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Abstract. An individual based, discrete and stochastic model for the collective motion of fish  

presented in Hubbard et al. (2004) is applied to the task of simulating migrations of capelin in the seas 

around Iceland. In this application the individual particles may be viewed as small schools of fish that 

are self-propelled and interacting in such a way that the motion is governed on one hand by a tendency  

to imitate the motion of other particles in a local neighbourhood and on the other hand by external  

environmental vector fields for temperature, food density and oceanic currents, as well as a force field 

generated by an attracting spawning region. In addition there is a stochastic component. The 

implementation of this model is based on a triangularization of the region under consideration which is 

shown to be advantageous both in terms of computational efficiency and access to external data. 

Results of simulations are  presented showing the migration pattern of capelin that is situated north-

west off Iceland at the beginning October and migrates to spawning grounds south off Iceland by the 

end of March the following year.  

Key words: Fish migration; Interacting particle model; Stochastic model; Capelin; Environmental 

fields. 
 
Introduction 
 
Many species of fish undertake extensive movements between feeding and spawning 
grounds.  Such directed movements between specific areas – as opposed to random 
dispersal – are referred to as migrations. Fish migrations are as yet a poorly 
understood phenomenon; the general route the fish take – which may be genetically 
“programmed” in some way – are usually fairly well known as well as the 
approximate timing, but there is considerable year to year variation, presumably due 
to varying oceanographical conditions. The migration is also influenced by the 
physiological condition of the fish which is governed by the food density and 
distribution. How the spatio-temporal characteristics of migrations are affected by the 
environment is not well known, apart from some general observations. Oceanographic 
variables which clearly have an effect on migrations are temperature, oceanic currents 
and food density amongst others.  
 
The capelin (Mallotus villosus) in the central North–Atlantic is a good example of a 
migrating stock illustrating the above. The migrations of the Icelandic capelin are 
discussed in detail in Vilhjálmsson (1994) and the main features summarized in 
Hubbard et al (2004). We will therefore only give a very brief account here. The 
spawning stock appears in the waters off the north-east coast of Iceland in late autum- 
early winter from feeding grounds in the north around the island of Jan Mayen. The 
stock moves slowly clockwise around Iceland and ends up on the spawning grounds 
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on the south and south-west coast in March-April. A component of the stock takes a 
more direct route, counter-clockwise around the island. The size of this component is 
very variable and is possibly connected to the temperature distribution in the ocean. In 
this paper we will attempt to model the effects of oceanographical conditions on the 
spawning migrations of capelin in Icelandic waters. 
 
The collective movements of groups of animals can be modelled as a continuous 
system in time and density (Okubo and Levin, 2001; Toner and Tu, 1998; Babak et 
al., 2004), or as individual based system, which may be discrete (e.g. Vicsek et al., 
1995) or continuous (Niwa, 1998) in time. The migrations of capelin around Iceland 
and in the Barents Sea have been modelled by a continuous density Kolmogorov type 
model (Magnússon et al, 2004; Magnússon et al., in press) and by a discrete 
individual based stochastic model (Hubbard et al, 2004), where individual fish or 
schools are regarded as self-propelled interacting particles. Both these models are 
generic in the sense that they can be applied to any stock and area.  
 
The model presented here extends the one presented in Hubbard et al. (2004) firstly in 
that it includes a field of currents that may carry the fish along. Since typical sea 
current speeds can be of the same order of magnitude as the speed of fish relative to 
the surrounding sea this may have a significant effect on the migration pattern. 
Secondly we present a more general approach to deal with attraction to spawning 
grounds. This allows us, in particular, to include complex obstacles (e.g. islands) in 
the path of the fish, without the problem of fish getting “stuck” by being pulled into 
these obstacles by the attraction. This new approach further allows us to include the 
effect of attraction to spawning grounds in the same comfort function that includes the 
effects of sea temperature and food density on the motion of the fish. Our approach 
here is identical to the one adopted in Dereksdóttir et al. (2003), in the context of a 
continuous Kolmogorov-type model of fish migration. In the context of the particle 
model presented here, the result of this new approach is that we now first group the 
effects of sea temperature on the direction of motion  together with the effects of 
spawning attraction, rather than first grouping them with the effects of alignment as is 
done in Hubbard et al. (2004). 
 
We also present here a new implementation of the model by introducing a 
triangularization, that may be fully unstructured, of the region under consideration 
and subsequently applying the model locally within these triangular elements. Our 
main reasons for adopting such an implementation are: 

1. It allows us to deal effectively with data described in terms of longitude and 
latitude. Much of the available data on oceanographical conditions as well as 
fishery is described in this way. 

2. It allows us to introduce good approximations to obstacles of complex shape 
by describing them as a union of unstructured triangular elements. 

3. It provides us with a framework of keeping track of neighbour particles, 
within the same element or within neighbour elements, which in turn  

 makes the calculation of alignment computationally more efficient. 
4. It allows us to share data files and make effective comparisons with 

continuous migration models that we have also developed, since a finite 
element implementation of those models is based on exactly the same 
triangular subdivision. 
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We finally demonstrate the feasibility of this approach by presenting the results of 
numerical simulations of capelin migration around Iceland towards its spawning 
grounds from October 1 till April 1 the following spring for 1994-1995, which was a 
cold year, and 2000-2001, which was a warm year, using the same data as in 
Dereksdóttir et al. (2003). 
 
