on temperature and we use the Arrhenius
temperature TA to express this effect [36]. We assume that all rates
are affected in the same way for a species-specific range of temperatures
according to

p(T ) = p(Tr) exp

(
TA

Tr

− TA

T

)
(5.14)

where Tr (K) is a chosen reference temperature, TA (K) the species-
specific Arrhenius temperature, p the physiological rate (J d−1).

In [20], the relationship between egg development time D (d) and tem-
perature T (K) for the Icelandic capelin (Mallotus villosus) was reported
to be ln(D) = 4.29 − 0.63 ln((T − 273) + 1), derived from experimental
data from [21] amongst others. Also, [20] found a near identical relation-
ship by field experiments on beach spawning capelin in Newfoundland.

To estimate the Arrhenius temperature for the Icelandic capelin we
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used the data from [21]. Plotting ln(1/D) against 1/T results in a straight
line scatter. We obtained TA = 9100 K (n = 9, r2 = 0.981), as the slope
of the linear regression.

We emphasize that Equation (5.14) applies to a temperature range
specific to the species in question. Data from a temperature range which
the species experience during their life cycle should be used. The temper-
ature used in [21] ranged from 0◦C to 18◦C. We have chosen to exclude
the last data point, since it is a temperature the capelin do rarely expe-
rience, if at all, in the waters around Iceland, and gives a clear outlier to
the data.

5.3 Measurements and DEB

DEB theory is the theory of energy uptake and utilization of individuals,
but not of whole populations of individuals. In order to truly compare
the theory to measurements we would need data on individuals from their
whole life cycle. Then we would have growth curves which are faithful
to the nature of DEB theory. However, in the case of the capelin, this is
not so easy.

Capelin is quite small and far from trivial to locate. Furthermore,
tagging individual capelin is quite costly and difficult. When individuals
are caught for measuring, it usually means the end of their lives. Samples
are usually collected and frozen on board and processed in land.

We have data from the Marine Research Institute of Iceland from as
early as 1979 to 2009. The great majority of the spawning stock is 3 and
4 year old capelin, contributing on average 70% and 27%, respectively.
The spawning stock of 3 year old is usually divided between females and
males in a 3:2 ratio, since the males usually mature at an older age [64].

We use MRI data from the 1999-2000 season because of numerous
data available. To be as consistent as possible, we look at mature 3
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year old female capelin. The data include location as well as length, wet
weight, and weight of reproductive organs. Here, we choose to compare
the DEB to the daily averages of these data. In Figures 5.2, 5.3, and 5.4
we show the data on the left and the daily averages on the right.

Additionally, we have measurements from Matis of the fat percentage
of capelin, shown in Figure 5.5. These data are different from the MRI
data since they are from commercial capelin catches, where samples were
collected and processed on land. We do therefore not have any location
associated with these data. We however believe, that these data represent
the same schools of fish as the MRI measurements sampled during their
research expeditions, and are therefore comparable.

5.3.1 Daily averages from the 1999-2000 season

About 100 individual capelin were caught on each of 56 different days,
resulting in a total of 5596 measured capelin. Figure 5.6(a) shows the lo-
cation of the capelin measurements from research expeditions of the MRI
during the 1999-2000 season. We discuss in Section 5.3.2 how we esti-
mate the temperature at those locations using the oceanographic model
CODE [43]. In Chapter 6 we show both maps of temperature and cur-
rents from that model and discuss differences to the data previously used.
We show in Figures 6.3 and 6.4 a comparison between measured temper-
ature and output from the model.

5.3.2 Temperature estimates for the 1999-2000 sea-

son

As equations governing metabolic rates are dependent on temperature,
see Equation (5.14), we need to estimate the temperature the capelin
experienced in the 1999-2000 season. In Figure 5.6(a) we see the lo-
cation of the capelin measurements in the 1999-2000 season. Figure
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Figure 5.2: Data from the MRI. Left: Distribution of the weight of 3 year
old capelin in the 1999-2000 season. Right: Day averages of same data.
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Figure 5.3: Data from the MRI. Left: Distribution of the length of 3 year
old capelin in the 1999-2000 season. Right: Day averages of same data.
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Figure 5.4: Data from the MRI. Left: Distribution of the roe percentage of
3 year old capelin in the 1999-2000 season. Right: Day averages of same data.
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Figure 5.5: Day averages of the fat percentage of capelin catches in the
1999-2000 season. Data from Matis.
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Figure 5.6: (a) Location of measurements on 3 year old spawning capelin from
the Marine Research Institute during the 1999-2000 season. (b) Estimated
temperature (blue dots) from locations of measurements on capelin in 1999-
2000 along with the temperature which was used for the DEB simulations (red
curve).

5.6(a) was created in Ocean Data View (Schlitzer, R., Ocean Data View,
http://odv.awi.de, 2010). Using temperature data from the CODEmodel
[43], we estimate the temperature at 45m depth for each individual mea-
sured capelin. In Figure 5.6(b) we show the daily averages of these es-
timates as (blue) dots. We fit a quintic polynomial through these esti-
mates, shown as a (red) curve, which will be the temperature we use in
the simulations of Equations (5.5)-(5.8), and (5.13). We believe that by
doing so we have a fairly accurate and the best available estimate of the
temperature the schools of capelin experienced.

5.3.3 Food availability

Food availability in the cold seas around Iceland in fall and winter is low
compared to the plankton-rich areas north of Iceland. During the spawn-
ing migration, mature capelin have been observed to feed only when they
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Figure 5.7: Food availability and utilization used in Equation (5.5).

encounter food, but not to actively seek it out [64]. Measurements are
rare and hard to acquire and we therefore choose the simple form for
the function for functional food response, f , in Equation (5.5), shown in
Figure 5.7.

5.4 DEB and observed quantities

As stated before, the state variables of the DEB model are not directly
observable. Rather, the observable variables are weight, length, fat con-
tent and roe content. In turn, the state variables have to be obtained
from these measurable quantities as we detail here below.

5.4.1 Physical length

Around the time of the spawning migration the physical length of the
capelin is close to being constant, see Figure 5.4. We therefore add the
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condition to Equation (5.6):

dl

dt
= 0, if e ≤ l, (5.15)

which prevents negative growth. This was also done in the case of the
anchovy [56].

In order to link the volumetric length, L = V 1/3, to the actual length
of the capelin, L, we treat the capelin as an isomorph [36] after it develops
from the larvae stage, and estimate the shape coefficient, δ, such that

L =
1

δ
L. (5.16)

We have assumed that the immature capelin have no reproduction re-
serves, and neglected the contribution of the reserves to the total weight.
The latter assumption is justified by the fact that capelin do hardly
feed much or at all during the winter [64]. We obtained an approxi-
mate value δ = 0.161 (n = 22, p < 0.001) by fitting a weight-length
relationship of the type W = (δL)3 to immature capelin measured in
January-February [64]. The value of the shape coefficient for capelin is
similar to the shape coefficient 0.172 found for anchovy, reported in [56].

