1. Do not start until instructed.

2. Clearly explain your answer. Write neatly!

3. If you run out of room, please use the back of the preceding page (and be sure to indicate to me that you did so).

4. Copying someone else’s test, or deliberately exposing written papers to the view of others is forbidden and will result in a score of zero and disciplinary action.

<table>
<thead>
<tr>
<th>Question #</th>
<th>Score</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>5</td>
</tr>
<tr>
<td>Bonus</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total: /20
1. [5 marks] Using Green's Theorem, calculate $\int_C \mathbf{F} \cdot d\mathbf{s}$, where

$$\mathbf{F}(x, y) = (xy + \cosh(y), x \sinh(y))$$

and C is the boundary (with the positive orientation) of the triangle enclosed by the lines $y = 3x$, $y = x$ and $x = 1$.

Recall that $\cosh(y) = \frac{1}{2}(e^y + e^{-y})$ *and* $\sinh(y) = \frac{1}{2}(e^y - e^{-y})$.

By Green's Theorem,

$$\int_C \mathbf{F} \cdot d\mathbf{s} = \iint_D \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

$$= \iint_D \left(\sinh(y) - (x + \sinh(y)) \right) dy \, dx$$

$$= \int_0^3 \int_0^{3x} \left(\sinh(y) - (x + \sinh(y)) \right) dy \, dx$$

$$= \int_0^3 \left[\frac{1}{2} (e^y - e^{-y}) - x - x \sinh(y) \right]_0^{3x} dx$$

$$= \int_0^3 \left(-2x^2 \right) dx$$

$$= \frac{-2}{3}$$
2. [5 marks] Let \(W \) be the region that consists of a box determined by the vectors \(2i, 2j \) and \(3k \), with a unit cube cut out of the corner. Let

\[
F(x, y, z) = (2yz + x^2, 2xy + z^2, 2xz + y^2).
\]

Calculate the flux of \(F \) across the surface of \(W \).

If \(S_1 \) is the surface of the big box, and \(S_2 \) is the surface of the little box then we have:

\[
\iint_{S \cap W} \vec{F} \cdot d\vec{S} = \iint_{S_1} \vec{F} \cdot d\vec{S} - \iint_{S_2} \vec{F} \cdot d\vec{S}
\]

(This is true since \(-\iint_{S_2} \vec{F} \cdot d\vec{S}\) calculates the flux into the little box, which is out of \(S \)).

By the Divergence Theorem,

\[
\iiint_{\text{big box}} \vec{F} \cdot \nabla dV - \iiint_{\text{little box}} \vec{F} \cdot \nabla dV = \iiint_{W} \nabla \cdot \vec{F} dV
\]

\[
= \iiint_{W} 2x + 2y + 2z dV
\]

\[
= \iiint_{W} 6x dV - \iiint_{W} \frac{1}{2} \frac{1}{2} \frac{1}{2} dV
\]

\[
= \left(\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} 6x dxdydz \right) - \left(\int_{0}^{2} \int_{0}^{2} \int_{0}^{2} \frac{1}{2} \frac{1}{2} \frac{1}{2} dxdydz \right)
\]

\[
= \left(\frac{2}{3} \cdot 2 \cdot 2 \cdot 2 \right) - \left(\frac{1}{3} \cdot 2 \cdot 2 \cdot 2 \right)
\]

\[
= 6 \cdot 3 \cdot 2 - 1 \cdot 3 \cdot 2
\]

\[
= 6 \cdot 9
\]

\[
= 54
\]
3. [5 marks] Let S be a surface to which Stoke's Theorem can be applied. Explain a strategy you might employ to calculate the surface area of S (i.e., $\int_S dS$) using a line integral.

Stoke's Theorem says that if $\vec{\gamma}$ is the boundary of S, then

$$\int_{\vec{\gamma}} \vec{F} \cdot d\vec{S} = \iint_S \text{curl}(\vec{F}) \cdot \hat{n} \, dS$$

$$= \iint_S \left[\text{curl}(\vec{F}) \cdot \frac{\vec{N}}{||\vec{N}||} \right] dS$$

Hence, if \vec{F} is a vector field such that $\text{curl}(\vec{F}) \cdot \frac{\vec{N}}{||\vec{N}||} = 1$ we have that $\int_{\vec{\gamma}} \vec{F} \cdot d\vec{S}$ equals the surface area of S.

For example, if \vec{F} is such that $\text{curl}(\vec{F}) = \frac{\vec{N}}{||\vec{N}||}$, then

$$\int_{\vec{\gamma}} \vec{F} \cdot d\vec{S} = \text{Surface Area}. \quad (\text{But such an } \vec{F} \text{ may not exist!})$$

4. [5 marks]

Consider the two sequences $\{a_n\}_{n=1}^{\infty}$ where $a_n = \frac{n(2n+1)}{n^2}$, and $\{b_n\}_{n=1}^{\infty}$ where $b_n = \frac{(-1)^n}{5}$. For the following list of sequences, indicate if they are convergent or divergent, and find the limits of those that do converge (You don't need to justify your choices).