Mathematical model 
  
The model consists of a collection of particles (fish or small fish schools) moving in a 
plane, within a prescribed domain. The particles are self-propelling, but are also being 
carried by a  time dependent vector field of currents, ( ; )c tV x , specified external to the 
model. Particle i has speed ( )iv t  relative to the field of currents, and a direction of 
motion given by the angle   θ i .  The general dynamical equation for the position of the 
i-th particle is 
 

( )( ) ( ) ( ) ( ( ); )i i i c it t t t t t t+ ∆ = + + ∆x x V V x                                                         (1) 
 
where  
 

( ) ( )( )( )( ) 1 ( ) ( ) ( ) ( )
1 ( ) ( ) ( ) ( )

i
i i i i i

i i i i

v tt t t t t
t t t t

β β
β β

= − +
− +

V p q
p q

                   (2) 

 
and the unit vector ( )i tp represents the effect of neighbouring particles on the 
direction of motion, whereas the unit vector ( )i tq  is determined by the gradient of a 
function ( );U tx , which we refer to as a comfort function (Reed and Balchen, 1982). 
This function will incorporate the factors, which are believed to affect the “comfort” 
or well-being of the fish, such as temperature, food density, location relative to the 
spawning grounds, etc. 
 

, ( )i tθ p , the direction angle of ( )i tp  is calculated similarly as in Vicsek et al. (1995) 
i.e. by 
 

, ,
( ) ( ) t

i j ii
t t t

ρ
θ θ ξ= − ∆ +p                                                                              (3)                  

 
where 

,j i ρ
θ  denotes the average angle of motion of all particles inside a circle of 

radius ρ  centered on the i-th particle. The average angle is calculated by taking the 
direction angle of the average of individual direction vectors of these particles at the 
previous time t t− ∆ . The term t

iξ  is a random perturbation of the direction angle 
which we choose either as a uniform noise within the interval [ / 2, / 2]η η−  and add in 
fact to the angle of ( )1 ( ) ( ) ( ) ( )i i i it t t tβ β− +p q  rather than ( )i tp , or as a “directional 
noise” described in more detail below. 
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The comfort function used here is the same as presented in Magnússon et al. (2004). 
It is a linear combination of functions of temperature and food density and a potential 
function 
 

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )1 2 3; ; ;U t t r T t t s f t tα α α φ= + +x x x x                                (4) 
 
where T(x;t) and f(x;t) are the temperature and food density respectively at location x 
at time t and r and s are given functions defined as follows: 
 
 

( )

( )

4
1 1

1 2
2

2 2

 if  
( ) 0 if

if

T T T T
r T T T T

T T T T

⎧− − ≤
⎪⎪= ≤ ≤⎨
⎪

− − ≤⎪⎩

                                                                               (5) 

 and    

s( f ) =
f

h + f
                                                                                                                             (6)                                         

where T1, T2  and h are constants. The functional form of r implies that the preferred 
temperature range is between T1 and T2  degrees.  The fish tend to move towards areas 
where the temperature is within the preferred range and this tendency is stronger in 
cold waters. The preferred temperature range may vary within the year.  The function 
s is an asymptotic and increasing function of food density,  f. This functional form 
implies that the tendency to move towards areas of higher food density decreases with 
increasing density and is virtually nil at high food densities. The α -coefficients in (4) 
will be specified later. 
 
The functionφ  is a potential function for the attraction towards the spawning grounds 
and is defined as follows:  
 
Let the region in which the fish can move be denoted by Ω . We define the boundary 
of Ω to be any lines, which the fish are not able to cross, such as the coastlines and 
possibly certain isotherms.  The region is in general not simply connected since it may 
have one or more “holes” in it. Assume that the spawning grounds cover a sub-area S 
of Ω and that migrating fish are attracted towards S, in the sense that they experience 
a “force field” pulling them towards it. The spawning region may be regarded as a 
continuous sink spread over S, to use an analogy from fluid dynamics, and we define 
the sink density (analogous to mass density or charge density) in the spawning region 
S by ( )ρ x . The total attraction strength (sink strength) of the spawning area is 
therefore given by  
 

S

m dAρ= ∫∫                                                                                                      (7) 

 
The potential φ  is given as the solution of Poisson’s equation 
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∆φ = −ρ  in Ω                                                                                           (8) 

 
subject to no-flux condition at the obstacle boundaries of Ω, i.e. 
 

∂φ
∂n

= 0           on ∂Ω                                                                                            (9) 

 
The force field attracting the fish towards the spawning grounds is given by the 
gradient of φ , ∇φ . The gradient is orthogonal to the equipotential lines and is 
therefore tangent to the set of lines known as streamlines, which the fish would travel 
along if there were no other factors influencing the motion, than possible obstacles in 
the form of holes within Ω, that the fish cannot cross. 
 
In the case of an infinite region Ω with no boundaries or obstacles and an attracting 
region consisting of a single point of sink strength m, located at the origin, the 
attraction density is ρ x( )= mδ x( ), where δ x( ) is the delta function. The 
corresponding potential function is  
 

( ) ln
2
mφ
π

= −x x                                                                                           (10) 

 
and the streamlines are simply straight lines through the origin. In the case of a finite 
region we have to specify boundary conditions at the outer boundaries of the region. 
Rather than viewing them as non-obstacle boundaries we specify the φ -values on the 
outer boundary according to (10), approximating the spawning region S  by a single 
point.  
 