5.4.2 Physical weight

Physical weight, W, has contributions from structure, the energy re-
serves, the reproduction energy and roe. These are general compounds,
which are rich in lipids, which are mostly stored in the muscle, but also
contain e.g. protein. We assume that the reserve energy and reproduction
energy have the same composition and thus the same energy content.

The roe has a different energy content than the reseerves, and thus
the weight of roe needs to be treated separately from the fat content.
It is characteristic to capelin to convert almost all of its available fat
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content into roe, and we thus subtract the energy already converted into
roe from fat.

W = dV V +
E + ER − Er

ρE

+
Er

ρr

(5.17)

where the constant dV (g cm−3) denotes the density of the structural
volume, ρE (J g−1) denotes the energy content of one gram of reserve,
and ρr (J g−1) denotes the energy content of one gram of roe. This
representation of physical weight is found in an similar way as in [38].

5.4.3 Fat and roe content

Lipid content (in dry mass) is the primary determinant of energy density
[1], and since the capelin store most of their energy as lipids in their
muscle, we let ρE = 39.3 (kJ g−1), which is the energy content of lipids
reported in [1]. We do not have a measured value of ρr and therefore
find a plausible value for the simulations. We find a value for ρr which is
lower than ρE, as expected, since the roe have considerable more water.
The water content of roe has to be taken into account, which we detail
in Section 5.4.4.

We let the fat content of individuals be determined by

Wfat =
E + ER − Er

ρE

. (5.18)

and the weight of roe by

Wroe =
Er

ρr

. (5.19)

We denote by F the percentage of fat of the total body weight, i.e.

F = 100 ∗ Wfat

W
, (5.20)
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Figure 5.8: (a) Water content of capelin roe. Averages from 1984-2009. Data
from Matis [22] (b) The parameter ρr, see equations (5.17) and (5.19). It
assumes an increase of the water content of roe of 20% in about one month.

and also by R the percentage of the roe of the total body weight, i.e.

R = 100 ∗ Wroe

W
. (5.21)

We plot the output of the Equations (5.16), (5.17), (5.20), and (5.21) in
Figure 5.9 and describe the fit to data in Section 5.5.

5.4.4 Water content of roe

We note that the energy content of roe is low compared to the energy
content of the energy reserves. Data from Matis show how the water
content of capelin roe increases as the roe matures, and becomes the
best measure on roe maturity once the roe percentage exceeds 20% [22].
In Figure 5.8(a) we show data from Matis and in Figure 5.8(b) we show
how we take the water content into account by changing the value of
ρr over time. The change in ρr corresponds to a 20% increase of water
content of the roe over a period of one month.
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5.5 Results

We now simulate the Equations (5.5)-(5.13) using a fourth order Runge-
Kutta method with the parameter values as described in Table 5.1, the
first six parameters being primary DEB parameters. The results are
described below and a comparison between measurements and theory
can be seen in Figures 5.9(a)-(d).

We plot in Figure 5.9(a), (c), and (d) the following derived quantities:
weight, W, fat percentage, F , and roe percentage, R, from Equations
(5.17), (5.20), and (5.21), respectively. Figure 5.9(b) shows the physical
length from Equation (5.16). The (blue) dots in Figure 5.9 represents
the data.

Firstly, we look at Figure 5.9(a) of the weight. The data from the
MRI are shown as (blue) dots and the derived physical weight W from
Equation (5.17) as a (red) solid curve in the Figure. We obtain a weight
which is higher than measurements, but the difference is relatively small.
Note that the derived weight increases as the individual comes closer to
spawning. We notice that the scatter of the data does not seem to render
this increase in weight implausible. We are plotting wet weight in both
cases, and thus this increase can be explained by the water content of
roe increasing, as discussed in Section 5.4.4.

We show in Figure 5.9(b) the measured length of the capelin and
the DEB simulations of the length in Equation (5.16). We see that the
simulated length is very similar to the measured one, but note that the
simulations are sensitive to the shape coefficient δ in Equation (5.16).
Because the shape coefficient is only a parameter in the model it indi-
rectly affects the simulations. A smaller value of δ would increase the
length, but other parameters would have to be changed to get similar
results.

Figure 5.9(c) shows the fat percentage from data from Matis as (blue)
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Table 5.1: Values of parameters and constants.

κ 0.4 - Fraction of energy to somatic
growth and maintenance3

ν 0.02 cm d−1 Energy conductance3

{JEAm} 0.23 mmol d−1 cm−2 Maximum assimilation rate
per surface area3

yV E 0.8 - yield of structure from
reserve growth6

kJ 0.001 d−1 fraction of maturity maintenance2

Ep
H 3.93 J Maturity energy at puberty7

γ 0.20 d−1 Growth rate of roe3

TA 9100 K Arrhenius temperature1

Tr 6.5 + 273 K Reference temperature2

[MV ] 4.4 mmol cm−3 Volume specific structural mass3

µE 500 J mmol−3 Chemical potential7
δ 0.161 - Shape coefficient1

Lm 2.82 cm Maximum structural
(volumetric) length1

dV 1 g cm−3 Density of structural volume4

ρE 39.30 kJ g−1 Energy reserve density5

ρR 10.00-8.33 kJ g−1 Energy density of roe
(see Figure 5.8(b))3

1) Estimated from data
2) Chosen
3) Calibrated to data
4) From [62]
5) From [1]
6) From [55]
7) From [54]
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dots. The DEB simulations of the derived quantity F from Equation
(5.20) is shown as a (red) solid curve. The fit is reasonably good, although
the data suggest a sharper drop in the fat percentage, which could be
explained by the roe production not fully reaching its maximum fast
enough close to spawning, as described below.

Finally, and most importantly, Figure 5.9(d) shows the roe percentage
from data from MRI as (blue) dots. Here we clearly see the sharp increase
in roe production of the capelin once they start maturing. The DEB
simulations of the roe percentage R is shown as a (red) solid curve. The
DEB theory gives a good fit, with the main discrepancies towards the end
of the migration. The maximum roe percentage eventually reaches values
similar to measurements, but the data suggests an even faster increase of
roe production. On the other hand, most notably we see that the sharp
increase of roe production starts at the same time as the measured one.
This will allow us to use the DEB theory to model behavioral triggers in
the interacting particle model in [3], which we discuss further in Chapter
6.

