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Abstract

The goals of this article are as follows: (1) To determine the irreducible components of the affine
varieties Rep

d
(Λ) parametrizing the representations with dimension vector d, where Λ traces a major

class of finite dimensional algebras; (2) To generically describe the representations encoded by the
components. The target class consists of those truncated path algebras Λ over an algebraically closed
field K which are based on a quiver Q without oriented cycles. The main result characterizes the
irreducible components of Rep

d
(Λ) in representation-theoretic terms and provides a means of listing

them from quiver and Loewy length of Λ. Combined with existing theory, this classification moreover
yields an array of generic features of the modules parametrized by the components, such as generic
minimal projective presentations, generic sub- and quotient modules, etc. Our second principal result
pins down the generic socle series of the modules in the components; it does so for more general Λ,
in fact.

The information on truncated path algebras of acyclic quivers supplements the theory available
in the special case where Λ = KQ, filling in generic data on the d-dimensional representations of Q
with any fixed Loewy length.

1 Introduction and main results

Our purpose is to promote the development and application of strategies for organizing the representation
theory of basic finite dimensional algebras Λ on a generic level. This approach to representation theory
was initiated by Kac and Schofield in the hereditary case, that is, when Λ = KQ is a path algebra;
see [16, 17] and [20]. While it is obvious that, for hereditary Λ, the parametrizing varieties Repd(Λ) of
the modules with fixed dimension vector d are full affine spaces, on moving beyond the hereditary case,
the initial task is to identify the irreducible components of Repd(Λ) in a representation-theoretically
useful format. Supporting theory was developed, and numerous special cases of this task were resolved,
in [7, 18, 6, 2, 9, 10, 21, 19, 4, 1], for instance. We refer to [15] for a somewhat more detailed overview,
but mention that, up to [3] and [15], full solutions were available only for some classes of tame algebras
with fully classified finite dimensional indecomposable representations. In essence, we are dealing with
varieties of matrices satisfying certain relations, a problem of interest beyond the representation theory
of algebras; see, e.g., [8, 11, 12].

Our main result, stated below, addresses truncated path algebras, that is, algebras of the form Λ =
KQ/〈all paths of length L+ 1〉 for a quiver Q and a fixed positive integer L. Clearly, this class includes
the hereditary algebras and those with vanishing radical square. A brief discussion of the prominent place
held by the truncated path algebras in this connection can be found in [15].

The starting line of our present investigation is provided by the facts that, for any truncated path
algebra Λ and dimension vector d, all subvarieties of the form RepS of Repd(Λ) are irreducible, and
the irreducible components of Repd(Λ) are among the closures RepS (see [1]). Here RepS consists of
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those points in Repd(Λ) which encode modules with a given radical layering S. Recall that the radical
layering of a Λ-module M is the sequence S(M) =

(
J lM/J l+1M

)
0≤l≤L

, where J is the Jacobson radical

of Λ; we assume that JL+1 = 0. The socle layering S∗(M) is defined dually. Both of the isomorphism
invariants S(M) and S∗(M) of M are semisimple sequences having the same dimension vector as M , i.e.,
they are sequences of the form S = (S0, S1, . . . , SL) whose entries Sl are semisimple modules such that
dim S :=

∑
0≤l≤L dim Sl equals dimM . In defining RepS as above, we prioritize radical layerings and

identify isomorphic semisimple modules.

In the truncated case, our task is thus reduced to pinning down the semisimple sequences S for which
RepS is maximal among the irreducible subvarieties of Repd(Λ). To sift them out of the set Seq(d) of
all semisimple sequences with dimension vector d, our chief tool is the following upper semicontinuous
map

Θ : Repd(Λ) → Seq(d)× Seq(d), x 7→
(
S(Mx), S∗(Mx)

)
,

where Seq(d)×Seq(d) is partially ordered by the componentwise dominance order – see under Conven-
tions below – and Mx is the Λ-module corresponding to x. The image of Θ is denoted by rad-soc(d). Due
to semicontinuity of Θ, each minimal pair (S, S∗) in rad-soc(d) gives rise to an irreducible component
RepS of Repd(Λ). Yet, for arbitrary truncated Λ, the map Θ has blind spots. Indeed, [15, Example 4.8]
shows that not all irreducible components of Repd(Λ) correspond to minimal elements of rad-soc(d) in
general. In important special cases, Θ does detect all irreducible components however. By [15], this is
true when Λ is local truncated; in that situation, the minimal pairs in rad-soc(d) may be recognized by
mere inspection of the sequence of consecutive dimensions

(
dim Sl

)
0≤l≤L

. Here we tackle – with different

methods – the quivers located at the opposite end of the spectrum, namely the acyclic ones.

Main Theorem. Let Λ be a truncated path algebra based on an acyclic quiver Q, and let d be a dimension
vector. Then the following conditions are equivalent for any semisimple sequence S with dim S = d:

(1) The closure of RepS is an irreducible component of Repd(Λ).

(2) S occurs as the first entry of a minimal pair (S, S∗) in rad-soc(d).

The situation is symmetric in S and S∗: Whenever (S, S∗) is a minimal element of rad-soc(d), then
S∗ is the generic socle layering of Rep S; conversely, S∗ determines the generic radical layering S of the
modules with socle layering S∗.

The Main Theorem is proved in Section 6. It translates into an analogous statement for the projective
parametrizing varieties GRASSd(Λ) of Grassmann type (cf. [15, Proposition 2.1]). In this connection
we also point to [5], where the irreducible components of quiver Grassmannians over Dynkin quivers are
addressed.

Since each irreducible component of Repd(Λ) is of the form RepS, the theorem allows for an explicit
classification of the components of Repd(Λ) from Q, L and d. To expedite the process of filtering the
minimal elements out of rad-soc(d), we wish to minimize the number of comparisons required: For any
S ∈ Seq(d), there is a unique minimal socle layering attained on the modules in RepS, namely the
generic one. This layering is readily obtained from S as follows. To our knowledge, a description of
generic socles had previously not even been available in the hereditary case.

Theorem. (See Theorem 3.8 for a full statement.) Let Λ be a truncated path algebra based on an arbitrary
quiver Q (not necessarily acyclic), A the transpose of the adjacency matrix of Q. For any semisimple
sequence S = (S0, . . . , SL), the generic socle S∗0 of the modules in RepS is given by the dimension vector

sup

{ ∑

L−m≤l≤L

(
dim Sl − dim Sl+1 ·A

) ∣∣∣∣ 0 ≤ m ≤ L

}
;

here SL+1 = 0, and the supremum is taken with respect to the componentwise partial order on Z|Q0|.
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The higher entries of the generic socle layering S∗ = (S∗0, . . . , S
∗
L) of the modules in RepS may be derived

recursively from S∗0.

In the special case of a hereditary algebra Λ = KQ, we first determine the unique generic radical layering S
for Repd(Λ) directly from d (Corollary 4.2). Then we exploit this information towards a broader generic
analysis of the d-dimensional representations of Q. By its nature, Kac’s and Schofield’s seminal work on
path algebras limits its focus to those of maximal Loewy length L(d). Our results on truncations KQ/I
provide an extension towards a generic understanding of the d-dimensional KQ-modules of arbitrary
Loewy length < L(d). Indeed, excising the open subvariety of Repd(KQ) which encodes the modules of
Loewy length L(d) leaves us with a copy of the variety Repd

(
KQ/〈L(d)− 1〉

)
, where 〈m〉 denotes the

ideal of KQ generated by all paths of length m. Iteration shifts the generic focus to Repd

(
KQ/〈m〉

)
for

successively smallerm. The results we sketched above thus provide access to the irreducible components of
the locally closed subvariety of Repd(KQ) representing the KQ-modules of any Loewy length m < L(d),
as well as to generic properties of the corresponding representations. In exploring the components of the
truncated path algebras Repd

(
KQ/〈m〉

)
for decreasing values of m, we are thus, in effect, targeting the

generic behavior of successive classes of d-dimensional representations of Q, each step moving us to an
irreducible subvariety of Repd(KQ) that had been blended out in the previous steps (cf. Example 5.1).

Overview: In Section 2, we assemble foundational material on generic modules; this section addresses
arbitrary basic finite dimensional algebras, supplementing the general theory developed in [1]. It is only in
Section 3 that we specialize to truncated path algebras (based on arbitrary quivers), in order to (a) prepare
tools for the proof of the main result, and (b) provide the theoretical means for its effective application. In
particular, it is shown how, in the truncated case, the generic radical layering of an irreducible component
provides access to its generic modules, generic submodules and quotients (Corollaries 3.2, 3.4), as well as
to the generic socle layering (Theorem 3.8). In Section 4, we narrow the focus from the truncated to the
hereditary scenario, and in Section 5, we illustrate the theory with non-hereditary examples. Section 6,
finally, contains a proof of the Main Theorem.