One way of quantifying the weight β  in equation (2) is to let it depend on the time 
constants associated with how quickly the particle adjusts its direction to that 
governed by alignment on one hand and the gradient of the comfort function on the 
other. Assuming that the former time constant is t∆  and the latter is tσ∆  we have that 
 

1/( ) 1
1/ 1/( ) 1

t
t t

σβ
σ σ

∆
= =

∆ + ∆ +
                                                                              (11) 

 
Also note in this context that equations (1) and (2) may be viewed as an explicit time 
discretization of the following dynamical system: 
 

( )
ˆ ( ) ( , )( )

1ˆ ˆ( ) ( ) ( )

i c ii

i i i

t ttd
dt t t t

τ

⎡ ⎤+⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎢ ⎥⎣ ⎦

V V xx

V V V
                                                                         (12) 

with  ( )i tV  being defined according to equation (2) and the time constant of how 
quickly the velocity ( )i tV adjusts to the set velocity ( )i tV being tτ = ∆ . 
 
Returning to the question of noise, an alternative to the formulation presented above, 
with uniform noise around the angle of the vector ( )1 ( ) ( ) ( ) ( )i i i it t t tβ β− +p q , 
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is to adopt the approach given in Hubbard et al. (2004) and introduce a “directional 
noise”, ˆt

iξ , around , ( )i tθ p , the angle of the vector ( )i tp , in the direction of  , ( )i tθq , the 
angle of the vector ( )i tq . We can  for example define the probability density function 

of ξ̂   as a linear function on a finite interval around 0  
 
 

ˆ 2 2 2
2 1( ) xp x x

ξ

η ηγ
η η

− ≤ ≤= +                                                                      (13) 

 
where  
 

, ,( ) ( )i it t
θ

θ θ
γ κ

π

−
= q p       0 1θκ≤ ≤                                                          (14) 

  
(see Fig. 1). In general, θκ will be taken to be either zero or one, i.e. the directional 
noise is switched on or switched off. Note that , ,( ) ( )i it tπ θ θ π− < − ≤q p  and thus 

1θγ κ≤ ≤ ensuring that ˆ ( ) 0p xξ ≥ . The expected value of ξ̂  is  
 

ˆ
6

E
γη

ξ =⎡ ⎤⎣ ⎦                                                                                                          (15) 

 
and hence 
 

, , ,
ˆ( ) (1 ) ( ) ( )t

i i i iE t t tθ ξ β θ βθ⎡ ⎤+ = − +⎣ ⎦p p q    with   
6

θκ ηβ
π

=                                   (16) 

 
Thus if  1θκ = ,  2η π=  and the time constant associated with alignment is  t∆  
then the expected time constant associated with adjustment to the direction of the 

gradient of the comfort function will be  tσ∆   where 1
1 2σ

β
= − =  (cf. (11)) and this 

time constant increases as η  decreases. 
 
The variance is 
 

( )
2

2ˆ 3
36

V
η

ξ γ= −⎡ ⎤⎣ ⎦                                                                                                 (17) 

 

Thus the variance with the directional nose “off”,  i.e. 0θκ = ,   is 
2

12
η , but decreases 

as the directional noise is “switched on”, i.e. 
2 2

1
ˆ

18 12
V

θκ

η η
ξ =≤ ≤⎡ ⎤⎣ ⎦ , depending on 

, ,( ) ( )i it tθ θ−q p .  
 



 7

We can also introduce in a similar manner a noise component, t
iζ , to the speed with 

probability density given by  
 

2

2 1
( )p x xς

λ
µ µ

= +                      
2 2

x
µ µ

− ≤ ≤                                                        (18) 

 
where  
 

λ =κ v max min v0 − vi( t),1{ },−1{ }  0 1vκ≤ ≤                                                       (19) 
 
Here     v0  is a reference speed or an average cruising speed. Thus particles which are 
moving slower than the reference speed are more likely to speed up than slow down 
and particles moving faster are more likely to slow down. The above formulation of λ 
ensures that  1vλ κ≤ ≤ and hence that ( ) 0p xζ ≥ .  
 
Finally, we note that in addition to the directions ( )i tp , representing the effect of 
neighbouring particles on the direction of motion, and  ( )i tq , the direction of the 
gradient of the comfort function ( );U tx , that determine the direction of velocity 
according to equation (2), it may be of interest to include a third direction  ( )i tr  the 
role of which is to try to maintain some prescribed preferred density of particles. Thus 
if the density is below this preferred value this direction should be towards an area 
where the density is greater, e.g. in the direction of the gradient of the density, if it can 
be represented as a continuous differentiable function. If the density is above the 
prescribed value the direction should be towards an area where the density is smaller.  
The relative weight of such a direction could depend on how much the actual density 
deviates from the preferred one. We have already noted that the interplay between a 
stochastic component and the effect of alignment may play a role in the formation of 
schools. The inclusion of  a density effect may also play a significant role in school 
formation as indicated by the analysis presented in Babak et al. (2004) in the case of a 
continuous dynamic model. 
 