Finally, we calculate the values of several derived quantities which
the parameter values in Table 5.1 give. First, the value of g, the energy
investment ratio from Equation 5.10, becomes

g =
ν[MV ]

κ{JEAm}yV E

= 1.20, (5.22)

which for anchovies was reported as 6 [56]. The value of [Em], the maxi-
mum energy density from Equation 5.9 turns out to be

[Em] =
µE{JEAm}

ν
= 5750, (5.23)

where {JEAm} was chosen so that [Em] would have a similar value to the
one given in [1], where a value of 5860 J cm−3 is reported. Similarly,
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Figure 5.9: Comparison between measurements of 3 year old mature fe-
male capelin during the 1999-2000 season (blue dots) and the DEB model (red
curves), see equations (5.16)-(5.21). (a) Weight, (b) Length, (c) Fat percent-
age, (d) Roe percentage.
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we get the value of [EG] (J cm−3), which is the volume specific cost of
growth, as the following

[EG] =
µE[MV ]

yV E

= 2750, (5.24)

where [MV ] was chosen so that the value of[EG] is similar to the value
2800 for anchovies [54]. The volume specific somatic maintenance rate,
[pM ] (J d−1 cm−3), can be calculated from Equation A.13, with {pAm} =

µE{JEAm}, as follows

[pM ] =
κµE{JEAm}

Lm

= 16.3 (5.25)

where [54] gives the value 19.0 for anchovies. The maximum structural
volumetric length of the capelin was chosen so that the maximum physical
length of capelin, according to Equation (5.16) with L = Lm, would be
17.5 cm, which was estimated from the data from the MRI.

5.6 Discussion

With the DEB model, we now have a good model for the growth and
energy use of the Icelandic capelin. The model successfully reproduces
the length, weight, fat content and roe content of mature capelin. Most
importantly, it captures the timing of the accelerated roe production,
which we can then use as an internal trigger in a migration model. We
show in Chapter 6 how these results will be integrated into the interacting
particle model of Part I. Most notably, both the speed and the preferred
temperature range will be determined by the stage of the maturity of
each individual, see Sections 6.1 and 6.2, respectively.

It also is also of interest to note that the DEB depends on oceanic tem-
perature. With the DEB model we can now directly model how changes
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in temperature affect both the timing and the route of the migration.
This gives us another tool to understand and predict how changes in
water temperature can affect the migrations of capelin.

5.6.1 Low value of κ

We note that the value of κ, or the fraction of utilized energy each indi-
vidual spends on somatic growth and maintenance, which was calibrated
to be 0.4, is quite low compared to other species of fish. For example,
in [62] the value of κ is given for four different species of flatfish; plaice
Pleuronectes platessa (L.), flounder Platichthys flesus (L.), dab Limanda
limanda (L.), and sole Solea solea (L.). The values given for these species
is 0.85, 0.65, 0.85, and 0.9, respectively. If we compare to anchovy, the
value κ = 0.65 is found in [56]. However, the anchovy can spawn up to
twenty times per season [50], whereas capelin spawns only once.

The spawning behavior of capelin is quite dramatic in the sense that
once it has decided to spawn it puts nearly all its efforts into roe produc-
tion. After spawning the spawning stock dies. This strong requirement
for success probably explains the low value of κ. It is possible that during
the earlier life stages of the capelin this value is higher, which is reminis-
cent of the „bang-bang“ strategy for organisms, e.g. [9]. In future work,
when the whole life cycle of the capelin is modeled, it will be interest-
ing to see whether this is the case so that the DEB model needs to be
modified, or a single value for κ will suffice.

5.6.2 Scatter in data plots

In Figures 5.9 (a)-(d) of the data from the MRI and Matis we note that
there is considerable scattering. The plots show average values of all
caught fish each day, from various locations. When investigating the
data set we find that the locations (i.e. the data points) are mostly close
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to each other, both spatially and temporally, but discrepancies in the
measurements could explain some of the scattering.

We also note that we do not have the history of the whole life cy-
cles of each individual, but rather we have samples from schools of fish.
Some of the scatter could be explained by measurements being taken
from individuals who experienced different conditions during their life.
It would be optimal, and true to the essence of DEB theory, to follow in-
dividuals and measure them several times on their migration, if this were
possible. We have however, samples of capelin which experienced similar
conditions and therefore hopefully give a reasonable representation of a
typical life cycle of the capelin.



6
A model for the spawning

migration of capelin

In Part I we presented a model for the spawning migration for the Ice-
landic capelin. Simulations were carried out and the spawning migration
of the capelin was reproduced for three different years in [3]. However,
that model uses no maturity cues, which observations clearly indicate
play an important part [64, 65]. Combined with the DEB model of part
II, we can now take into account the maturity of each individual [18].

We have presented a DEB model for the growth, energy utilization
and reproduction for mature female capelin. Good fits of parameter
values were found for the 1999-2000 season based on a large data set of
5596 individual 3 year old females. The most important contribution of
the DEB model to the interacting particle model is the timing of the
onset of increased roe production. With the DEB model we are now in
a position to let the sexual maturity of individuals act as triggers for
changes in their behavior.

Below we incorporate the DEB model of the capelin’s inner dynamics
into the interacting particle model of part I. Effects of maturation on

103
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the particles’ speeds were modeled indirectly in part I by increasing their
speed once they passed a certain geographical location. In Section 6.1 we
describe how changes in the speeds of individual particles can be linked
directly to changes in maturity, and in Section 6.2 we describe how the
preferred temperature range can be linked to maturity. In both cases
maturity will be measured in terms of the roe content of the individual
particle.

6.1 Speed and preferred speed

As mentioned before, the speed of a migrating capelin is dependent on
its stage of maturity [64]. Once a certain roe percentage is reached, the
capelin increase their speed and head into warmer water. We want to
model this behavioral trigger and use the DEB for that end.

In part I [3] particles also have a preferred speed depending on how
close they are to spawning, although the actual speed also depends on the
average speed of certain neighboring particles. As mentioned in Section
3.2.2, this preferred speed is somewhat crudely modeled by starting to
increase it when the particles have reached a geographical location, east
of longitude 13.5◦W. By integrating the DEB model into the particle
model it is possible to let the preferred speed depend on the roe content.

In Equation (2.1) the speed vk was updated as the average of the
speed of its neighbors within the zone of orientation. We now rename
that average speed as

vk,N(t) =
1

|Ok|
∑
j∈Ok

vj(t). (6.1)

However, we now want to take into account the roe percentage of each
individual, because the capelin have been noticed to vary their speed
depending on the roe percentage. We therefore let Rk(t) denote the roe
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Figure 6.1: The proposed preferred speed, vp, from Equation (6.2), as deter-
mined by the roe content. We let the roe content Rm = 9% determine when
the speed starts to increase. We assume a linear increase of 15 km/day until a
roe percentage of 25% has been reached.

percentage of individual k at time t, see Equation (5.21). Additionally,
we let vp denote a preferred speed of capelin, as a function of its roe
percentage, Rk. In Figure 6.1 we show the proposed preferred speed as
a function of the roe content.