(a) $\{a_n\}_{n=5}^{\infty}$ Convergent to 2

(b) $\{b_n\}_{n=1}^{\infty}$ Divergent $\frac{1}{2}$

(c) $\{3a_n - 1\}_{n=2}^{\infty}$ Convergent to 5

(d) $\{b_n^2\}_{n=1}^{\infty}$ Convergent to $\frac{1}{25}$

(e) $\{1/a_n\}_{n=1}^{\infty}$ Convergent to $\frac{1}{2}$

(f) $\{a_n/b_n\}_{n=1}^{\infty}$ Divergent $\frac{1}{2}$
Bonos: Prove (using the definition of a convergent sequence) that the sequence \((1, 0, 1, 0, 1, 0, \ldots)\) diverges.

A sequence converges (to a limit \(L\)) if for any \(\varepsilon > 0\), there exists an \(N\) such that

\[L - \varepsilon < a_n < L + \varepsilon\]

for all \(n \geq N\).

So to show \((1, 0, 1, 0, \ldots)\) diverges, we need to show that there exists an \(\varepsilon > 0\) such that no matter what the values of \(L\) and \(N\) are, we can always find an \(n \geq N\) with \(a_n \notin (L - \varepsilon, L + \varepsilon)\).

Take \(\varepsilon = \frac{1}{4}\).

Then either \(0 < L - \varepsilon\) or \(L + \varepsilon < 1\).

So in either case we can find an \(n \geq N\) with \(a_n \notin (L - \varepsilon, L + \varepsilon)\).

So the sequence is indeed divergent.
1. Do not start until instructed.

2. Clearly explain your answer. Write neatly!

3. If you run out of room, please use the back of the preceding page (and be sure to indicate to me that you did so).

4. Copying someone else’s test, or deliberately exposing written papers to the view of others is forbidden and will result in a score of zero and disciplinary action.

<table>
<thead>
<tr>
<th>Question #</th>
<th>Score</th>
<th>Max</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td>7.5</td>
</tr>
<tr>
<td>2</td>
<td></td>
<td>5.5</td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td></td>
<td>4</td>
</tr>
<tr>
<td>Bonus</td>
<td></td>
<td>3</td>
</tr>
</tbody>
</table>

Total:

/20
1. [7.5 marks (1.5 each)] Determine if the following series converge absolutely, converge conditionally or diverge. Be sure to justify your answers!

(a)

\[
\sum_{k=1}^{\infty} \frac{2}{4 + 2^{-k}}
\]

Since

\[
\lim_{k \to \infty} \frac{2}{4 + \frac{1}{2^k}} = \frac{1}{2} \neq 0,
\]

the series diverges.

(b)

\[
\sum_{k=0}^{\infty} \frac{(-2)^k}{3^{k+1}}
\]

\[
= \frac{1}{3} \sum_{k=0}^{\infty} \left(-\frac{2}{3}\right)^k
\]

So series converges (geometric series and \(-1 < -\frac{2}{3} < 1\)).
(c) \[\sum_{k=2}^{\infty} \frac{(-1)^k}{\sqrt{k(k-1)}} \]

\[\left| \frac{(-1)^k}{\sqrt{k(k-1)}} \right| > \frac{1}{\sqrt{(k-1)^2}} = \frac{1}{k-1} \]

But \[\sum_{k=2}^{\infty} \frac{1}{k-1} \] diverges (it's a Harmonic series)

so by the comparison test, so does \[\sum_{k=2}^{\infty} \left| \frac{(-1)^k}{\sqrt{k(k-1)}} \right| \]

But it is an alternating series, \(\frac{1}{\sqrt{k(k-1)}} \to 0 \) \& \(k \),

and \(\frac{1}{\sqrt{k(k-1)}} \to 0 \). So by Alt. series test, the series converges.

Hence the series is conditionally convergent.

(d) \[\sum_{k=1}^{\infty} (-1)^{k+1} e^{-k} \]

Converges by, e.g. Geometric series test \(\left(r = \frac{-1}{e} \right) \)

- Root test
- Ratio test absolutely
(e) \[\lim_{{k \to \infty}} \frac{8^{k+1}}{(2k+2)!} = \lim_{{k \to \infty}} \frac{8^k}{(2k)!} = \lim_{{k \to \infty}} \frac{8}{(2k)(2k+1)} = 0. \]

So series converges.

2. [4+1.5 marks]

(a) Let \(\cosh(x) = (e^x + e^{-x})/2 \). Find a formula for the \(n \)th Taylor coefficient (about 0), then write the Taylor series in \(\Sigma \)-notation.

\[
\cosh(x)' = \frac{e^x - e^{-x}}{2} \quad \text{so obviously} \quad \cosh(x) = \begin{cases} (\cosh(x)), & \text{even} \\ (\sinh(x)), & \text{odd} \end{cases}
\]

\[
\cosh(x)'' = \frac{e^x + e^{-x}}{2}
\]

\[
\therefore \cosh(x)^{(n)} = \begin{cases} 1, & n \text{ even} \\ 0, & n \text{ odd} \end{cases}
\]

\[
\therefore \cosh(x) = \sum_{n=0}^{\infty} \frac{x^{2n}}{(2n)!}
\]
(b) Suppose you only cared about $x \in [0, 4]$. Describe how you would determine an n so that nth Taylor polynomial (about 0) is within 10^{-6} of the actual value of $\cosh(x)$. You don't need to find n, just describe (with as much detail as possible) the calculation you would make.