Conventions and prerequisites : For our technique of graphing Λ-modules, we cite [1, Definition 3.9 and
subsequent examples]. Throughout, Λ is a basic finite dimensional algebra over an algebraically closed
field K, and Λ-mod (resp. mod-Λ) is the category of finitely generated left (resp. right) Λ-modules. By J
we denote the Jacobson radical of Λ; say JL+1 = 0. Without loss of generality, we assume that Λ = KQ/I
for some quiver Q and admissible ideal I ⊆ KQ. Products of paths in KQ are to be read from right to
left.

The set Q0 = {e1, . . . , en} of vertices of Q will be identified with a full set of primitive idempotents of
Λ. Hence, the simple left Λ-modules are Si = Λei/Jei, 1 ≤ i ≤ n, up to isomorphism. Unless we want
to distinguish among different embeddings, we systematically identify isomorphic semisimple modules; in
other words, we identify finitely generated semisimples with their dimension vectors.

Let S be a semisimple sequence, that is, a sequence of the form S = (S0, S1, . . . , SL) such that each Sl
is a semisimple module, and set dim S =

∑
0≤l≤L dim Sl. When Sl = 0 for all l ≥ m + 1, we will also

write S in the clipped form (S0, . . . , Sm). In light of the mentioned identifications, the collection Seq(d)
of semisimple sequences with dimension vector d is a finite set. It is endowed with the following partial
order, dubbed the dominance order in [14]:

S ≤ S′ ⇐⇒
⊕

0≤j≤l

Sj ⊆
⊕

0≤j≤l

S′j for l ∈ {0, 1, . . . , L}.

Upper semicontinuity of the map Θ : Repd(Λ) → Seq(d)× Seq(d), x 7→
(
S(Mx), S∗(Mx)

)
, was proved

in [15, Observation 2.10].

For the sake of easy reference, we state a few basic facts regarding radical and socle layerings.

Lemma 1.1. Let M,N ∈ Λ-mod with dimM = dimN .
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• Duality: The radical and socle layerings are dual to each other, in the sense that

S(D(M)) =
(
D(S∗0(M)), · · · , D(S∗L(M)

)
and S∗(D(M)) =

(
D(S0(M)), · · · , D(SL(M)

)
,

where D denotes the duality HomK(−,K) : Λ-mod → mod-Λ.

• Radical layering: dim J lM = dim
⊕

l≤j≤L Sj(M); in particular

S(M) ≤ S(N) ⇐⇒ dim J lM ≥ dim J lN for all l ∈ {0, . . . , L}.

• Socle layering: socl M = annM J l+1 and dim socl M = dim
⊕

0≤j≤l S
∗
j (M); in particular,

S∗(M) ≤ S∗(N) ⇐⇒ dim socl M ≤ dim socl N for all l ∈ {0, . . . , L}.

• Connection: J lM ⊆ socL−l M , and hence
⊕

l≤j≤L Sj(M) ⊆
⊕

0≤j≤L−l S
∗
j (M).

A semisimple sequence S is called realizable if there exists a left Λ-module M with S(M) = S. The
following criterion was proved in [15, Criterion 3.2]. Here B denotes the adjacency matrix of Q, i.e., Bij

is the number of arrows from ei to ej , and P1(Sl) is the first radical layer of a projective cover of Sl.

Lemma 1.2. Realizability Criterion. For a semisimple sequence S = (S0, S1, . . . , SL) the following
conditions are equivalent:

• S is realizable.

• For each l ∈ {0, . . . , L− 1}, the two-term sequence (Sl, Sl+1) is realizable.

• dim Sl+1 ≤ dimP1(Sl) for l ∈ {1, . . . , L}, i.e., dim Sl+1 ≤ dim Sl ·B.

An element x of a Λ-module M is said to be normed if x = eix for some i. A top element of M is a
normed element in M \JM , and a full sequence of top elements of M is any generating set ofM consisting
of top elements which are K-linearly independent modulo JM .

Given any subset U of Repd(Λ), the modules corresponding to the points in U are called the modules
“in” U. When U is irreducible, the modules in U are said to generically have property (∗) in case all
modules in some dense open subset of U satisfy (∗). Radical layerings and socle layerings, for instance,
are generically constant on any irreducible subvariety of Repd(Λ). Hence it is meaningful to speak of
the generic radical and socle layerings of the irreducible components of Repd(Λ).

Acknowledgment. The authors wish to thank Eric Babson for numerous stimulating conversations on the
subject of components at MSRI. The first author was partially supported by an NSF grant while carrying
out this work. While in residence at MSRI, Berkeley, both authors were supported by NSF grant 0932078
000. The second author was also partially supported by NSF award DMS-1204733.

2 Skeleta and generic modules over arbitrary basic algebras Λ

The concepts of the title will play a key role in subsequent arguments. Subsections B and C are new.

2.A The basics in compressed form

We recall the following definitions from [1] and [14]. Let S = (S0, . . . , SL) be a semisimple sequence,
and P a projective cover of S0; in particular, dimP/JP = dim S0. Fix a full sequence z1, . . . , zt of top
elements of P , where t = dim S0; say zr = e(r)zr with e(r) ∈ {e1, . . . , en}, i.e., P =

⊕
1≤i≤t Λzr with
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Λzr ∼= Λe(r). Skeleta are subsets of the projective KQ-module P̂ =
⊕

1≤r≤t KQzr. A path of length l

in P̂ is any element of the form pzr, where p is a path of length l in KQ \ I with start(p) = e(r). In

particular, the canonical image in P of any path in P̂ is nonzero. We do not make any formal distinction
between the Λ- and the induced KQ-module structure of a left Λ-module, but rely on the context.

1. An (abstract) skeleton with layering S is a set σ consisting of paths in P̂ which satisfies the following
two conditions:

• It is closed under initial subpaths, i.e., whenever pzr ∈ σ, and q is an initial subpath of p
(meaning p = q′q for some path q′), the path qzr again belongs to σ.

• For each l ∈ {0, . . . , L}, the number of those paths of length l in σ which end in a particular
vertex ei coincides with the multiplicity of Si in the semisimple module Sl.

In particular, a skeleton σ with layering S includes the paths z1, . . . , zt of length zero in P̂ . Note
that the set of abstract skeleta with any fixed layering S is finite.

2. Suppose M ∈ Λ-mod. We call an abstract skeleton σ a skeleton of M in case M has a full sequence
m1, . . . ,mt of top elements with mr = e(r)mr such that

• {pmr | pzr ∈ σ} is a K-basis for M , and

• the layering of σ coincides with the radical layering S(M) of M .

Observe: For every M ∈ Λ-mod, the set of skeleta of M is non-empty. On the other hand, the set of all
skeleta of modules with a fixed dimension vector is finite.

The following is an excerpt of a result proved in [1, Theorem 4.3]; it is adapted to our present needs.
Let K0 be the smallest subfield of K such that Λ = KQ/I is defined over K0; the latter means that
K0Q contains generators for I. Moreover, let K0 be the algebraic closure of K0 in K. Clearly, K0

then has finite transcendence degree over the prime field of K. Any automorphism φ ∈ Gal(K:K0)
induces a ring automorphism KQ → KQ,

∑
i kipi 7→

∑
i φ(ki)pi, which maps I to I and thus lifts to

a ring automorphism of Λ; the latter, in turn, gives rise to a Morita self-equivalence of Λ-mod, sending
a module M to the module whose Λ-structure is that of M twisted by φ. We refer to such a Morita
equivalence as induced by Gal(K:K0). Further, we call an attribute of a module Gal(K:K0)-stable if
it is preserved by all Gal(K:K0)-induced self-equivalences of Λ-mod. Note that dimension vectors are
Gal(K:K0)-stable, for instance; obviously, so are all properties that are invariant under arbitrary Morita
equivalences.

Theorem-Definition 2.1. Generic skeleta, existence and uniqueness of generic modules. As-
sume that the field K has infinite transcendence degree over its prime field.

Whenever C is an irreducible component of Repd(Λ) with generic radical layering S and σ is a skeleton
of some module in C ∩RepS, all modules in a dense open subset of C have skeleton σ. In particular, it
makes sense to speak of the generic set of skeleta of the modules in C; it is the union of the sets of skeleta
of the modules in C ∩Rep S and is Gal(K:K0)-stable.

There exists a generic Λ-module G for C, meaning that

• G belongs to C and

• G has all Gal(K:K0)-stable generic properties of the modules in C.

Generic modules are unique in the following sense: Whenever G and G′ are generic for C, there is a
Gal(K:K0)-induced Morita equivalence Λ-mod → Λ-mod which takes the isomorphism class of G to that
of G′.
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For concrete illustrations of generic modules and generic skeleta see Section 4.B and Example 5.1.

Clearly, all Morita-invariant generic properties of the modules in C can be traced in any generic module
G. Beyond those: Given a decomposition of G into indecomposable direct summands, the collection of
dimension vectors of the summands of G is generic for C (see also [17] and [6]). The same is true for the
dimension vectors of the radical and socle layers of G.