Similarly to Equation (2.10) we propose a new rule for updating the
speed of each particle as

vk(t + ∆t) = (1− α)vk,N(t) + αvp(Rk(t)). (6.2)

We refer to the factor α as the preferred speed weight factor. Similarly
to Equation (2.11) we rewrite Equation (6.2) as

vk(t + ∆t) = vk,N(t) + α (vp(Rk(t))− vk,N(t)) . (6.3)

The second term of the right hand side of Equation (6.3) is proportional
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to α and the difference between the preferred speed and the average
speed of the neighbors. The parameter α does therefore determine how
much a particle adjusts its speed to the preferred speed at each time step.
The weight factors β and α are therefore quite similar, both determining
how an individual particle adjusts its interacting behavior to that of the
environment and its roe content, respectively.

6.1.1 Speed of a particle during the 1999-2000 sea-

son

We use the DEB model, as described in Chapter 5, to obtain the roe
percentage, R, as defined in Equation (5.21), of an individual particle.
We use the roe percentage shown in Figure 5.9(d) for the 1999-2000
season. We show the evolution of the speed as defined in Equation (6.2)
in Figure 6.2 with two different values of α. We note that the increase
of speed starts when the roe percentage, R, has exceeded 9%.

As we see in Figure 5.9(d), and in Figure 6.2, the roe exceeds the
9% percentage mark in just under 82 days after November 1 1999, which
corresponds to about January 22 2000. This timing is quite close to the
actual time at which the capelin reached the high temperature gradients
off the south east coast of Iceland. A percentage mark of 8% would mean
that the trigger would be set at 76 days after November 1 1999, corre-
sponding to January 17 2000. Were we to increase the percentage mark
to 10% roe content, the percentage mark would be reached in 87 days,
corresponding to January 27 2000. We therefore see that the percentage
mark of 8-10% results in the required roe content being reached from
between January 17 and January 27 of 2000.
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Figure 6.2: The red curve is the preferred speed vp of a particle with the roe
percentage calculated as described in Chapter 5, shown in Figure 5.9(d). The
blue curve is the resulting speed from Equation (6.2). The percentage mark,
used as a trigger for increasing the speed in the preferred speed vp, is in both
figures 9%. The preferred speed weight factor is (a) α = 0.01, (b) α = 0.02.

6.1.2 Reaction time τR

Now with the speed being updated as in Equation (2.1) we see that
individuals would adjust their speed to that of their neighbors in one
time step. That means that the time step should be interpreted as the
capelin’s reaction time to its neighbors, τN . In Section 2.5 we introduced
a reaction time to the temperature, τT , and discussed how those two
reaction times related to the temperature weight factor, β. We now
introduce yet another reaction time, τR, denoting the time it takes the
individual to react to changes to its roe content.

Similarly to Equation (2.13) we look at the following differential equa-
tion determining the change of particle k’s speed, ṽk(t):

d

dt
ṽk(t) =

1

τN

(vk,N(t)− ṽk(t)) +
1

τR

(vp(Rk(t))− ṽk(t)) . (6.4)
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Discretizing this equation results in

ṽk(t+∆t) = ṽk(t)+
∆t

τN

(vk,N(t)− ṽk(t))+
∆t

τR

(vp(Rk(t))− ṽk(t)) . (6.5)

We obtain Equation (6.4) by choosing ∆t = τNτR/(τN + τR), and thus
α has the same form as β in (2.17), with τT substituted for τR. Now,
choosing ∆t = τN we get

ṽk(t + ∆t) = vk,N(t) +
τN

τR

(vp(Rk)(t)− ṽk(t)) , (6.6)

which is again similar to Equation (6.3) with α = τN

τR
.

We see that if τR > τN then with either choice of the time step we
obtain α ∈ [0, 1]. With similar arguments as in Section 2.5, we claim that
it is indeed the case that the reaction time to roe content is longer than
the reaction time to neighbors. It might, however, be hard to measure
such a quantity, and we therefore leave the exact form of α to be decided
from simulations.

6.2 Preferred temperature range

In [3], the individual particles have a preferred temperature range which
they seek out. As mentioned in the Introduction, Section 1.3, the capelin
have a tendency to time their entry into warmer waters when their roe
percentage has exceeded 8-10%.

We therefore model this behavior by letting the preferred temperature
range depend on the roe percentage. We let Rm denote the required per-
centage mark in order to change the preferred temperature range, [T1, T2].
The DEB model of Chapter 5 will therefore determine this change of tem-
perature preference.

Now, we let [T p
1 , T p

2 ] denote the preferred temperature range of mi-
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grating capelin which have not reached a roe content of Rm, and [Tm
1 , Tm

2 ]

the preferred temperature range once the fish are sufficiently mature. The
lower and upper bound of the preferred temperature range will therefore
depend on the roe content, R, in the following way:

Ti(R) =

{
T p

i if R < Rm,

Tm
i if R ≥ Rm,

(6.7)

where i ∈ {1, 2}.
Now, in Section 6.1.1 we noted that the percentage mark of 9% was

reached at January 27 2000. With a percentage mark of 8-10% the re-
quired roe content is reached from between January 17 and January 27
of 2000. The effect this will have on the simulations is that if particles
reach the warm waters off the south east coast of Iceland before they are
mature enough, they should react to the warm water gradients and be
reluctant to enter the warm waters.

6.3 New maps of currents

In Section 5.3.2 we described how we used the temperature from an
oceanographic model [43] for temperature around Iceland during the
1999-2000 season for the DEB simulations of Chapter 5. We show in
Figures 6.3 and 6.4 a comparison between measured temperature and
output from the model from two different time periods.

We have noted that the currents used in Chapter 3, shown in Figure
3.2, are a constant approximation to currents around Iceland. With data
from the oceanographic model of Dr. Kai Logemann [43] we can now
use dynamic currents. We show in Figure 6.5 currents from different
days, corresponding to the ones in Figures 6.3 and 6.4. We discuss the
difference between the different temperature and currents data below.
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Figure 6.3: Interpolated data on sea temperature at 50m depth from the
Marine Research Institute. Measurement sites are shown as black dots. Data
from (a) November 11 to December 4 1999. The lower part is white due to
lack of data. (b) February 16 to March 3 2000.
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Figure 6.4: Sea temperature at 45m depth from the model of Dr. Kai Loge-
mann [43]. Data from (a) November 11 to December 4 1999, (b) February 16
to March 3 2000.
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Figure 6.5: Simulated currents from an oceanographic model [43]. The
strength of the current is given by the length of the line segments. Com-
pare to Figure 3.2. (a) November 11 1999, (b) December 4 1999, (c) February
16 2000, and (d) March 3 2000.
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6.4 Discussion

Above, we have only simulated the inner dynamics of only one particle,
thus not taking into account the interactions of particles. Figure 6.2 was
obtained from the DEB model of Chapter 5 with one particle, and we
note that simulating with thousands of particles could result in a lower
value of α being required to yield a realistic simulation.