Numerical implementation  
 
In our numerical implementation of the mathematical model we introduce a 
triangularization of the region under consideration, that may be fully unstructured. 
Obstacles (islands) within the region are simply specified by identifying some of the 
triangular elements as “land” elements. For each triangular element ABC∆ we 
introduce a local (x,y)-coordinate system as shown in Fig. 2 where the local 
coordinates of the corner points 
 

0,0 ,0 ,A B a C b c= = =                                                                     (20) 
 
are readily evaluated from the distances between the corner points: 
 

2 22
2 2, ,

2
a AC BC

a AB b c AC b
a

+ −
= = = −                                       (21) 
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When these corner points are specified globally in terms of longitude, Θ , and latitude, 
Φ , as is usually the case in our applications, these distances are in turn readily 
calculated from the corresponding cartesian coordinates: 
 

cos cos , cos sin , sin
180 180 180 180 180

X R Y R Z Rπ π π π πΦ Θ Φ Θ Φ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞= = =⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠

   (22) 

 
R = 6350km being the radius of the earth. We may calculate these distances either as 
direct cartesian distances or as great circle distances, the approximation in either case 
being that we are approximating the triangular element on the sphere with a flat 
element. This approximation has a negligible effect in our application. We avoid on 
the other hand having to introduce any global projection on to a plane which may 
result in more serious distortions. In addition to these local coordinates we calculate 
the angle from the global west-east direction to the edge AB as: 
 

( )
1tan

cos
B A

A B A

u − ⎛ ⎞Φ − Φ
= ⎜ ⎟⎜ ⎟Φ Θ − Θ⎝ ⎠

                                                                           (23) 

 
where the value of the angle is changed by π  when A BΘ > Θ . 
 
For each particle, number i, under consideration we keep the following information: 
 
i  the identification number of the particle.  

ˆ( )E E  the number of the element that the particle is within now (after motion). 
ˆ ˆ, ( , )x y x y  the local coordinates of the particle within that element now (after motion). 

ˆ( )θ θ  the local angle of the previous (next) direction of motion of the particle. 
v  the present speed of the particle. 
 
For each nodal point, number j, in the net of elements we keep the following 
information: 
 
j  the identification number of the nodal point.  
Θ, Φ  the global coordinates of the point (longitude and latitude). 
U  the present value of the comfort function at the point. 
 
For each triangular element, number k, in the net we keep the following information: 
 
k  the identification number of the element (-1 if the element is a “land” element). 
NA, NB, NC  the identification numbers of its three corner points 
a,b,c  the local coordinate values of its corner points 
u  the angle that the AB-edge makes with the global west-east direction 
EA, EB, EC  the identification numbers of its three neighbour elements, adjacent to the 
     element edges opposite the points A,B,C  (0 if there is no neighbour element). 
Vc  the present velocity current vector within the element 
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In addition, for the sake of computational efficiency, we may maintain a list of the 
numbers of those elements that presently contain any particles, as well as maintaining 
for such elements a list of the numbers of those particles that are presently within the 
element. On the basis of this information the positions of the particles can now be 
updated in turn as follows: 
 
We calculate the angle of the alignment unit vector ( )i tp  locally within the element, 
by letting the alignment only depend on those particles that are within a specified 
distance, ρ ,  as well as being within the same element or one of its three neighbour 
elements, cf. Fig. 3. The second additional restriction is included for the sake of 
computational efficiency. In order to check whether a particle at point P´ , within a 
neighbour element, should affect the alignment of the particle at point  P, we firstly 
check whether PQ ρ> , where Q is the projection of P onto the common edge. If 

that is so we subsequently check whether ( )2 2 2' ' 'PQ P Q QQ ρ+ + >  where Q´  is 
the projection of P´ onto the common edge. The lengths of these line segments can all 
be easily calculated locally. If such a particle in a neighbour element is to be included 
the corresponding local angle 'θ  can be changed into the local coordinates of the 
original element by the transformation 
 

' 'u uθ θ= + −                                                                                                      (24) 
 
 cf. Fig. 4. The direction angle of ( )i tp can subsequently be calculated as: 
 

1

sin

tan
cos

j
j

j
j

θ

θ
−

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

∑
∑

                                                                                              (25) 

where we sum over all particles satisfying the distance conditions, and the value of 
the angle is changed by π  when the denominator of the argument is negative. 
 
We calculate the angle of the comfort gradient unit vector ( )i tq  locally within the 
element, from the specified comfort values ( ), ( ), ( ),A B CU t U t U t  at its three corner 
points, assuming that the comfort function is linear within the element. Then we have 
that within the element  
 

( )
01 1( ) ( ) and ( ) ( )

( )
( )

A

B

C

U t
c c

U t U t t U t
a b b aac U t

U t

⎡ ⎤
−⎡ ⎤− ⎢ ⎥∇ = = ∇⎢ ⎥ ⎢ ⎥− − ∇⎣ ⎦ ⎢ ⎥⎣ ⎦

q               (26) 

 
noting that the columns of the matrix are in fact outward normal vectors on the edges 
opposite A,  B, C  respectively whose lengths are that of the corresponding edge. 
 