2.B A crucial observation

In tackling the component problem, the following comments will allow us to assume without loss of
generality that our base field K has infinite transcendence degree over its prime field. We will make
this assumption whenever it is convenient to have generic objects G ∈ Λ-mod for the components at our
disposal.

Observation 2.2.

1. Passage to a base field of infinite transcendence degree over its prime field. Let K̂ be the algebraic
closure of a purely transcendental extension field K(Xα |α ∈ A) of K. Then Λ̂ := K̂ ⊗K Λ is an

algebra which has the same quiver (and hence the same dimension vectors) as Λ; indeed, Λ̂ ∼= K̂Q/Î,

where Î is the ideal of K̂Q generated by I; in particular Λ̂ is truncated whenever Λ is. The irreducible
components of Repd(Λ) are in natural inclusion-preserving one-to-one correspondence with those

of Repd(Λ̂). To see this, let Γ, resp. Γ̂, be the coordinate ring of Repd(Λ), resp. of Repd(Λ̂).

The map Spec Γ → Spec Γ̂, P 7→ P̂ = K̂ ⊗K P is a well-defined inclusion-preserving injection;
indeed, the tensor product R1⊗K R2 of any two zerodivisor-free commutative algebras R1, R2 over
an algebraically closed field K is in turn a domain (see, e.g., [22, Ch.III, Corollary 1 to Theorem
40]). This map restricts to a bijection on the set of minimal primes: Namely, if P1, . . . ,Pm are the

minimal primes in Spec Γ, then (P̂1)
r1 · · · (P̂m)rm = 0 for suitable ri ≥ 0, whence every minimal

prime Q ∈ Spec Γ̂ contains one of the P̂i; equality Q = P̂i follows.

2. Now suppose that C is an irreducible component of Repd(Λ), and let Ĝ ∈ Λ̂-mod be a generic

module for the corresponding irreducible component Ĉ of Repd(Λ̂). Generically, the modules in C

then have all those properties of Ĝ which are reflected by the exact and faithful functor

K̂ ⊗K − : Λ-mod → Λ̂-mod.

In particular, this pertains to dimension vectors, as well as skeleta and direct sum decompositions.
Crucial in the present context: The dimension vectors of the generic radical and socle layers of C
and Ĉ coincide.

2.C Generic modules under duality

Again, we let Λ = KQ/I be an arbitrary basic algebra. Since, in this subsection, we simultaneously
consider left and right Λ-modules, we will write Repd(Λ-mod) for Repd(Λ), and Repd(mod-Λ) for the
analogous variety parametrizing the right Λ-modules with dimension vector d to emphasize sides. The
duality D = HomK(−,K) : Λ-mod ↔ mod-Λ clearly gives rise to an isomorphism

D̂ : Repd(Λ-mod) −→ Repd(mod-Λ)), (xα)α∈Q1 7→ (xt
α)α∈Q1 ,

where xt
α is the transpose of xα. In particular, D̂ induces a bijection between the irreducible components

of the two varieties. Moreover, one observes that every automorphism φ ∈ Gal(K:K0) induces Morita
self-equivalences Φleft of Λ-mod and Φright of mod-Λ such that D ◦ Φleft = Φright ◦D. Verification of the
following fact is routine.

Observation 2.3. Let C be an irreducible component of Repd(Λ-mod). Then a left Λ-module G is

generic for Repd(Λ-mod) if and only if D(G) is generic for D̂(C).
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3 Generic modules over truncated path algebras

Throughout this section, Λ stands for a truncated path algebra based on an arbitrary quiver Q.

3.A Projective presentations, submodules and quotients of generic modules

Theorem 2.1 has a useful supplement in the present setting. Namely, it permits us to pin down generic
minimal projective presentations of the modules in Rep S.

First, we observe that the smallest subfield K0 of K over which Λ is defined is the prime field of K.
Moreover, involvement of the projectiveKQ-module P̂ in the definition of a skeleton becomes superfluous;
in fact, P̂ may be replaced by the projective Λ-module P . The bonus of the truncated setting responsible
for this simplification is the path length grading of Λ; it leads to an unambiguous notion of length of
nonzero “paths” of the form pzr ∈ P =

⊕
1≤r≤tΛzr, where p is a path in Q.

For convenience, we will assume that the fieldK has infinite transcendence degree overK0; this guarantees
that we can locate generic modules for the varieties RepS within the category Λ-mod. In light of
Observation 2.2, this assumption will not limit the applicability of our conclusions towards identifying
the irreducible components of the varieties Repd(Λ); nor will any of the considered generic properties of
the modules in the components be affected by it.

As in Subsection 2.A, we fix a realizable semisimple sequence S and a distinguished projective cover
P =

⊕
1≤r≤t Λzr of S0. As explained above, we may assume skeleta with layering S to live in P . Given

a skeleton σ with layering S, a path q = qzs ∈ P is called σ-critical if it fails to belong to σ, while
every proper initial subpath q′ = q′zs belongs to σ. Moreover, for any σ-critical path q, let σ(q) be the
collection of all those paths p = pzr in σ which are at least as long as q and terminate in the same vertex
as q.

Theorem 3.1. Generic modules for Rep S. [1, Theorem 5.12] Let Λ be a truncated path algebra, and
suppose that the base field K has infinite transcendence degree over its prime field K0. Moreover, let S
be a realizable semisimple sequence.

If σ is any skeleton with layering S, then the modules in RepS generically have skeleton σ, and the generic
modules for RepS are (up to Gal(K:K0)-induced self-equivalences of Λ-mod) determined by minimal
projective presentations of the following format: P/R(σ), where P =

⊕
1≤r≤t Λzr is the distinguished

projective cover of S0, and

R(σ) =
∑

q σ-critical

Λ

(
q−

∑

p∈σ(q)

xq,p p

)

for some family
(
xq,p

)
of scalars algebraically independent over K0.

Replacing
(
xq,p

)
in this presentation by an arbitrary family of scalars in K results in a module in RepS

with skeleton σ, and conversely, every module with skeleton σ is obtained in this way.

The following consequences of Theorem 3.1 are new. Apart from being of interest in their own right,
they set the stage for inductive arguments. Given any module N ∈ Λ-mod, we call a submodule M
layer-stably embedded in N in case M ∩ J lN = J lM for all l ≥ 0; the latter condition means that,
canonically, Sl(M) ⊆ Sl(N).

Corollary 3.2. Submodules and quotients of generic modules. Let Λ be a truncated path algebra,
S = (S0, . . . , SL) a realizable semisimple sequence, and G ∈ Λ-mod a generic module for RepS.

(a) If U is a submodule of G which is layer-stably embedded in some JmG, then U is a generic module
for Rep S(U). In particular: JmG is a generic module for Rep (Sm, . . . , SL, 0, . . . , 0) whenever
0 ≤ m ≤ L.
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(b) Whenever 0 < m ≤ L, the quotient G/JmG of G is a generic module for

Rep
(
S0, . . . , Sm−1, 0, . . . , 0

)
.

Proof. (a) In a preliminary step, we verify the special case where U = JmG. In this case, S(U) =(
Sm, . . . , SL, 0, . . . , 0

)
. We set S′ = S(U).

Fix a projective cover P =
⊕

1≤r≤t Λzr of S0 and a projective cover P ′ =
⊕

1≤r≤uΛz
′
r of Sm. Moreover,

let σ =
⊔

0≤l≤L σl ⊆ P be a skeleton of G such that G has a presentation as specified in Theorem 3.1
relative to σ; here σl denotes the set of all paths of length l in σ. Set σ′ =

⊔
m≤l≤L σl, and identify the

paths in σm with the distinguished top elements z′1, . . . , z
′
u of P ′. Under this identification, we find σ′

to be a skeleton of JmG. Since Λ is a truncated path algebra, the σ′-critical paths in P ′ are then in an
obvious one-to-one correspondence with those σ-critical paths that have length ≥ m + 1: Indeed, given
any σ-critical path qzs of length > m, replace its initial subpath of length m by the appropriate z′j (any
such initial subpath belongs to σm by the definition of criticality) to arrive at a σ′-critical path q′z′j ; it is
routine to check that this yields a bijection as stated. Hence the description of G in Theorem 3.1 shows
JmG to be generic for S′; the role played by σ in the considered presentation of G is taken over by the
skeleton σ′ with layering S′. This proves our claim in case U = JmG.