We note that we have defined two different preferred temperature
ranges, one for mature capelin not yet ready to enter warm waters,
[T p

1 , T p
2 ], and another range for capelin whose roe content had surpassed a

certain trigger Rm, [Tm
1 , Tm

2 ]. It is possible to define yet another preferred
temperature range, [T l

1, T
l
2], for capelin past the larvae stage which have

not reached puberty, to be used once the whole life cycle of the capelin
is modeled and simulated. This preferred temperature range would be
determined by the maturity energy EH having reached the threshold Ep

H ,
thus marking the onset of puberty, as described in Section 5.2.2. In this
way we can fully determine the capelin’s temperature preferences and
could use the threshold Ep

H as a trigger for the capelin starting their
feeding migration.

We now compare the measured temperature from the MRI, Figure 6.3,
to the output of the data of Kai Logemann 6.4. Both Figure 6.3(a) and
Figure 6.4(a) show temperature from November 11 to December 4. We
note that the measured temperature shows warmer water reaching to the
north west of Iceland, which could have the effect of pushing particles east
and preventing them to take a western route to the spawning grounds.
Figure 6.3(b) and Figure 6.4(b) show temperature from February 16 to
March 3. Although the temperature from Logemann’s model is not as
high as the measured one, we clearly see more detailed temperature. Most
importantly, off the south east coast we see the shape of the “toungue” of
warm water extending to the east coast. This detail is not well captured
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with sparse measurements, and will be interesting to incorporate into
the simulations. The particles will show different behavior depending on
where they encounter this tongue, as particles hitting the west part of the
tongue will swim towards Iceland, while others might get pushed further
east, as far as the Faroe Islands [66].

We compare the new currents in Figure 6.5 to the ones shown in 3.2.
Off the north and northeast coast of Iceland, the currents run clockwise
around Iceland. The main difference is that the currents off the south
and southeast coast are counter clockwise, whereas the older currents
were clockwise all around Iceland. The currents in Figure 6.5 are thus
in the opposite direction to that of the migrating capelin. This is clearly
of importance in the simulations, since the particles will not aided in the
same way by the currents to reach the spawning grounds off the south
west coast of Iceland.

The DEB model will further help to explain variations in migration
patterns based on environmental factors. In particular, the DEB equa-
tions depend on oceanic temperature which allows us to determine the
effect the environment has on the migration routes of the capelin, and
thus predict what effect changes in the oceanic temperature will have on
the behavior of the capelin.

Although DEB theory deals with individuals, and not populations as
a whole, we hope that by combining the DEB model with the interacting
particle model in [3] it will be possible to further explain phenomena of
large schools of fish by the physiology of individual fish, resulting in a
powerful model of the spawning migration of the Icelandic capelin and
hopefully the migrations of other species of fish as well.



7
Conclusions

Interacting particle models are fascinating to work with, because rel-
atively simple social rules, or interaction rules, create very interesting
patterns. It is especially interesting to observe that the emerging pat-
terns are similar to patterns observed in nature. By investigating and
analyzing the behavior of such models, we come closer to understanding
dynamics of animal movements. Differences between species could then
be characterized by different parameter values or other behavioral rules.

Here, we have applied a two dimensional interacting particle model
to the Icelandic capelin. We have integrated environmental fields into
the model and modeled the fish’s reaction to temperature. The success
of such a biologically simple model is quite significant.

With the DEB model of Part I we are now in a position to further
build on the migration model, by incorporating the effects of roe per-
centage on the migration. We hope that further development of the in-
tegrated models will ultimately lead to a powerful model, able to predict
the migration route of the capelin.

We note that the model of Part I is limited to two spatial dimensions.
Although the capelin is a pelagic fish, they have been reported to swim
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to depths of several hundred meters. Even though violent storms in the
winter cause mixing in the top layers of the ocean, the capelin could re-
act to temperature variations at greater depths. Currents also vary with
depth, and it is possible that capelin avoid strong currents by swimming
into calmer waters at a depth. Lastly, recent advances in computational
powers will make it a feasible task to include the computationally expen-
sive third spatial dimension.

So far, limited data and computational resources have mostly deter-
mined the models’ level of complexity. However, we note that the oceano-
graphic model of Logemann [43] could provide sufficiently accurate data
which previously has been unavailable. It is a model for currents, temper-
ature and salinity, and is the first of its kind to be specifically developed
for the waters around Iceland.

We are currently only modeling the spawning migration of the Ice-
landic capelin. But as mentioned in Section 1.3, the pubescent capelin
undertake an equally extensive migration to the plankton-rich waters of
the Iceland Sea as far north as the island of Jan Mayen. It would be
of theoretical as well as practical interest, and adding a sense of com-
pleteness to the project, to model the full life cycle of the capelin, as has
been done for the anchovies [56]. Such is indeed the long term goal, but
scarcity of data has so far made the task impractical. However, the DEB
model already addresses the dynamics of the whole life cycle of individ-
uals. We have only focused on the spawning migration and therefore left
open questions regarding the previous life stages. But a DEB model for
the full life cycle of the capelin could readily be developed, and will prove
a powerful tool when including the feeding migration into the interacting
particle models.

The simulations of the Scenarios of Chapter 4 elicit unexpected be-
havior, seen in Figure 4.2(b). The emerging pattern is quite interesting
and we have conjectured that the wave pattern is linked to the presence
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of the radius of repulsion. A related observation is the fact that the
eventual average number of neighbors is consistently higher than that
expected from a uniform distribution. Chapter 4 thus provides us with
interesting future research topics.

It should be noted that there is quite a variance in the relaxation
times of the systems. We intend to further investigate these relaxation
times, but without uniformly distributed directional angles. An interest-
ing scenario would be to set all directional angels to zero, thus the system
will then initially be completely aligned. By doing so, we would be bet-
ter able to determine how quickly the system relaxes to the equilibrium
pattern seen in Figure 4.2(b), which we discussed in Section 4.7.

However, it should be noted that the migrations of the capelin are
inherently transient. Constantly varying external influences, such as tem-
perature and currents, all act to prevent the schools of fish from obtaining
the coherent equilibrium states of Chapter 4. It would therefore be of
interest to further investigate the transient behavior.