Since the particle speed, v(t), is specified with the particle and the current velocity 
Vc(t) with the element we can now calculate the new position of the particle according 
to equation (1) as well as the corresponding angle of the direction of motion in the 
local coordinates, and subsequently establish whether the new position falls within the 
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same element or not. If it does we simply update these values. If it does not, we first 
have to calculate the point of intersection, I, with the outgoing edge (see Fig. 4), the 
distance that the particle has travelled when hitting the edge ( PI  in Fig. 4), and the 
distance of the point of intersection from the preceeding corner point in an 
anticlockwise direction ( BI  in Fig. 4). From this we can readily establish the local 
coordinates of this point within the neighbour element, as well as the local angle of 
direction, 'θ , from equation (24), and hence continue the motion for the remaining 
distance 'IP . This may lead us to a new edge in which case the above procedure is 
repeated. It is also possible that there is no neighbour element or that it turns out to be 
a land element. In that case the particle is reflected back into the same element for the 
remaining distance, the local angle of motion changing from θ  to 2( )wθ θ+ − =  
2w θ− , where w is the angle between the outgoing edge and the edge AB of the 
element (see Fig. 5). If the particle changes elements we update the new element 
number as well as the coordinates and angle with respect to that element. Note that, 
while dealing with the particles in turn, we have to keep separate records of positions 
and angles before and after motion since the alignment depends on the motion of the 
neighbour elements during the previous time step. 
 
Note that with this implementation we are applying a reflective boundary condition, 
according to the terminology introduced in Hubbard et al. (2004), both at outer 
boundaries as well as obstacle boundaries. We may effectively replace these 
conditions by repulsion boundary conditions, according to the same terminology, by 
introducing at such boundary points temperature values that are well outside the 
interval [ ]1 2,T T  in equation (5) (eg. 1000°C), thus forcing  ( )i tq  to point away from 
the boundary. 
 
Equations (8) and (9), determining the potential part of the comfort function (4), are 
solved by a Galerkin finite element method with piecewise linear functions on the 
same triangular net thus giving directly the values of this function at the nodal points. 
The temperature and food density parts of the comfort function are specified 
externally and have to be interpolated onto these nodal points. The same holds true for 
the sea current values except that they have to be interpolated  onto the centroids of 
the elements. 
 
When displaying the positions of the particles we need  to know their global 
coordinates. These can approximately be calculated from the local coordinates as 
follows: 
 

cos sin sin cos
cosA A

A

x u y u x u y u
R R

− +
Θ = Θ + Φ = Φ +

Φ
                           (27) 

 
Finally,  note that if we are interested in including the direction towards a preferred 
density, ( )i tr , described at the end of  the previous section it can e.g. be done as 
follows in the present setting: Let d denote the average density of particles within a 
triangular element, i.e. the number of particles within the element divided by the area 
of the element and let dA, dB, and dC  denote the average density  of its three neighbour 
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elements, adjacent to the element edges opposite the points A, B, and C resp. Then we 
can set: 

( )
01 1( ) ( ) and ( ) ( )

( )
( )

A

B

C

d t
c c

d t d t t d t
a b b aac d t

d t

⎡ ⎤
−⎡ ⎤ ⎢ ⎥∇ = = ∇⎢ ⎥ ⎢ ⎥− − ∇⎣ ⎦ ⎢ ⎥⎣ ⎦

r                          (28) 

 
This approximation is based on the relationship 
 

1 1d dxdy d ds
∆ ∂∆

∇ =
∆ ∆∫∫ ∫ n                                                                                     (29) 

 
where we are integrating over a triangular element, ,∆ ∆  denotes the area of this 
element, and we approximate the density value along an edge in the line integral with 
the average of the average density values over the two elements on each side of that 
edge. Thus we only need to keep track of the number of particles within each element. 
 
Simulation example 
 
We demonstrate the feasibility of this approach by presenting the results of numerical 
simulations of capelin migration around Iceland towards its spawning grounds from 
October 1 till April 1 the following spring for 1994-1995, which was a cold year, and 
2000-2001, which was a warm year, using the same data as in Dereksdóttir et al. 
(2003). 
 
The area being considered is an area around Iceland extending from longitude 10°W 
to 30.5°W and from latitude 62°N to 69°N shown in Fig. 6. The triangular elements 
are aligned in such a way that one side has a fixed longitude and one side a fixed 
latitude. Each element spans 0.25° in longitude and 0.125° in latitude. Thus we have 
in total 9184 elements and 4731 nodal points. The size of the triangular elements 
varies from  90.1 km2  in the south to 68.8 km2 furthest north. The land elements 
describing Iceland are shown in Fig. 6. Greenland also extends into the north-west 
corner of  this area, but has not been marked  since the temperature of the sea in fact 
prevents the capelin from entering that part of the area.  
 
In the comfort function we ignore the effect of food density by setting 2 0α = in 
equation (4). Thus the vector ( )i tq  in equation (2) only depends on the ratio 

1 3( ) ( )t tα α . We set α3 = 0 for the first 80 days and thereafter 
 

1 3

1 if 80 13024
1 if 130 1821920

t

t
α α

⎧ ≤ <⎪= ⎨
≤ <⎪⎩

                                                                    (28) 

 
The preferred temperature range [ ]1 2,T T  in equation (5) varies from [0.5,4.0] degrees 
on October 1 to [3.0,7.5] on April 1, the end values increasing linearly in time 
throughout this period. This is based on various field observations as described more 
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fully in Magnússon et al. (in press). The temperature fields for the ocean around 
Iceland are the same as constructed in in Dereksdóttir et al. (2003). 
 