To complete the proof of (a), it thus suffices to show the following: Any layer-stably embedded submodule
U of G is generic for S(U). Again, let z1, . . . , zt be the fixed full sequence of top elements of the projective
cover P of S0 which provides the coordinate system for skeleta with layering S. We may assume that
dimU/JU = u ≥ 1, and that the distinguished projective cover Q of S0(U), on which we base the
skeleta with layering S(U), is of the form Q =

⊕
1≤r≤uΛzr; this assumption is justified by the inclusion

S0(U) ⊆ S0. Pick any skeleton σ(U) ⊆ Q of U ; say σ(U) =
⊔

0≤l≤L σl(U), where σl(U) is the set of paths
of length l in σ(U). We embed σ(U) into a skeleton σ of G as follows: In light of S1(U) ⊆ S1, we may
supplement σ1(U) to a K-basis consisting of paths of length 1 in P . Moreover, since U is a submodule of
G such that JU/J2U canonically embeds into JG/J2G = S1, we may arrange for the paths σ1 \ σ1(U)
to all start in one of the top elements zu+1, . . . , zt of P . Invoking the facts that S2(U) ⊆ S2 and U is
closed under multiplication by paths, we may supplement σ2(U) to a basis σ2 for S2 such that each path
in σ2 \σ2(U) extends one of the paths in σ1 \σ1(U); in particular each path in σ2 \σ2(U) starts in one of
the vertices zu+1, . . . , zt. Proceeding recursively, we thus arrive at a skeleton σ of G such that σ \ σ(U)
consists of paths in

⊕
u+1≤r≤t Λzr. In this situation, the σ(U)-critical paths are precisely those σ-critical

paths in P which start in one of the top elements z1, . . . , zu.

By the uniqueness statement of Theorem 2.1, G has a projective presentation P/R(σ), as described in
Theorem 3.1, based on the skeleton σ we just constructed. Since the residue classes pzr of the pzr ∈ σ
form a basis for G, and the classes represented by the pzr in σ(U) generate U , we conclude that, for any
σ(U)-critical path qzs, the set σ(qzs) is contained in σ(U). Thus Theorem 3.1 exhibits U as generic for
Rep S(U) in the present situation.

Part (b) is proved analogously.

Part (b) of Corollary 3.2 cannot be upgraded to a level matching part (a): If G is as in the corollary and
U ⊆ JmG is layer-stably embedded in JmG, then G/U need not be generic for the radical layering of
G/U . For instance:

Example 3.3. Let Λ = KQ be the Kronecker algebra, i.e., Q is the quiver with two vertices, e1 and
e2 say, and two arrows α1, α2 from e1 to e2. Then G = Λe1 is generic for S = (S1, S

2
2), and U = Λα2

is layer-stably embedded in JG. However, G/U fails to be generic for S′ = S(G/U) = (S1, S2); indeed,
whenever G′ is generic for S′, we have α2G

′ 6= 0.

On the other hand, Corollary 3.2(a) yields the generic property for further quotients of a generic module
G by way of the duality of Section 2.D.

Corollary 3.4. Duality and socle quotients.
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(a) Let S = (S0, . . . , SL) be any semisimple sequence in Λ-mod, G a generic module for RepS,
and S∗ = S∗(G). Then the generic socle layering (resp. the generic radical layering) of the

modules in D̂(Rep S) is the semisimple sequence D(S) =
(
D(S0), . . . , D(SL)

)
(resp. D(S∗) =(

D(S∗0), . . . , D(S∗L)
)
). Moreover, G/ socG is a generic module for Rep S′, where S′ = S(G/ socG).

(b) Let C = RepS be an irreducible component of Repd(Λ) = Repd(Λ-mod) and S∗ the generic socle

layering of the modules in C. Then the irreducible component D̂(C) of Repd(mod-Λ) is the closure
in Repd(mod-Λ) of the subvariety consisting of the modules with radical layering D(S∗).

Proof. (a) In light of Lemmas 1.1 and 2.3, we obtain: G/ socG is generic for Rep S′ if and only if
D(G/ socG) ∼= D(G)J is generic for Rep

(
S(D(G)J)

)
. Since the generic property of the module D(G)J

for its radical layering was shown in Corollary 3.2(a), the first claim follows. Part (b) is immediate from
the cited lemmas.

The generic projective presentations of the modules in RepS exhibited in Theorem 3.1 permit us, more-
over, to compute the generic format of endomorphisms of the modules in RepS. In particular, this yields
the generic dimension of endomorphism rings.

Corollary 3.5. Generic endomorphism rings. Let S be a realizable semisimple sequence with dimen-
sion vector d over a truncated path algebra Λ. The generic dimension of EndΛ(M) for M in RepS may
be determined from S, Q, and the Loewy length of Λ through a system of homogeneous linear equations.

Proof. We refer to the notation of Theorem 3.1. In particular, we let σ be a skeleton with layering S,
and use the generic form of the minimal projective presentations provided by the theorem. Clearly any
endomorphism φ of P/R(σ) is completely determined by the (unique) scalars arising in the equations
φ(zj) =

∑
u∈σ k j, u u (†). Suppose moreover that, for any path p̃ ∈ KQ \ I and u ∈ σ, the product

p̃ u expands in the form p̃ u =
∑

v∈σ c(p̃, u, v) v (‡) with c(p̃, u, v) ∈ K. That φ be an endomorphism of
P/R(σ) is equivalent to the following equalities:

q φ(zs) =
∑

pzr∈σ(qzs)

xqzs, pzr p φ(zr) for all σ-critical paths qzs.

Expanding both sides of these equalities by first inserting (†), then following with (‡), one obtains K-
linear combinations of the paths in σ on either side. Comparing coefficients of these basis expansions
results in a system of linear equations for the decisive scalars k j, u.

3.B Generic socle series for RepS

In order to effectively apply the Main Theorem, one needs to determine the generic socle series S∗ for
each of the varieties RepS. Upper semicontinuity of the map Repd(Λ) → Seq(d), x 7→ S∗(Mx), implies
that S∗ is the unique smallest semisimple sequence with (S, S∗) ∈ rad-soc(d).

For any M ∈ Λ-mod, we write E1(M) = soc(E(M)/M), where E(M) is an injective envelope of M . If
M is semisimple, this socle is transparently encoded in the quiver Q. Indeed, let A be the transpose of
the adjacency matrix of Q, i.e., Aij is the number of arrows from ej to ei. Then, given any semisimple
module T , the corresponding semisimple E1(T ) is determined by its dimension vector

dimE1(T ) = dimT ·A.

As we identify isomorphic semisimple modules, the set of semisimples in Λ-mod is a lattice under the
componentwise partial order of dimension vectors. The join sup(T, T ′) of T and T ′ is pinned down by its
dimension vector sup(dimT, dimT ′); analogously for the meet inf(T, T ′).
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For the remainder of Section 3, we fix a realizable semisimple sequence S = (S0, . . . , SL) and a generic
Λ-module G for RepS. By Observation 2.2, we do not lose any generality in assuming existence of G,
since the dimension vectors of the socles we wish to determine are not affected by passage to a potentially
enlarged base field.

Lemma 3.6. Let L(G) be the Loewy length of G, and l ∈ {0, . . . , L(G)− 2}. If U is a submodule of J lG
such that J l+1G ⊆ U is an essential extension, then the following conditions are equivalent:

(1) U is a maximal essential extension of J l+1G in J lG.

(2) J lG = U ⊕ Cl for some semisimple module Cl ⊆ Sl.

(3) JU = J l+1G, and U/JU = inf
(
Sl, E1(J

l+1G)
)
.

The (isomorphism classes of the) semisimples Cl are independent of the choices of U satisfying (2) and
the blanket hypothesis. In fact, the Cl are the maximal semisimple direct summands of the radical powers
J lG, respectively. In particular, soc(JL−mG) =

⊕
0≤j≤m CL−j, where Cl = J lG for l > L(G)− 2.

Proof. In light of Corollary 3.2, it suffices to prove the lemma for l = 0. The equivalence of (1) and (2)
is straighforward for arbitrary G.

The first of the following observations hinges on the assumption that G is generic for Rep S.

(†) Whenever there exists some essential extension JG ⊆ V such that JV = JG and V/JG is semisimple
with dimV/JG ≤ dim S0, there exists a matching essential extension JG ⊆ U inside G, namely an
extension with the property that S(U) = S(V ). This is an immediate consequence of Theorem 3.1.

(‡) If U is an essential extension of JU = JG in G, we have U/JU ≤ inf
(
S0, E1(JG)

)
. Indeed, we

may identify U with a submodule of E(JG), which shows U/JU to embed into G/JG, as well as into
E(JG)/JG. Due to semisimplicity of U/JU , this quotient actually embeds into E1(JG).

“(1) =⇒ (3)”: Assume that U satisfies (1), and hence also (2), for l = 0. Write G = U ⊕ C0 for some
semisimple C0. In particular, JU = JG, whence U/JU ≤ inf

(
S0, E1(JG)

)
by (‡). Clearly, we may

choose an extension V0 of JG in E(JG) such that V0/JG is semisimple and equals inf
(
S0, E1(JG)

)
.

In view of (†) and the fact that U differs from G by a semisimple direct summand only, we find an
essential extension U0 of JG inside U with the property that S(U0) = S(V0); in particular JU0 = JG.
Combining the equality S(U0) = S(V0) with the first part of the argument, we thus obtain dimV0/JG =
dimU0/JG ≤ dimU/JG ≤ inf

(
dim S0, dimE1(JG)

)
= dimV0/JG.

Verification of “(3) =⇒ (1)” and of the supplementary claim is now routine.