Future computational powers will allow us to model with more and
more particles. As mentioned in Chapter 4 we would optimally simulate
at the level of individuals, but for now need to employ superindividu-
als. With more and more particles, the effectiveness of propagation of
information through a school increases. Once the maximum number of
particles is reached, other questions become more important to answer,
such as the time step, reaction times, and the values of the weight factors,
α and β.

It is my belief that modeling individuals, rather than a population
as a whole, is realistic and a biologically feasible way of modeling living
organisms. While many population models are in good agreement with
observations for certain species, they are not a true description of nature
in the sense that they treat populations as a single continuous entity.
They are rather, in agreement with the outcome of a set of (very complex)
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interactions between the individuals within the population. Modeling
these interactions and behavior at the individual level is a more realistic
approach to population dynamics.

Modeling at the population level must include assumptions about the
behavior of a group of individuals as they were one entity. How can this
be the case in real life, e.g. to what extent does an individual capelin
take into account the state of the whole population when deciding how
to spend its day? It should seem impossible for the individual to obtain
that information, where distances are vast, as is the case in the ocean.
Furthermore, different characteristic traits amongst individuals are hard
to incorporate into continuous density models.

In real life, populations do not act as a single entity, but rather the
actions of the individuals determine the behavior of the whole. By mod-
eling at the individual level we obtain a much more powerful tool to
understand the dynamics of the population of individuals. The behavior
of individuals is much more directly observable and easier to model than
the actions of a great number of individuals.

Population models are limited in that respect as the results are based
on some assumptions on the population as a single entity. Additionally,
at the individual level we obtain a powerful tool to predict what changes
in the environment and individual behavior has on the whole population.
Once we understand what effect the behavior of individuals has on the
behavior of the whole population do we start to fully understand its
behavior.



A
Appendix A

A.1 State variables and basic equations

We now derive the Equations (5.5)-(5.8) from the underlying state vari-
ables of the DEB model, E, V , EH and ER, which denote the reserve
energy, structural volume, maturity energy and reproduction energy, re-
spectively. The derivation is based on the equations and assumptions
in [38].

A.1.1 Reserve energy

The reserve energy, E, is the energy available to the organism. Its source
is food uptake and is the energy an organism utilizes for growth and
somatic maintenance on one hand, and maturity, reproduction and ma-
turity maintenance on the other hand. This division is further explained
in Section 5.2.1 and in Figure 5.1.

We have the simple equation describing the inner dynamics of the
reserves:

dE

dt
= pA − pC (A.1)
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i.e. the difference between the assimilated energy and the utilized one,
shown in Figure 5.1.

A.1.2 Volume, V , and volumetric length, L

The structural volume of an individual, V , denotes the volume of struc-
tural biomass. The equation governing the energy utilization of an indi-
vidual is

κpC = [EG]
dV

dt
+ pM (A.2)

where [EG] is the volume-specific cost of structure. By rewriting this
equation we obtain another one which describes the growth of an indi-
vidual:

dV

dt
=

κpC − pM

[EG]
(A.3)

In addition, we define L := V 1/3 as the volumetric length of the indi-
vidual. We note that L does not correspond to the physical length of
an individual, but the relationship between the two is explained is Sec-
tion 5.4.1. This distinction we will clarify by using the terms volumetric
length and physical length.

A.1.3 Maturity energy and reproduction energy

As mentioned in Section 5.2.2, we introduce the variable EH , which de-
notes a maturity energy, in order to determine the onset of puberty, see
Figure 5.1. Initially, the energy from (1− κ)pC − pJ is allocated to this
variable, and the maturity maintenance will be a fraction of this energy,
kJEH . When EH exceeds a certain threshold, Ep

H , the fish is mature and
allocation of energy to EH ceases.

After puberty has been reached, the energy starts to flow to ER, which
is the total energy available for reproduction. This energy will, in turn,
be converted into roe. We assume that there are no maintenance costs
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related to roe, and the maintenance costs of ER are proportional to Ep
H .

We note that the dynamics of the energy flow to maturity is the same
as that to reproduction. In other words, both dEH/ dt and dER/ dt have
the same form, except that the former one is nonzero when EH < Ep

H but
after that point is reached, the latter flow becomes nonzero. Thus, EH

reaches a final value Ep
H which determines when an individual reaches

maturity, and that is neither determined by the volumetric length, nor
the physical length of a fish.

The basic non-zero dynamics of EH and ER are the following:

d

dt
E∗ = (1− κ)pC − pJ (A.4)

where ∗ refers to either H or R depending on whether EH has exceeded
Ep

H or not.

Thus, the basic differential equations for the initial state variables in
Table A.1 are as follows:

d

dt
E = pA − pc (A.5)

d

dt
V =

κpC − pM

[EG]
(A.6)

d

dt
EH =

{
(1− κ)pC − pJ , EH < Ep

H

0, otherwise
(A.7)

d

dt
ER =

{
0, EH < Ep

H

(1− κ)pC − pJ , otherwise
(A.8)

where Ep
H is the maturity energy required for the onset of puberty.
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Table A.1: State variables and derived state variables of the standard DEB
model.

E J Reserve energy
V cm3 structural volume
EH J Maturity energy
ER J Reproduction energy

[E] := E/V J cm−3 Reserve energy density
L := V 1/3 cm Volumetric length
UH := EH/{pAm} cm2 d Modified maturity energy
UR := ER/{pAm} cm2 d Modified reproduction energy

e := [E]/[Em] - Scaled energy density
l := L/Lm - Scaled volumetric length
uH := UH{pAm}/([Em]L3

m) - Scaled maturity energy
uR := UR{pAm}/([Em]L3

m) - Scaled reproduction energy
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Table A.2: Parameters of the DEB model, see Figure 5.1

κ - Fraction of energy to growth
and somatic maintenance

κR - reproduction efficiency
kJ d−1 Specific maturity maintenance
pA J d−1 Assimilations rate of energy from food

{pAm} J d−1 cm−2 Maximum assimilation rate per surface area
[pA] J d−1 cm−3 Volume-specific assimilation rate
pC J d−1 Reserve utilization rate
pM J d−1 Somatic maintenance rate
[pM ] J d−1 cm−3 Volume-specific somatic maintenance rate
pJ J d−1 Maturity maintenance rate
pH J d−1 Maturity energy rate
pR J d−1 Reproduction rate

[EG] J cm−3 Volume-specific cost of structure
[EM ] J cm−3 Maximum reserve energy density
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A.2 Further derivations

A.2.1 Assimilation and maintenance rates, pA and pM

An assumption of the DEB theory is that the functional response to food,
f , is of the form

f =
X

X + XK

(A.9)

where X is the food density and XK is a saturation coefficient. There
is a variety of functional responses available, but for now we choose the
one above.