The radius of alignment, ρ ,  is set equal to 10 km. Since typical lengths of sides in 
the triangular elements are 12-16 km this implies that the circle of alignment will 
always extend into neighbour elements as shown in Fig. 3, and that some particles 
within that circle will in general not be counted for. 
 
The weight-factor ( )i tβ  in equation (2) is set equal to 0.9 for all particles at all times. 
The noise in the direction is uniform around the angle ( )1 ( ) ( ) ( ) ( )i i i it t t tβ β− +p q  
with a total range of  80η = °  (i.e. we do not implement the “directional noise”).  
 
The speed ( )iv t  changes with time as follows: it is constant for the first 80 days, 5 
km/day, then increasing rapidly to 25 km/day during the following 50 days, and 
remaining at that value after that according to the expression 
  

( ) ( )3

3

80
min 5 20 ,25

50
t

v t
⎛ ⎞−

= + ⋅⎜ ⎟⎜ ⎟
⎝ ⎠

                                                                      (29) 

 
The hypothesis underlying this assumed increase is that the speed is related to the 
stage of maturity (i.e. roe content), which is increasing while the capelin are migrating 
as described more fully in Dereksdóttir et al. (2003). There is no noise included with 
the speed. 
 
In order to include the effect of carrying sea currents we use the same hypothetical 
current field that is constructed in Dereksdóttir et al. (2003), which is meant to reflect 
the effects of the real currents around Iceland based on the information currently 
available (see Fig. 7). Note that the coastal current circulates Iceland in a clockwise 
direction. The speed of the hypothetical current is in the interval [0.75, 15] km/day 
and only varies with approximate distance from the shore. 
 
The time step t∆  is set at 0.1 days which implies that at the maximum speed of  25 
km/day it takes the particle approximately 5 time steps to traverse each element. The 
number of particles is 1096 and at the start of  the simulation at October 1 they are 
distributed over an area north-west of Iceland, as shown in Fig. 6, similar to the one 
used in the simulations in Dereksdóttir et al. (2003). The spawning area is specified 
south of Iceland as shown in Fig. 8. That figure also shows the gradient directions of 
the corresponding potential field obtained by solving equations (8) and (9). 
 
Some snapshots of  the result of a typical simulation run for the cold year 1994-1995 
are shown in Fig. 9. The qualitative agreement with the results presented in 
Dereksdóttir et al. (2003) is good until February 1 but after that there is a discrepancy, 
mainly due the fact that a number of particles seem to get stuck in a couple of 
elements south-east off Iceland. The inclusion of the effect of a prescribed preferred 
density on the direction on movement, as described above, should however alleviate 
this type of problem. Snapshots of  the result of a typical simulation run for the warm 
year 1994-1995, when a significant fraction of the capelin migrate down the west 
coast, are shown in Fig. 9. In this case the qualitative agreement with the results 
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presented in Dereksdóttir et al. (2003) is again good except that the distribution is 
more easterly on April 1. 
 
 
Table 1: The relative distribution (%) in each of the sub-areas at four selected times 
for two simulations scenarios, the cold year 1994-95 and the warm year 2000-01. 
Average values of 10 independent runs with the same initial distribution. 
 
Sub- 
area 

Initial 
distrib. 

November 1 
1994         2000 

January 1 
1995         2001 

February 15 
1995        2001 

April 1 
1995          2001

1 0 0 0 0 0 0 3.1 0 0.6 
2 7.1 1.5 0 8.6 18.0 0.4 23.7 0 0.9 
3 22.8 10.1 0.1 14.4 23.7 0 0 0 0 
4 0 0 0 0 0 9.8 4.8 5.0 3.0 
5 0 7.0 0 9.7 6.8 1.1 0 0.2 0 
6 0 2.0 0 46.0 21.1 0.6 0.4 0.3 0 
7 0 0 0 0.3 0.2 0 0 0 0 
8 0 0 0 0 0 7.7 0.5 0.2 0 
9 0 0 0 0 0 3.3 50.1 3.6 58.8 

10 0 0 0 0 0 0 0 7.1 19.3 
11 70.1 75.8 97.6 0.3 0.5 0 0 0 0 
12 0 2.7 0.4 20.6 24.0 0 0 0 0 
13 0 0 0 0 0 77.1 17.4 83.6 17.3 

 
 
Table 2.  The relative distribution (%) in each of the sub-areas at four selected times 
for two simulations scenarios, the cold year 1994-95 and the warm year 2000-01. 
Average values of 20 independent runs with the same initial distribution. 
 

Sub- 
area 

Initial 
distrib. 