If $x \in [0, 4]$ then clearly $\cosh(x)^{(n)} \leq \frac{e^{x} + e^{-x}}{2}$

So to find n we need to find it so that $\left(\frac{e^{x} + e^{-x}}{2}\right) \cdot 4^{n+1} \leq 10^{-6}$

3. [3 marks] Find the radius of convergence for the series

$$\sum_{k=2}^{\infty} \frac{x^k}{\ln(k)}$$

Ratio test: $\lim_{k \to \infty} \left| \frac{x^{k+1}}{x^k \frac{\ln(k+1)}{\ln(k)}} \right| = \lim_{k \to \infty} \left| x \cdot \frac{\ln(k)}{\ln(k+1)} \right| = |x| \cdot \lim_{k \to \infty} \frac{\ln(k)}{\ln(k+1)} = |x| \cdot 1$ (by L'Hôpital's rule)

Now $|x| < 1$ precisely when $|x| < 1$

i. radius of convergence is 1
4. [4 marks] Calculate the first 4 terms of the Taylor series about 0 of \(f'(x) \) where \(f(x) = \frac{\sin(x)}{e^x} \).

\[
\frac{f(x)}{x^n} = \frac{O + x + O x^2 - \frac{1}{3!} x^3 + O x^4}{1 + x + \frac{1}{2!} x^2 + \frac{1}{3!} x^3 + \frac{1}{4!} x^4}
\]

Suppose \(f(x) = \sum_{n=0}^{\infty} a_n x^n \). Then

\[
a_0 b_0 = c_0 \Rightarrow a_0 \cdot 1 = 0 \Rightarrow a_0 = 0
\]

\[
a_0 b_1 + a_1 b_0 = c_1 \Rightarrow 0 \cdot 1 + a_1 \cdot 1 = 1 \Rightarrow a_1 = 1
\]

\[
a_0 b_2 + a_1 b_1 + a_2 b_0 = c_2 \Rightarrow 0 \cdot \frac{1}{2} + 1 \cdot 1 + a_2 \cdot 1 = 0 \Rightarrow a_2 = -1
\]

\[
a_0 b_3 + a_1 b_2 + a_2 b_1 + a_3 b_0 = c_3 \Rightarrow 0 \cdot \frac{1}{3!} + 1 \cdot \frac{1}{2!} + (-1) \cdot 1 + a_3 \cdot 1 = -\frac{1}{3!} \Rightarrow a_3 = \frac{1}{3}
\]

\[
a_0 b_4 + a_1 b_3 + a_2 b_2 + a_3 b_1 + a_4 b_0 = c_4 \Rightarrow 0 \cdot \frac{1}{4!} + 1 \cdot \left(\frac{1}{3!}\right) + (-1) \cdot \left(\frac{1}{2!}\right) + \frac{1}{3} \cdot 1 + a_4 = 0
\]

\[
\Rightarrow a_4 = \frac{1}{2} - \frac{1}{6} - \frac{1}{3} = 0
\]

So \(f(x) = x - x^2 + \frac{1}{3} x^3 + O x^4 + \ldots \)

\[\therefore f'(x) = 1 - 2x + x^2 + O x^3 + \ldots\]
(Bonus) Let p be a fixed positive integer. Show the power series

$$\sum_{k=0}^{\infty} \frac{(pk)!}{(k!)^p} x^k$$

has radius of convergence $1/p^p$.

Ratio:

$$\lim_{k \to \infty} \left| \frac{(p(k+1))!}{(k!p)^p} x^{k+1} \right| \left| \frac{(pk)!}{(k!)^p} x^k \right|$$

$$= \lim_{k \to \infty} |x| \left(\frac{(p(k+1))!}{(pk)!} \cdot \frac{K!^p}{(k!)^p} \right)$$

$$= \lim_{k \to \infty} |x| \left[(p+1)(p+2) \cdots (p+1) \cdot \left(\frac{1}{K+1} \right)^p \right]$$

$$= \lim_{k \to \infty} |x| \left[p^p \left(\frac{(k+1)(k+1-p) \cdots (k+1-p)}{(k+1)(k+1-p) \cdots (k+1)} \right)^p \right]$$

$$= \lim_{k \to \infty} |x| \cdot p^p \left(\frac{(k+1)(k+1-p) \cdots (k+1-p)}{(k+1)(k+1-p) \cdots (k+1)} \right)^p$$

fraction of polynomials
of degree p, with coefficients
of k^p both equal to 1.

So $|x| \cdot p^p < 1$ precisely when $|x| < \frac{1}{p^p}$.

So radius of convergence is $\frac{1}{p^p}$.