In order to compute the dimension vectors of the semisimples Cl of Lemma 3.6, we recursively define
(isomorphism classes of) submodules S′m ⊆ Sm, next to semisimple modules Dm ⊆

⊕
L−m≤l≤L Sl, as

follows:

• S′L = DL = 0.

• S′L−j = inf

(
SL−j,

(
E1(SL−j+1) ⊕ DL−j+1

))
, and DL−j is defined by the requirement that

S′L−j ⊕DL−j = E1(SL−j+1)⊕DL−j+1.

Lemma 3.7. Let S′l be as above. Then

dim soc(JL−mG) =
∑

0≤j≤m

(
dim SL−j − dim S′L−j

)
for 0 ≤ m ≤ L.

The Cl appearing in Lemma 3.6 have dimension vectors dim Sl − dim S′l and may thus be identified with
direct complements of S′l in Sl, respectively.
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Proof. Using Lemma 3.6, one proves the claim by induction on m ≥ 0, in tandem with the equalities
E1(SL−m) ⊕ DL−m = E1(J

L−mG), dimDL−m = dimE1(J
L−m+1G) − dim S′L−m, and dimCL−m =

dim SL−m − dim S′L−m.

The upcoming theorem doubles as an algorithm for determining the generic socle layering S∗ of the
modules in RepS from the (realizable) semisimple sequence S. Recall that A is the transpose of the
adjacency matrix of Q.

Theorem 3.8. We continue to assume that Λ is truncated and that G is a generic module for RepS.

(a) Set SL+1 = 0. For 0 ≤ m ≤ L,

dim soc(JL−mG) = sup

{ ∑

L−j≤l≤L

(
dim Sl − dim Sl+1 ·A

) ∣∣∣∣ 0 ≤ j ≤ m

}
.

The generic socle S∗0 of the modules in RepS arises as the special case m = L.

(b) The higher entries of the generic socle layering (S∗0, . . . , S
∗
L) for RepS are obtained via a recursion

based on the following facts: Generically, the quotients M/ socM for M in RepS have radical layering
S′ = (Sl/Cl)0≤l≤L−1. Moreover, the generic socle layering of the modules in Rep S′ is (S∗1, . . . , S

∗
L, 0).

Remark. We will use the following abbreviation:

∂L−j =
∑

L−j≤l≤L

(
dim Sl − dim Sl+1 ·A

)
∈ Zn.

Observe that these vectors may have negative entries in general. However, the suprema appearing in the
theorem are nonnegative, because ∂L = dim SL is among the contending vectors.

Proof. (a) We adopt the notation of Lemmas 3.6 and 3.7. These lemmas tell us that

(1) soc(JL−mG) =
⊕

0≤j≤m

CL−j with dimCl = dim Sl − dim S′l.

For k ∈ {1, . . . , n} and b ∈ Zn, we write [b]k for the k-th component of b; moreover, for M ∈ Λ-mod, we
set [M ]k := [dimM ]k = dim ekM .

I. Auxiliaries. Taking into account that SL+1 = S′L = DL = 0, we allow for slight redundancies in our
formulas to make them more symmetric. For 1 ≤ j ≤ L,

(2) S′L ⊕ S′L−1 ⊕ · · · ⊕ S′L−j ⊕DL−j = E1(SL+1 ⊕ SL ⊕ · · · ⊕ SL−j+1).

This equality is readily derived from the definitions by a subsidiary induction.

By adding CL ⊕ · · · ⊕ CL−j to both sides of (2), we obtain:

SL ⊕ SL−1 ⊕ · · · ⊕ SL−j ⊕DL−j = CL ⊕ · · · ⊕ CL−j ⊕ E1(SL+1 ⊕ SL ⊕ · · · ⊕ SL−j+1),

which, in turn, implies

(3) [∂L−j]k = [CL ⊕ · · · ⊕ CL−j ]k − [DL−j]k.

for all j ≤ L.

II. The case of nonvanishing [Cl]k: If [CL−v]k 6= 0, then [DL−v]k = 0. Indeed, [CL−v]k 6= 0 implies

that [S′L−v]k < [SL−v]k, whence the definition of S′L−v yields [S′L−v]k = [E1(SL−v+1)⊕DL−v+1]k. From
[S′L−v ⊕DL−v]k = [E1(SL−v+1)⊕DL−v+1]k we thus infer [DL−v]k = 0.
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In view of (1), equality (3) thus reduces to

(4) [∂L−v]k = [CL ⊕ · · · ⊕ CL−v]k = [soc JL−vG]k

III. The principal induction. We prove dim soc(JL−mG) = sup{∂L−j | 0 ≤ j ≤ m} by induction on
m ≥ 0. The case m = 0 being obvious, we assume the equality for some nonnegative m < L. Our claim
amounts to

[socJL−(m+1)G]k = max {
∑

L−j≤l≤L

(
[Sl]k − [E1(Sl+1)]k

)
| 0 ≤ j ≤ m+ 1} for 1 ≤ k ≤ n.

We keep k fixed in the following. Due to (1), [soc JL−(m+1)G]k =
∑

0≤j≤m+1[CL−j ]k.

• First, we deal with the case where [socJL−(m+1)]k = 0, i.e. [CL−j ]k = 0, for 0 ≤ j ≤ m+ 1. Invoking
(3), we derive [∂L−j]k = −[DL−j]k ≤ 0 for j ≤ m+ 1, and our claim follows.

• Next we address the case where [soc JL−(m+1)G]k 6= 0, but [CL−(m+1)]k = 0. Then

[socJL−(m+1)G]k = [soc JL−mG]k

by (1). In particular, [socJL−mG]k 6= 0 in the present situation. Let u be minimal with the property
that [socJL−(m+1)G]k = [soc JL−uG]k. Then 1 ≤ u ≤ m, and [CL−u]k 6= 0, while [CL−(u+1)]k = · · · =
[CL−(m+1)]k = 0. From [CL−u]k 6= 0, we obtain [soc JL−uG]k = [CL ⊕ · · · ⊕ CL−u]k = [∂L−u]k by Step
II. We combine the vanishing of the listed dimensions [Cl]k with (3) and (4) to infer

[∂L−(m+1)]k = [CL ⊕ · · · ⊕ CL−u]k − [DL−(m+1)]k = [∂L−u]k − [DL−(m+1)]k ≤ [∂L−u]k.

Hence [socJL−(m+1)]k = max{[∂L−j]k | 0 ≤ j ≤ m} = [socJL−m]k by the induction hypothesis.

• Finally, we assume [CL−(m+1)]k 6= 0. This implies [DL−(m+1)]k = 0 by Step II, and consequently

[socJL−(m+1)]k = [∂L−(m+1)]k by (4). The induction hypothesis guarantees that max{[∂L−j]k | 1 ≤ j ≤

m} = [soc JL−m]k < [socJL−(m+1)]k, and therefore max{[∂L−j]k | 1 ≤ j ≤ m+ 1} = [∂L−(m+1)]k. This
proves our claim.

(b) In view of Lemma 3.6, socJL−mG is the internal direct sum
⊕

0≤j≤m CL−j of submodules of G for
each m ≤ L (not only up to isomorphism), and consequently G/ socG indeed has radical layering S′.
That G/ socG is generic for RepS′ thus follows from Corollary 3.4.

Corollary 3.9. Retain the hypotheses and notation of Theorem 3.8. Then Cm is the largest semisimple
module which generically occurs as a direct summand of JmG under our partial order on semisimple
modules. In particular, C0 is the largest semisimple module generically occurring as a direct summand
of the modules in RepS. Each Cm is determined by its dimension vector dimCm = dim socJL−mG −
dim soc JL−m+1G.

4 Application to the hereditary case

In this section, we indicate how the information for truncated path algebras which we have assembled
plays out in the special case where Λ is hereditary. Thus we assume that Λ = KQ, where Q is a quiver
without oriented cycles. Moreover, we let L be the maximum of the path lengths in Q; in particular, this
entails JL+1 = 0. Recall that the varieties Repd(Λ) are full affine spaces in the present situation.

Once the generic radical layering S of the d-dimensional representations of Q is available, the results of
Section 3 will provide us with the set of generic skeleta for Repd(Λ), as well as with generic minimal
projective presentations of the modules in Repd(Λ). This information, in turn, serves as a vehicle for
accessing further generic data on the d-dimensional modules; some of them may alternatively be obtained
by the methods of Kac and Schofield ([17] and [20]).
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4.A The generic radical layering S of the modules in Repd(Λ)

First we show how to obtain the generic radical layering S of the modules in Repd(Λ) (i.e., the unique
minimal radical layering of the d-dimensional Λ-modules) directly from d, without resorting to compar-
isons. If G is a generic module for Repd(Λ), then the radical JG is generic for its dimension vector
by Corollary 3.2. Therefore, the gist of the task is to compute the generic tops of the modules with
dimension vector d.

Theorem 4.1. The generic top of the Λ-modules with dimension vector d is determined by its dimension
vector

t = sup {0, d− d ·A},

where A is the transpose of the adjacency matrix of Q.