November 1 
1994         2000 

January 1 
1995         2001 

February 15 
1995        2001 

April 1 
1995          2001

1 0 0 0 0 0 0 2.0 0 0.5 
2 7.1 1.2 0 7.3 12.5 0.3 17.0 0 0.8 
3 22.8 10.1 0.1 12.8 20.4 0 0 0 0 
4 0 0 0 0 0 9 4.0 5.2 2.6 
5 0 5.8 0 7.6 7.5 0.7 0 0.2 0 
6 0 2.6 0 49.9 26.7 0.5 0.3 0.2 0 
7 0 0 0 0.8 0.1 0 0 0 0 
8 0 0 0 0 0 6 0.4 0.1 0 
9 0 0 0 0 0 2.8 55.4 3.1 59.1 

10 0 0 0 0 0 0 0 5.8 22.1 
11 70.1 76.0 97.9 0.4 0.8 0 0 0 0 
12 0 3.3 0.4 21.1 28.3 0 0 0 0 
13 0 0 0 0 0 80.6 20.9 85.3 14.9 
14 0 0 0 0 0 0 0 0 0 
15 0 0.5 1.5 0 3.6 0 0 0 0 
16 0 0.5 0.1 0 0 0 0 0 0 
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In order to make a more quantitative comparison we show in Table 1 the average 
distribution for 10 independent simulation runs over 16 subareas around Iceland  
They correspond to the standard division, shown in Figure 12, that is based on the 
oceanographical, hydrographical and biological characteristics of the region (see 
Vilhjálmsson et al., 1997). Table 2 shows the same results for 20 independent runs. 
Comparing these latter results with those given in Dereksdóttir et al. (2003) the main 
discrepancy  for 1994-1995 is that a larger fraction extends north into compartment 11 
on November 1 (76.0% instead of 52.7%) and nort-east into compartment 12 on 
January 1 (21.1% instead 6.8%). By February 15 the majority   (80.6%) has gone into 
compartment 13 instead of the majority (81.5%) being in compartment 9 and remains 
there on April 1 instead of moving into compartment 10. This discrepancy is mainly 
due to the large number of particles getting stuck in a few elements south-east of 
Iceland, as already mentioned. For 2000-2001 the results are very similar on 
November 1 but on January 1 a larger fraction has reached both west into 
compartment 2 (12.5% instead of 0.0%) and east into compartment 12 (28.3% instead 
of 2.6%). On February 15 there is still a larger fraction in compartment 2 (17.0% 
instead of 13.5%) and also a larger fraction that has reached compartment 13 (20.9% 
instead of 2.9%)  and on April 1 the majority (59.1%) is in compartment 9 rather than 
the majority (79.9%) being in the more westerly compartment 10. Table 3 showing  
 
 
Table 3.  The relative distribution (%) in each of the sub-areas at four selected times 
for the simulations scenario in 2000-01. In the first variation the range of noise is 
reduced from 80° to 20° and in the second variation the number of particles is reduced 
from 1096 to 283. Average values of 10 independent runs with the same initial 
distribution. 
 

Sub- 
area 

Initial 
distrib. 

November 1 2000
Noise      #part. 
 10°         283 

January 1 2001 
Noise      #part. 
 10°         283 

February 15 2001 
Noise      #part. 
 10°         283 

April 1 2001 
Noise      #part. 
 10°         283 

1 0 0 0 0 0 7.8 0 0 0.8 
2 7.1 0 0 24.9 2.8 35.9 11.6 0 1.0 
3 22.8 0.2 0.1 13.3 35.8 0 0 0 0 
4 0 0 0 0 0 0.9 5.4 0.9 3.5 
5 0 0 0 4 13.9 0 0 0 0 
6 0 0 0 27.6 35.8 0 0.8 0 0 
7 0 0 0 0.4 0 0 0 0 0 
8 0 0 0 0 0 0 1 0 0 
9 0 0 0 0 0 40.5 58.3 35.4 32.8 

10 0 0 0 0 0 0.1 0 49.8 52.0 
11 70.1 94.9 99.5 0.9 2.5 0 0 0 0 
12 0 0.1 0 14.6 8.9 0 0 0 0 
13 0 0 0 0 0 14.9 22.9 13.9 9.9 

 
 
corresponding results for 2000-01 when the noise range has been reduced on one hand 
and the number of particles on the other, however, serves as a remainder of the fact 
that the results are quite sensitive to such changes. We note for example that with both 
these changes the majority of particles ends up in compartment 10 on April 1 (cf. also 
Figure 11). But we also note on that while the variation between individual runs is  
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Table 4. Coefficient of variation (the ratio of the standard deviation and the average 
value) of  the relative distribution in each of the sub-areas at February 15 for six 
different simulation scenarios, estimated from the indicated number of runs 
. 

Year 1995 2001 1995 2001 2001 2001 
#particles 1096 1096 1096 1096 1096 283 

#runs 10 10 30 30 10 10 
Noiserange 80° 80° 80° 80° 20° 80° 

Subarea  
1 0 1.40 0 1.69 1.20 0 
2 0.86 0.81 1.04 0.97 0.51 0.42 
3 0 0 0 0 0 0 
4 0.43 1.00 0.64 1.02 1.16 0.48 
5 0.78 0.03 1.06 0.05 0 0 
6 0.75 0.91 0.83 1.02 0 0.70 
7 0 0 0 0 0 0 
8 0.51 1.38 0.64 1.30 0 0.58 
9 0.36 0.36 0.45 0.28 0.42 0.07 

 
 
considerable as can be deduced from the coefficient of variation values for February 
15 presented in Table 4, the agreement between the results based on only 10 runs with 
those based on 20 runs is fairly good. Also note from table 4 that the coefficients of 
variation are similar in both cases. These are coefficients of variation for individual 
runs. The coefficient of variation for the average value will be smaller by a factor of 

10  and 20  respectively.   
 