Now, we assume that the assimilation rate of food is proportional to
the surface area of the animal, according to

pA = {pAm}fL2 (A.10)

where {pAm} is the maximum area-specific assimilation rate. This comes
from the assumption that the ingestion rate is proportional to the size of
the mouth of the capelin, which indeed grows as the surface area of the
individual.

Finally, we have [pM ] as the volume-specific maintenance rate, thus

pM = [pM ]V. (A.11)

A.2.2 Maximum length

Let Lm denote the maximum sustainable length of an individual at opti-
mal food conditions, f = 1. Assuming that this holds when the maximum
size is reached, we have an equilibrium between the assimilation rates and
the maintenance rates. So, with the κ-rule in mind, the Equations (A.10)
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and (A.11) give us a formulation of the maximum length:

[pM ]L3
m = κ{pAm}L2

m, (A.12)

where on the left hand side we have the maximum maintenance rate,
and on the right we have the κ fraction of the maximum assimilation
rate used for maintenance. This yields the formula for the maximum
volumetric length of individuals:

Lm =
κ{pAm}

[pM ]
. (A.13)

A.2.3 Reserve energy density, [E]

Now, we set [E] = E/V as the reserve energy density of an individual.
Then from (A.1) and (A.10) we get

d

dt
[E] =

d

dt

(
E

V

)

=
1

V

dE

dt
− E

V 2

dV

dt

=
1

V

(
pA − pC − [E]

dV

dt

)

=
1

V
{pAm}fL2 − 1

V

(
pC + [E]

dV

dt

)

=
{pAm}f

L
− 1

V

(
pC + [E]

dV

dt

)
. (A.14)

We assume that the dynamics of the reserve density is a first degree
homogenous function [38], thus requiring the second part of Equation
(A.14) to be of the form c[E], where c is a constant:

d

dt
[E] =

{pAm}f
L

+ c[E]. (A.15)
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At constant food abundances, f = 1, we furthermore assume that the
dynamics of the energy densities asymptotically reach a maximum value
[Em] at d

dt
[E] = 0. Thus, from (A.15) we have

c =
{pAm}
L[Em]

. (A.16)

This gives the final form of Equation (A.14) for the scaled reserve energy
density

d[E]

dt
=
{pAm}

L

(
f − [E]

[Em]

)
. (A.17)

A.2.4 Volumetric length, L

We now further detail the dynamics of the volumetric length. First, we
obtain an expression for the reserve utilization rate, pC , from Equations
(A.1) and (A.17):

pC = pA − dE

dt

= pA − V
d[E]

dt
− [E]

dV

dt

= pA − V
{pAm}

L

(
f − [E]

[Em]

)
− [E]

dV

dt

= L2{pAm} [E]

[Em]
− [E]

dV

dt
. (A.18)

Rewriting (A.3) as

pC =
1

κ

(
[EG]

dV

dt
+ pM

)
(A.19)
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we solve together with (A.18), collecting terms of dV/ dt on the left
hand side:

(
[EG]

κ
+ [E]

)
dV

dt
=

V

L
{pAm} [E]

[Em]
− V

κ

pM

V
, (A.20)

which with Equation (A.11) becomes

dV

dt
= V

( {pAm}
L

[E]
[EG]

− [pM ]
κ

[E] + [EG]
κ

)
. (A.21)

Now, we finally arrive at

d

dt
L =

1

3L2

dV

dt

=
V

3L2
{pAm}

(
[E]

L[Em]
− [pM ]

κ{pAm}

)

[E] + [EG]
κ

which with Equation (A.13) gives an equation for the dynamics of the
volumetric length:

dL

dt
=
{pAm}

3

[E]
[Em]

− L
Lm

[E] + [EG]
κ

. (A.22)

A.2.5 Maturity energy and reproduction energy

We now modify the maturity energy, EH , and the reserve energy, ER and
obtain equations for the dynamics of those modified variables.

First, rewrite Equation (A.3) as we did in Equation (A.19). By sub-
sequently using Equations (A.11) and (A.21) we obtain a new expression
for pC :

pC =
1

κ

(
[EG]

dV

dt
+ pM

)
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=
1

κ

(
[EG]V

{pAm}
L

[E]
[Em]

− [pM ]
κ

[E] + [EG]
κ

+ pM

)

=
1

κ

[EG]L2{pAm} [E]
[Em]

− [EG]
κ

[pM ]V + [E]pM + [EG]
κ

pM

[E] + [EG]
κ

=
1

κ

[EG]L2{pAm} [E]
[Em]

+ [E][pM ]L3

[E] + [EG]
κ

=
[E]L2

κ

{pAm} [EG]
[Em]

+ [pM ]L

[E] + [EG]
κ

i.e.

pC =
[E]L2

κ

{pAm} [EG]
[Em]

+ [pM ]L

[E] + [EG]
κ

. (A.23)

We now introduce the modified maturity energy

UH :=
EH

{pAm} (cm2 d). (A.24)

and the modified reproduction energy,

UR :=
ER

{pAm} (cm2 d). (A.25)

We assume that the maturity maintenance rate, pJ , is proportional
to the maturity energy, EH :

pJ = kJEH . (A.26)

Furthermore, we note that when puberty has been reached and roe
production is in full swing, the maturity maintenance rate is fixed at
pJ = kJEp

H , independent of the reproduction energy and the roe produc-
tion.

The non-zero dynamics of Equations (A.7) and (A.8), coupled with
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Equations (A.13) and (A.23), thus become

d

dt
U∗ =

1

{pAm}
dE∗
dt

=
1

{pAm} ((1− κ)pC − pJ)

=
1

{pAm}(1− κ)
[E]L2

κ

{pAm} [EG]
[Em]

+ [pM ]L

[E] + [EG]
κ

− kJEH

= (1− κ)[E]L2

[EG]
κ[Em]

+ L
κ{pAm}/[pM ]

[E] + [EG]
κ

− kJ
EH

{pAm}

= (1− κ)
[E]

[Em]
L2

[EG]
κ[Em]

+ L
Lm

[E]
[Em]

+ [EG]
κ[Em]

− kJUH

where ∗ denotes either H or R, depending on whether EH has reached
the threshold Ep

H or not.

Now, we introduce the parameter

ν :=
{pAm}
[Em]

(cm d−1) (A.27)

which is called energy conductance, and

g :=
[EG]

κ[Em]
(−) (A.28)

which is called energy investment ratio.