Proof. Let L be the function field of Repd(Λ). Then there is a tautological LQ-module GL which turns
out to have the generic radical and socle layering for KQ-modules of dimension vector d. We will only
need to know that the dimension vector of the top of this tautological module is the generic dimension
vector of the tops of KQ-modules in Repd(Λ).

Recall that
Repd(Λ) =

∏

α∈Q1

HomK(Kdstart(α) ,Kdend(α)),

and let (wα,i,j : α ∈ Q1, 1 ≤ i ≤ dend(α), 1 ≤ j ≤ dstart(α)) be the natural coordinates on Repd(Λ). Write

O for the structure sheaf on Repd(Λ) and consider the trivial vector bundle V =
⊕

i∈Q0
Odi . Then

there is a tautological K-algebra homomorphism Λ → End(V) which sends ei to the projector onto the
summand Odi of V . It maps α ∈ Q1 to the map Odstart(α) → Odend(α) defined by the matrix (wα,i,j)i,j .
This equips V with an action µ : Λ⊗KV → V of Λ. By construction, µ has the following property: if
x ∈ Repd(Λ), then the action µ|x : Λ⊗KV|x → V|x defines the Λ-module parameterized by the point x.

We consider the map µJ : J⊗KV → V obtained by restricting µ to J⊗KV and let T denote its cokernel.
For each x ∈ U the sequence

J⊗KV|x → V|x → T |x → 0

is exact. However, the image of µJ |x is JV|x and hence T |x is the top of V|x. For all x in an open, dense
set, dimK(eiTx) = rank(eiT ). So the vector (rank(eiT )) is the generic dimension vector of the top of a
module in Repd(Λ).

Let η : Spec(L) → Repd(Λ) be the natural inclusion. We define GL = η∗V with the induced Λ-structure.
There is an induced exact sequence

J⊗KGL = JL⊗LGL → GL → η∗T → 0

and thus η∗T is the top of GL. Now, the dimension vector of η∗T over L is simply (rank(eiT )) and so
the dimension vector of the top of GL is the same as the dimension vector of the top of a general module
in Repd(Λ).

We compute the top of GL: Note that exactness of the sequence

eiJ⊗KGL → eiGL → eiTL → 0

implies

eiT = coker(
⊕

α:j→i

Ldj → Ldi),

where the latter map is the natural one. It is represented by the matrix Φi = (φα1 φα2 · · · φαr
) where

α1, . . . , αr is an enumeration of the set {α : end(α) = i}. Since the entries of the various φα•
are

algebraically independent, all of the maximal minors of Φi are nonzero. Hence Φi has full rank, and the
formula for the dimension vector of the top follows by examining the sizes of the matrices Φi.
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In the above notation, the generic radical of the modules inRepd(Λ) has dimension vector dim JG = d−t,
and the first generic radical layer S1 of these modules has dimension vector t(1) = dim JG/J2G. Given
that JG is generic for the modules with dimension vector d− t by Corollary 3.2, the theorem therefore
yields t(1) = sup {0, (d− t)− (d− t) ·A}, whence iterated application leads to the following recursion:

Corollary 4.2. The generic radical layering S of the Λ-modules with dimension vector d is pinned down
by the dimension vectors t(l) = dim Sl, for 0 ≤ l ≤ L, where t(0) = sup {0, d− d ·A}, and

t(l+1) = sup

{
0,

(
d−

∑

i≤l

t(i)
)
−

(
d−

∑

i≤l

t(i)
)
·A

}
.

4.B An example illustrating the theory in the hereditary case

Let Λ = CQ, where Q is the quiver

2
α2 // 4 α4 **TTTTTTTTTT 6

β6 **
α6

44 8
α8��1

β1
44jjjjjjjjjj
α1 ,,ZZZZZZZZZZZZZZZZZZZZ 5

β5
44jjjjjjjjjj

α5 **TTTTTTTTTT
γ5

993
α3

44jjjjjjjjjj
β3

88 7 α7 // 9
and let d = (0, 1, 1, 0, 3, 2, 3, 5, 10) ∈ (N0)

9. Theorem 4.1 implies that S0 = S2 ⊕ S3 ⊕ S2
5 ⊕ S8 is the

generic top of the Λ-modules with dimension vector d. Going over the same sequence of steps with
d(1) = (0, 0, 0, 0, 1, 2, 3, 4, 10), we obtain S1, and so forth. The resulting generic sequence S of radical
layers may be read off any of the generic skeleta of the modules in Repd(Λ). We present one of them for
further discussion.

2

z1

•
3

z2}}}} 5

z3}}}} 5

z4}}}} 8

z5

•

7 5 AAAA PPPPPPPP 6 AAAA 9 7 9

σ : 9 6}}}} 7 9 8 8 9

8 8 9 9 9

9 9

Consequences: We note that the information under (c), (d) below, as well as parts of (e) and (f), can
also be obtained via [17] and [20].

(a) Let P =
⊕

1≤j≤5 Λzr be the distinguished projective cover of S0. We apply Theorem 3.1 to the
skeleton σ to construct a generic minimal projective presentation of the d-dimensional Λ-modules.
The σ-critical paths in P are α2z1, α5z3, β5z4 and α8z5. Choosing elements x1, . . . , x7 ∈ C which are
algebraically independent over Q, we thus obtain the following generic format of a minimal projective
presentation: G = P/R(σ), where R(σ) is generated by the following four elements in P :

α2z1, α5z3 −
(
x1α5α3z2 + x2β3z2 + x3α5z4

)
,

β5z4 −
(
x4β5z3 + x5β5α3z2

)
and α8z5 −

(
x6α7β3z2 + x7γ5z4

)
.

14



(b) By Theorem 3.8, the generic socle layering S∗ of Repd(Λ) is

S∗ = (S2 ⊕ S10
9 , S3

7 ⊕ S5
8 , S5 ⊕ S2

6 , S
2
5 , S3),

Moreover, by Corollary 3.9, the simple S2 is the largest semisimple module generically occurring as
a direct summand of the modules in RepS.

(c) Generically, the modules with dimension vector d decompose into two indecomposable summands,
one isomorphic to S2, the other with dimension vector d′ = d− (0, 1, 0, . . . , 0). Indeed, G ∼= S2 ⊕G′,
where G′ is a generic module for RepS′; here S′ = (S′0, . . . , S

′
4) with S′0 = S3 ⊕ S2

5 ⊕ S8 and S′l = Sl
for l ≥ 1. Letting P ′ =

⊕
2≤j≤5 Λzj be the distinguished projective cover of S′0, we obtain a generic

skeleton σ′ = σ \ {z1} ⊆ P ′ for the modules with dimension vector d′. A generic minimal projective
presentation based on σ′ is G′ = P ′/R(σ). Using Corollary 3.5, we find that, generically, the modules
with dimension vector d′ have endomorphism rings isomorphic to C. Since this guarantees generic
indecomposability of the d′-dimensional modules, our claim is justified.

(d) Generically, the modules with dimension vector d (resp., with dimension vector d′) contain a sub-
module isomorphic to Λe3 ⊕ Λe5. This is most easily seen by passing to a different skeleton of
G.

(e) The submodule of G which is generated by (the U(σ)-residue classes of) z2, z3, z4 is layer-stably
embedded in G. By Corollary 3.2, the module Λz2 +Λz3 +Λz4 is therefore generic for its dimension
vector. Again applying Corollary 3.5, one obtains generic indecomposability of the modules with this
dimension vector.

(f) The modules with dimension vector (0, 0, 0, 0, 2, 1, 1, 2, 5) have generic skeleta as shown under z3, z4
of σ. Generically, they decompose into two local modules which are unique up to isomorphism.

5 Nonhereditary examples

In the examples, Q will be an acyclic graph and d a dimension vector of Q. Our primary purpose in
Example 5.1 is to illustrate the information that results from exploring the generic behavior of the d-
dimensional representations of Q as we vary the allowable Loewy length L + 1. In the extreme cases,
where L is either the maximal path length, i.e. L = 6, on one hand, or L = 1 on the other, generic direct
sum decompositions are already well understood; see [17], [20], and [3]. As is to be expected, the picture
is more complex in the mid-range between these extremes.

Example 5.1. Let ΛL = CQ/〈the paths of length L+ 1〉, where Q is the quiver

1
α1 //

β1

662
α2 // β2 ((

3
α3 //

β3

664
α4 // β4 ((

5
α5 //

β5

666
α6 // 7

and d = (1, 1, . . . , 1) ∈ N7.

(a) Clearly, if L = 6, i.e., ΛL = KQ, the modules with dimension vector d are generically uniserial with
radical layering (S1, . . . , S7).

(b) For L = 5, the variety Repd(ΛL) has precisely 6 irreducible components, all of them representing
generically indecomposable modules. They are listed in terms of their generic modules which, by
Theorem 3.1, are available from the generic radical layerings. We communicate these modules via
their graphs, in Diagram 5.1.1; here the solid edge paths starting at the top represent the chosen
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skeleton σ in each case, and the edge paths starting at the top and terminating in a broken edge are
the σ-critical paths, tied in by the relations given in Theorem 3.1.