 
Table 5.  The relative distribution (%) taking a westerly route to the spawning 
grounds, an easterly route, and remaining in the north for six different simulation 
scenarios. Average values for the number of runs indicated. The value in parenthesis 
is the standard deviation  estimated from the same runs.  
 

Year 1994-95 2000-01 1994-95 2000-01 2000-01 2000-01 
#particles 1096 1096 1096 1096 1096 283 

#runs 10 10 20 20 10 10 
Noiserange 80° 80° 80° 80° 20° 80° 

Route  
West 0.4(0.4) 27.4(23.4) 0.3(0.3) 19.5(19.8) 43.7(21.4) 12.3(4.9) 
East 94.1(2.6) 68.4(24.6) 94.2(3.8) 77.0(21.4) 55.4(21.9) 83.0(4.9) 
North 5.5(2.4) 4.2(4.2) 5.5(3.7) 3.5(3.6) 0.9(1.0) 4.7(2.3) 

 
 
In table 5 we show the fraction of particles taking the easterly and westerly route 
respectively to the spawning region. Again comparing the average values for 20 
simulation runs with the results given in Dereksdóttir et al. (2003) we have that in the 
cold year 1994-95 94% take the easterly route instead of 93%, less than 1% take the 
westerly route instead of 2%, and 5% remain in the north in both cases. In the warm 
year 2000-01 77% take the easterly route instead of 80%, 19% take the westerly route 
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in both cases, and 4% stay in the north compared with 1%. Here it is also noteworthy 
that when the range of noise is reduced a smaller fraction (55%) takes the easterly 
route, whereas when the number of particles is reduced a larger fraction (83%) takes 
the easterly route (cf. Figure 11). 
 
Discussion 
 
While this simulation example demonstrates the feasibility of adopting the modelling 
approach presented above, it remains to carry out much more extensive 
experimentation in order to establish the sensitivity of the results to changes in 
parameter values. Following that it is obviously of interest to see how the parameters 
can be adjusted to obtain as good fit as possible with real acoustic measurements of 
capelin. From the point of view of computational efficiency it is further important to 
establish how many particles and how many simulation runs are needed in order to 
obtain stable results. The results presented above indicate that 1000 particles and 20 
independent runs should prove sufficient. 
 
As noted in the introduction, the approach of the triangularization of the simulation 
region introduced in this work has a number of advantages. In particular, it allows us 
to share data files and make effective comparisons with continuous migration models. 
As demonstrated above this facilitates  comparisons of the results from the particle 
model with results obtained by the Kolmogorov continuous migration model 
described in Magnússon et al. (2004). In this respect it should be kept in mind that the 
output of the Kolmogorov model is the probability density of a fish being located at a 
given position at a given time subject to some initial probability distribution, whereas 
the output of particle model presented above is the actual position at a given time. 
Thus in order to obtain comparable results one has to make repeated runs of the 
stochastic particle model.  
 
It  is also of interest to compare the results of the particle model with the results of a 
continuous dynamic models like the one presented in Sigurdsson et al. (2002) where 
the output is the actual density of fish. It is e.g. of interest to establish how the particle 
model and the continuous model  compare in terms of computational efficiency.  
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Figure 1. Probability density function of the random perturbation in direction angle. 
 
 
 

 
Figure 2. Local coordinates of triangular element. 
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Figure 3. Circle of alignment around point P. Particles within the shaded area will 
affect the direction of a particle at P. 
 
 
 

 
 
Figure 4. Relationship between local and global directions of motion as particle 
moves from one element into another. 
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Figure 5. Relationship between local and global directions of motion as particle is 
reflected from land boundary. 
 
 
 

             
 
 
Figure 6. Area of simulation. The dots North-West of Iceland show the initial 
distribution of particles on October 1 
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Figure 7. Hypothetical field of oceanic currents around Iceland. The speed of the 
current is given by the length of the arrows, i.e. darker colours indicate greater speed 
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Figure 8. Iceland and the field lines for the attraction force generated by a spawning 
area on the south coast
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                  November 1  1994                                                           February  15  1995 

       
 
                  January 1  1995                                                                 March 1  1995 

       
 
                    February 1  1995                                                             April 1  1995 

       
 
Figure 9. Snapshots of results from a simulation run with 1096 particles showing the 
migration of capelin  from October 1  1994 until April 1 1995. The initial distribution 
on October 1 is shown in Figure 6. 
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                    November 1  2000                                                         February 15  2001 

      
 
                         January 1  2001                                                            March 1  2001                                               

      
 
                     February 1  2001                                                      April 1  2001 

      
 
Figure 10. Snapshots of results from a simulation run with 1096 particles showing the 
migration of capelin  from October 1  2000 until April 1 2001. The initial distribution 
on October 1 is shown in Figure 6. 
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                     February 15  2001                                                        April 1  2001 

       
 
Figure 11. Two snapshots of results from a simulation run with 283 particles showing 
the migration of capelin  from October 1  2000 until April 1 2001. The initial 
distribution on October 1 is shown in Figure 6. 
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Figure 12.  The sub-areas used in the transition matrix migration model for the waters 
around Iceland 
 