So far the Equations (A.5)-(A.8) have become

d[E]

dt
=

{pAm}
L

(
f − [E]

[Em]

)
(A.29)

dL

dt
=

{pAm}
3

[E]
[Em

− L
Lm

[E] + [EG]
κ

(A.30)
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dUH

dt
=





(1− κ) [E]
[Em]

L2 g+ L
Lm

[E]
[Em]

+g
− kJUH , EH < Ep

H

0, otherwise
(A.31)

dUR

dt
=





0, EH < Ep
H

(1− κ) [E]
[Em]

L2 g+ L
Lm

[E]
[Em]

+g
− kJUp

H , otherwise
(A.32)

where
Up

H :=
Ep

H

{pAm} (cm2 d) (A.33)

is the modified maturity energy at puberty.

A.2.6 Primary parameters

In DEB modeling one often works with

{JEAm} mol d−1 cm−2 Surface area specific assimilation rate
yV E - Yield of structure from reserve on growth
ν cm d−1 Energy conductance

as primary parameters. The parameters {pAm}, [EG], [Em], and g, are
determined from these parameters as

{pAm} = µE{JEAm} (A.34)

[Em] =
µE{JEAm}

ν
(A.35)

[EG] =
µE[MV ]

yV E

(A.36)

g =
ν[MV ]

κ{JEAm}yV E

, (A.37)

where
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µE J mol−1 chemical potential
[MV ] mol cm−3 volume specific structural mass.

A.2.7 Dimensionless state variables

Finally, we introduce the dimensionless variables

e :=
[E]

[Em]
(A.38)

l :=
L

Lm

(A.39)

uH := UH
ν

L3
m

=
EH

[Em]L3
m

(A.40)

uR := UR
ν

L3
m

=
ER

[Em]L3
m

. (A.41)

The dynamics of these dimensionless variables are as follows:

de

dt
=

1

[Em]

d[E]

dt

=
1

[Em]

{pAm}
LLm

Lm

(
f − [E]

[Em]

)

=
ν

Lml
(f − e),

dl

dt
=

1

Lm

dL

dt

=
1

Lm

{pAm}
3

[E]
[Em

− L
Lm

[E] + [EG]
κ

=
{pAm}/[Em]

3Lm

e− l
[E]

[Em]
+ [EG]

κ[Em]
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=
ν

3Lm

e− l

e + g
,

and finally for the non-zero dynamics of the reproduction variables:

du∗
dt

=
ν

L3
m

dU∗
dt

=
ν

Lm

(1− κ)el2
g + l

e + g
− kJ

ν

L3
m

UH

=
ν

Lm

(1− κ)el2
g + l

e + g
− kJuH ,

where ∗ denotes H or R as before.
Similarly as before, we let

up
H := Up

H

ν

L3
m

=
Ep

H

[Em]L3
m

(A.42)

and we have turned the Equations (A.5)-(A.8) into the following dimen-
sionless equations:

de

dt
=

ν

Lml
(f − e) (A.43)

dl

dt
=

ν

3Lm

e− l

e + g
(A.44)

duH

dt
=

{
ν

Lm
(1− κ)el2 l+g

e+g
− kJuH , uH < up

H

0, otherwise
(A.45)

duR

dt
=

{
0, uH < up

H

ν
Lm

(1− κ)el2 l+g
e+g

− kJup
H , otherwise

. (A.46)
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B.1 DEB and von Bertalanffy growth equa-

tions

We now show that the well known growth equations of von Bertalanffy
can be derived from the DEB model. The derivation is based on that
in [38].

At constant food density, f , as in Section A.2.3, the energy density,
[E], reaches a steady state, assuming that the organism ingests at a
constant healthy rate. Then from Equation (5.5) we see that de

dt
= 0

gives e = f . Substituting that into Equation (5.6) and setting

k :=
ν

3Lm(f + g)
(B.1)

we get
dl

dt
= k(f − l). (B.2)
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From Equation (B.2) we get from separating variables

∫
dl

f − l
= k

∫
dt

− ln |f − l| = k(t + c), c ∈ R( constant)

f − l = e−k(t+c)

l = f − e−kce−kt)

i.e.
l(t) = f − ζe−kt (B.3)

where ζ ∈ R+, constant. Here we have assumed that f > l because the
organism is growing, allowing us to drop the absolute value in the natural
log above.

When determining the constant ζ, we require l(0) = l0 at time t = 0,
where l0 is the length of an individual at the end of the larval stage.
Thus,

l0 = f − ζ, (B.4)

giving
l(t) = f − (f − l0)e

−kt. (B.5)

We can now find the time t0 when an individual has length zero:

0 = f − (f − l0)e
−kt0 (B.6)

e−kt0 =
f

f − l0
(B.7)

i.e.
t0 =

1

k
ln

(
1− l0

f

)
. (B.8)

We note that |t0| corresponds to the development time of larvae at con-
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stant food conditions. Substituting (B.7) into (B.5) we get

l(t) = f − (f − l0)e
−ktekt0e−kt0

= f − (f − l0)e
−ktekt0

f

f − l0

= f − (f − l0)e
−ktekt0

f

f − l0

= f(1− e−k(t−t0)),

i.e.
l(t) = f(1− e−k(t−t0)). (B.9)

And now, letting L denote the physical length of an individual and
L the volumetric length, we have from Equation (5.16)

L =
Lm

δ
l. (B.10)

We let L∞ denote the maximum physical length of an individual at food
response f . We have

lim
t→∞

l(t) = f, (B.11)

thus
L∞ =

Lmf

δ
. (B.12)

We also have the physical length at time t = 0:

L0 :=
Lml0

δ
. (B.13)

The Equations (B.5), (B.10) and (B.12) now yield

L =
Lm

δ

(
f − (f − l0)e

−kt
)

= L∞ − (L∞ − L0)e
−kt (B.14)
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and similarly as above we get

L = L∞(1− e−k(t−t0)), (B.15)

where
t0 =

1

k
ln

(
1− L0

L∞

)
. (B.16)

Now, from (B.1) and (B.12) we have

1

k
=

2Lm

ν
(f + g)

=
3Lmf

ν
+

3Lmg

ν

= 3

(
L∞δ

ν

Lmg

ν

)
.

From Equations (A.13), (A.27), and (A.28) we see that

Lmg

ν
=

[EG]

[pM ]
. (B.17)

We therefore introduce the parameter

kM :=
[pM ]

[EG]
(d−1) (B.18)

as the maintenance rate coefficient and get

1

k
= 3

(
L∞
ν

1

kM

)
. (B.19)

We have thus established connections between the DEB theory and
the well known von Bertalanffy growth parameters. We note that we
have implicitly described how k and t0 depend on temperature. They
both depend on ν, which is a biological rate which is affected by temper-
ature according to Equation (5.14). However, the growth rates assume
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constant feeding conditions, which does not apply to the life span of
capelin. The von Bertalanffy growth equations could still be used to de-
scribe the earlier life stages of capelin, where they do experience more
stable food conditions.
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