1 111 2

 &�� 1
� 1 1
� 1 1 1 �
 1��& 1


 111
3
� 1 2 1 �
 2 1 �
 2��& 2


 111 2 111 3

 &��4 1 �
 3
� 1 3��& 3


 111 3 111 4

 &�� 4	� 55
� 1 4��& 4


 111 4 111 5

 &�� 5
� 1 5 1 �
6 5


 111 5 111 6

 6 6 6

7 6 7 7

Diagram 5.1.1. Generic modules for Example 5.1(b), L = 5

7 7 7

We add some explanation regarding the leftmost diagram: One of the irreducible components of
Repd(Λ5) equals the closure of RepS, where S = (S1 ⊕ S2, S3, S4, S5, S6, S7). Generically, the
modules in this component are of the form G = (Λz1 ⊕ Λz2)/C, where zi = ei for i = 1, 2 and
C is the Λ-submodule generated by α1z1, α2z2 − x1β1z1, β2z2 − x2α3β1z1, β3β1z1 − x3α4α3β1z1,
β4α3β1z1−x4α5α4α3β1z1, β5β3β1z1−x5α6α5α4α3β1z1; here the xi ∈ C are algebraically independent
over Q (cf. Theorem 3.1). It is clearly harmless to replace x1 by 1.

For each of the semisimple sequences S which are generic for the components ofRepd(Λ), the modules
in RepS have a fine moduli space; see, e.g., [13, Theorem 4.4, Corollary 4.5]. All of these moduli
spaces are 4-dimensional.

(c) The case L = 3 is more interesting. Using the Main Theorem, one finds that the variety Repd(Λ)
has precisely 28 irreducible components, 12 of which encode generically indecomposable modules;
the remaining 16 encode modules which generically split into two indecomposable summands. The
dimensions of the moduli spaces representing the modules with fixed radical layering (existent by [13,
Theorem 4.4]) vary among 1, 2, 3 for the different components. In particular, none of the components
contains a dense orbit. We list 9 of these components in Diagram 5.1.2 (below), again in terms of
graphs of their generic modules.

Note that the generic radical layering of the component labeled (A) in the diagram is strictly smaller
than that of the component labeled (B), while the socle layerings are in reverse relation. The generic
socle layering of (A) is strictly smaller than that of (C), but the generic radical layerings of (A) and
(C) are not comparable.

If J2 = 0, the subvarieties Rep S of Repd(Λ) constitute a stratification of Repd(Λ) in the strict sense, in
that all closures of strata are unions of strata. In fact, in Loewy length 2 the strata are organized by the

equivalence “RepS ⊆ Rep Ŝ ⇐⇒ (Ŝ, Ŝ∗) ≤ (S, S∗)”; see [3, Theorem 3.6]. The nontrivial implication
fails badly already for J3 = 0, even when the underlying quiver is acyclic, as the upcoming example
demonstrates.

Example 5.2. Let Λ = KQ/〈the paths of length 3〉, where Q is the quiver

1
α1 // 2 α2 //

β �� 3

4
α4 // 5 α5 // 6

Again take d = (1, . . . , 1). Then Repd(Λ) has precisely 3 irreducible components, one of which is the

closure of Rep Ŝ, where Ŝ = (S1 ⊕ S4, S2 ⊕ S5, S3 ⊕ S6). All modules in this component are annihilated
by β. If S = (S1 ⊕ S2 ⊕ S4 ⊕ S6, S3 ⊕ S5, 0), and if the the generic socle layerings of the modules in

16



(A) 1��� /// (B) 1 2||| (C) 1��� 333 7
•

2Æ� 0 3} } 3 444 4ÆÆ 2 000 3
 
 ��t ⊕

4 5{ { 5��� 111 4


 666
6 7 6 7 5 6

1 3� � � � � 1 3ÆÆÆ 000 1Æ� 0 4 0 �Æ2 5 0 �Æ 2
⊕

4 000 5ÆÆ ��
 2
⊕

5Æ� 04 6 6 3 6

7 7 7

1��� 111 4��� 1
� 1 5��� 1 666 2��p�� 6���2 3


 2 666 7 3��� :::
5��� 111 3 4 111 4 5

7 6 6

Diagram 5.1.2. Some generic modules for Example 5.1(c), L = 3

7

Rep Ŝ and RepS are denoted by Ŝ∗ and S∗, respectively, we find (Ŝ, Ŝ∗) < (S, S∗). On the other hand,

RepS 6⊆ Rep Ŝ, since, generically, the modules in RepS are not annihilated by β. However, observe

that RepS ∩ Rep Ŝ 6= ∅; indeed, the direct sum S1 ⊕
(
Λe2/(Λα2 + Λβ)

)
⊕
(
Λe4/Λα4

)
⊕ S6 belongs to

the intersection.

The component containing the irreducible variety RepS is determined by the generic radical layering
S̃ = (S1 ⊕ S2 ⊕ S4, S3 ⊕ S5, S6).

6 Proof of the Main Theorem

First we note that the implication “(2) =⇒ (1)” only requires that Λ be a truncated path algebra (see
[15, Theorem 3.1]).

Now suppose Λ = KQ/〈the paths of length L+ 1〉, where Q is an acyclic quiver.

“(1) =⇒ (2)”: Let S be a realizable semisimple sequence with dimension vector d, and let S∗ be the
generic socle layering of the modules in RepS. Suppose that the pair (S, S∗) fails to be minimal in
rad-soc(d). We will show that then the closure of RepS is not an irreducible component of Repd(Λ).
By Observation 2.2, we do not lose generality in passing to a suitable extension field of K which has
infinite transcendence degree over its prime field. Hence we may assume that for any realizable semisimple
seqence S′, there is a generic Λ-module with radical layering S′. Let G be generic for Rep S. In particular,
this implies that S∗ is the socle layering of G.

Our strategy is as follows: We will first pin down a suitable short exact sequence

0 → A → G → B → 0

representing a class η ∈ Ext1Λ(B,A) say. Then we will construct another class ξ ∈ Ext1Λ(B,A) and
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consider the one-parameter family of extensions

0 → A → Gt → B → 0

corresponding to η + tξ, t ∈ K. Our construction will be to the effect that G0
∼= G, while S(Gt) < S(G)

for general t. Letting S̃ be the generic radical layering of the irreducible family
(
S(Gt)

)
, we will thus

obtain RepS $ Rep(S̃). This will attest to failure of maximality of RepS as an irreducible subvariety
of Repd(Λ).

Our assumption on S provides us with a pair (Ŝ, Ŝ∗) ∈ rad-soc(d) which is strictly smaller than (S, S∗)
under the componentwise dominance order. Say (Ŝ, Ŝ∗) = (S(Ĝ), S∗(Ĝ)) for some Λ-module Ĝ. It

is harmless to assume that Ĝ is a generic module for the radical layering Ŝ. Clearly, Ŝ < S, since

S∗(Ĝ) = min{S∗(N) | N in Rep(Ŝ)} is determined by Ŝ. This means that
⊕

l≤j Ŝl ⊂
⊕

l≤j Sl. In light

of the equality
⊕

0≤l≤L Sl =
⊕

0≤l≤L Ŝl, this implies that there exists an index v with the property that

Ŝv 6⊂ Sv.

We choose τ ∈ {0, . . . , L} minimal with respect to Ŝτ 6⊆ Sτ . Then τ ≥ 1 because Ŝ0 ⊆ S0 in view of

Ŝ < S. Pick k ∈ {1, . . . , n} such that dimK(ekSτ ) < dimK(ekŜτ ).

Claim 1. There is an element a ∈ ekG such that a /∈ JτG but JL−τ+1a = 0.

Proof. Note that the annihilator of JL−τ+1 in G coincides with socL−τ (G). If the claim were false, we

would thus obtain ek socL−τ (G) ⊆ ekJ
τG. Since always JτG ⊆ socL−τ (G) (analogously for Ĝ), this

would amount to ek socL−τ(G) = ekJ
τG. On the other hand, by the construction of τ and k,

(1) dimK(ekSτ ) = dimK(ekJ
τG)− dimK(ekJ

τ+1G) <

dimK(ekJ
τ Ĝ)− dimK(ekJ

τ+1Ĝ) = dimK(ekŜτ ),

and, combining with our assumption, we derive

(2) dimK(ek socL−τ G)) ≤

dimK(ekJ
τG) + [dimK(ekJ

τ+1Ĝ)− dimK(ekJ
τ+1G)] <

dimK(ek socL−τ (Ĝ));

keep in mind that dimK(ekJ
τ+1G) ≤ dimK(ekJ

τ+1Ĝ) due to Ŝ ≤ S. However, Ŝ∗(Ĝ) ≤ Ŝ∗(G) implies

dimK(ek socL−τ (Ĝ)) ≤ dimK(ek socL−τ (G)),

a contradiction.

Claim 2. Let A = Λa be the submodule of G generated by a, and set B = G/A. Then the semisimple
sequence

(
Sτ−1(B), Sτ (B)⊕ Sk

)
is realizable.

Proof. We repeatedly use the realizability criterion 1.2. Clearly, it suffices to prove that, for some
submodule S′ of the semisimple module Sτ−1(B), the sequence

(
S′, ekSτ (B) ⊕ Sk

)
is realizable. Recall

that we identify the vertices of Q with the corresponding primitive idempotents of Λ. Hence it makes
sense to consider the sum e of the starting vertices of the paths of positive length ending in ek; clearly, e
is an idempotent in Λ. We will show realizability of the semisimple sequence

(
e Sτ−1(B), ekSτ (B)⊕ Sk

)
,

which will cover our claim.

Acyclicity of Q yields eΛei = 0 for any vertex ei with eiΛek 6= 0. In light of a = eka, we deduce that
eJ lB ∼= eJ lG canonically for all l ≤ L, whence e Sl(B) = e Sl(G). Moreover, we find ekSτ (B) = ekSτ (G)
because a /∈ JτG and ekJA = 0.
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Due to our choice of τ and k, we have e Sτ−1(Ĝ) ⊆ e Sτ−1(G), while ekSτ (Ĝ) % ekSτ (G). Therefore

realizability of
(
e Sτ−1(Ĝ), ekSτ (Ĝ)

)
implies realizability of

(
e Sτ−1(G), ekSτ (G)⊕ Sk

)
=

(
e Sτ−1(B), ekSτ (B)⊕ Sk

)

as required.

Claim 3. Let χ ∈ Ext1Λ(B,A/JA). If the canonical image of χ in Ext1Λ(J
τB,A/JA) is zero, then χ lifts

to a class in Ext1Λ(B,A).

Proof. Let

χ : 0 // A/JA // X h // B // 0
be an extension which maps to zero in Ext1Λ(J

τB,A/JA). By KQ0 we denote the semisimple subalgebra
of Λ generated by the paths of length zero. The Λ-structure of the simple module A/JA ∼= Sk coincides
with its KQ0-structure, and the latter evidently boils down to the K-structure induced by Kek ⊆ KQ0;
we identify the Λ-submodule A/JA of X with Ka and choose a splitting X = Ka⊕ B′ of χ over KQ0.
As a KQ0-module, B is then isomorphic to B′, and our hypothesis provides us with a Λ-submodule Bτ

of JτX such that Ka+ JτX = Ka⊕Bτ . Clearly, the map Bτ → JτB induced by h is a Λ-isomorphism,
and we may choose B′ to be contained in Bτ .

Next we define a Λ-module structure on the KQ0-module M = A ⊕ B′, now viewing A/JA = Ka as a
KQ0-submodule of A. If, for α ∈ Q1, we denote by fα the action of α on the submodule A of G and by
gα the action on X , the following definition yields a well-defined KQ-module structure on M :

α(a′ + b′) = fα(a
′) + gα(b

′) for a′ ∈ A, b′ ∈ B′.

We verify that this is in fact a Λ-module structure: Indeed, let p = p2p1 be a path in Q, where p1 is a
path of length τ and p2 a path of length L + 1 − τ . We obtain p1(a

′ + b′) = a′′ + bτ for some a′′ ∈ A
and bτ ∈ Bτ . Then p2a

′′ = 0 by the construction of A (see Claim 1), and p2bτ = 0, given that Bτ is
a Λ-submodule of JτX . Therefore p(a′ + b′) = 0 as required. Our construction clearly entails that the
extension

0 → A → M → B → 0

is a lift of χ.

The next step is based on Claim 2. It will provide us with a suitable non-split extension χ ∈ Ext1Λ(B,A/JA)
satisfying the hypothesis of Claim 3.

Claim 4. The canonical map E : Ext1Λ(B/JτB,A/JA) −→ Ext1Λ(J
τ−1B,A/JA) is nonzero.

Proof. Let P → B/Jτ+1B be a projective cover with kernel C. Since the pair (Sτ−1(B), Sτ (B) ⊕ Sk) is
realizable, the semisimple sequence

(
S0(B), . . . , Sτ−1(B), Sτ (B)⊕ (A/JA)

)

is in turn realizable, which provides us with a submodule C′ ⊂ C such that C/C′ = Sk, Sj(P/C′) = Sj(B)
for j < τ , and Sτ (P/C′) = Sτ (B) ⊕ (A/JA). ’ sequence

(3) 0 → Sτ (B)⊕ (A/JA) → P/C′ → B/JτB → 0

we pull back along the inclusion ι : Jτ−1B/JτB → B/JτB , to obtain the induced extension

(4) 0 → Sτ (B)⊕ (A/JA) → Jτ−1(P/C′) → Jτ−1B/JτB → 0.
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Observe that (4) is non-split, since by construction Sτ (B) ⊕ (A/JA) = Jτ (P/C′) is the radical of
Jτ−1(P/C′). In fact, we even obtain that the exact sequence

(5) 0 → A/JA → M ′ → Jτ−1B/JτB → 0

which results from (4) by pushing out along the projection Sτ (B) ⊕ (A/JA) → A/JA , does not split
either. Performing the pull-back and push-out operations that led from (3) to (5) in reverse order results
in an extension equivalent to (5). Hence the class of (5) is the image under Ext1Λ(ι, A/JA) of the class of
some extension

0 → A/JA → M → B/JτB → 0.

That the latter does not belong to the kernel of E, follows from non-splitness of (5). Indeed, the canonical
map Ext1Λ(B/JτB,A/JA) −→ Ext1Λ(J

τ−1B/JτB,A/JA) factors through E.

By Claim 4, we may choose a class χ′ : Ext1Λ(B/JτB,A/JA) with nonzero image in Ext1Λ(J
τ−1B,A/JA).

We set χ = Ext1Λ(π,A/JA)(χ
′), where π : B → B/JτB is canonical. Since the image of Ext1Λ(π,A/JA)

in Ext1Λ(B,A/JA) is the kernel of the natural map

Ext1Λ(B,A/JA) → Ext1Λ(J
τB,A/JA),

Claim 3 guarantees that χ lifts to a class ξ in Ext1Λ(B,A). The image of ξ in Ext1Λ(J
τ−1B,A/JA) is

nonzero by construction. Hence, for general t, the image of the class η+tξ is nonzero in Ext1Λ(J
τ−1B,A/JA).

Consider the one-parameter family of extensions

0 −→ A −→ Gt
gt
−→ B −→ 0

corresponding to η+ tξ, respectively, and note that G0 = G. It is straightforward to translate the family

(Gt)t∈K into a curve A1 → Repd(Λ). As a consequence, we find that G belongs to Rep
(
S(Gt)

)
for

general t, which implies S(Gt) ≤ S(G). In a final step, we will check that S(Gt) < S for general t.

Claim 5. S(Gt) < S(G) for general t. More specifically, dimK(JτG) < dimK(JτGt).

Proof. For any t ∈ K, the inverse image of JτB under gt is A+JτGt. Hence dimK(A+JτGt) is constant
in t. Let t be such that η + tξ has nonzero image ηt in Ext1Λ(J

τ−1B,A/JA), and consider the extension

0 → A/JA → (A+ Jτ−1Gt)/JA → Jτ−1B → 0

representing ηt. Non-splitness forces the simple module A/JA into the radical of the middle term, that
is, A ⊆ JA + JτGt. This means that JτGt contains an element in A \ JA. Since JA is the unique
maximal submodule of A, we conclude that A ⊆ JτGt, i.e., J

τGt = A + JτGt. On the other hand,
JτG $ A+ JτG by Claim 1. Thus dimK(JτG) < dimK(JτGt) as claimed.

Now let S̃ be the generic radical layering of the family (Gt). Then S̃ < S = S(G) by Claim 5, and our

curve places G into the closure of Rep S̃. Since G is generic for RepS, this shows RepS to be contained

in the irreducible subvariety Rep S̃ of Repd(Λ). In light of S(X) ≥ S for all X ∈ RepS, this containment
is proper. Thus Rep S indeed fails to be an irreducible component of Repd(Λ), which completes the
argument.

References

[1] E. Babson, B. Huisgen-Zimmermann, and R. Thomas, Generic representation theory of quivers with
relations, J. Algebra 322 (2009), 1877–1918.
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[6] W. Crawley-Boevey and J. Schröer, Irreducible components of varieties of modules, J. reine angew.
Math. 553 (2002), 201–220.

[7] J. Donald and F. J. Flanigan, The geometry of Rep(A,V) for a square-zero algebra, Notices Amer.
Mat. Soc. 24 (1977), A-416.

[8] D. Eisenbud and D. Saltman, Rank varieties of matrices, in Commutative Algebra (Berkeley 1987),
MSRI Publ. 15, Springer-Verlag, New York (1989), pp. 173–212.
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